





一、選擇題
1. C 2. B 3. C 4. A 5. B 6. D 7. D 8. A 9. A 10. B
二、填空題
11. [x+y] 12. (3,2) 13. [23] 14. [y=-2x+5] 15. [36513]
三、解答題
16. (1)原式 = -1 - [12] × [13] × (2 - 9)
= -1 - [16] × (-7)
= - 1 + [76]
= [16].
(2)[原式=(a+2)(a-2)(a-2)2+a(a-1)a-1?1a]
[=a+2a-2+1]
[=2aa-2.]
17. (1)解:設小朋友人數為x人,
由題意得[4x+19=5x-25],
解得[x=44].
答:小朋友人數為44人.
(2)解:由(1)得一共購買了[4×44+19=195]件玩具,
設購買了A種玩具m件,則購買了B種玩具([195-m])件,
由題意得[20m+30]([195-m]) [≤4950],
解得[m≥90],
∴m的最小值為90,
即至少購買了A種玩具90件.
答:至少購買了A種玩具90件.
18. (1)此次調查的總人數是[24÷24%=100](人),
所以選擇課程A的學生人數是[100-56-24-12=8](人).
(2)[360°×56100=201.6°],
課程B所對應的扇形圓心角的大小為201.6°.
(3)[800×12100=96](人).
所以估計該校七年級學生選擇課程D的約有96人.
19. (1)依題意可得yA,yB與x的函數解析式分別是
[yA=4×20+5]([x-4]),即[yA=5x+60];
[yB=4×20×0.9+5×0.9x],即[yB=4.5x+72].
(2)當yA = yB時,
即[5x+60=4.5x+72],解得x = 24;
當yA > yB時,
即[5x+60>4.5x+72],解得x > 24;
當yA < yB時,
即[5x+60<4.5x+72],解得x < 24.
從而可知,當購買乒乓球24盒時,到兩家超市購買的花費相同;當購買乒乓球大于24盒時,到乙超市購買合算;當購買乒乓球小于24盒時,到甲超市購買合算.
20. 如圖1,過點E作EF ⊥ CD交CD的延長線于點F,過點E作EM ⊥ AC于點M,
∵斜坡DE的坡度(或坡比)i = 1∶2.4,DE = 91米,CD = 76米,
∴設EF = 5x米,則DF = 12x米.
在Rt△DEF中,
∵EF2 + DF2 = DE2,即(5x)2 + (12x)2 = 912,
解得x = 7,
∴EF = 35米,DF = 84米,
∴CF = DF + DC = 84 + 76 = 160(米).
∵EM ⊥ AC,AC ⊥ CD,EF ⊥ CD,
∴四邊形EFCM是矩形,
∴EM = CF = 160米,CM = EF = 35米.
在Rt△AEM中,
∵∠AEM = 44°,∴AM = EM·tan 44° ≈ 160 × 0.97 = 155.2(米),
∴AC = AM + CM = 155.2 + 35 = 190.2(米).
∴AB = AC - BC = 190.2 - 155 ≈ 35(米).
答:大樹AB的高度約為35米.
21. (1)證明:如圖2,連接OB,設∠OAB = [α].
∵OA = OB,∴∠OBA = ∠OAB = [α].
∵∠ADB = ∠OAB,∴∠ADB = [α].
∵∠ADB = [12]∠AOB,∴∠AOB = 2[α].
在△OAB中,由三角形內角和定理可得,[α+α+2α=]180°,
解得[α] = 45°,
∴∠AOB = 90°.
∵BC [?] OA,∴∠OBC = ∠AOB = 90°,∴OB ⊥ BC.
又∵OB為半徑,∴BC是[⊙O]的切線.
(2)如圖3,過點B作[BG⊥AC]于點[G],過點A作[AF⊥BC],交CB的延長線于點F.
易證四邊形OAFB為正方形,
由(1)可知,∠ADB = 45°,所以△BDG為等腰直角三角形,
∵BD = 2,∴BG = DG = [2].
在Rt△BCG中,tan C = [13] = [BGCG],
∴CG = [32],∴[BC=25].
設OA = r,則AF = BF = r.
在Rt△ACF中,tan C = [AFCF],
∴[rr+25=13],解得r = [5],∴OA = [5].
22. (1)解:∵拋物線[y=18x2]中[a=18],
∴[14a=2],[-14a=-2],
∴拋物線[y=18x2]的焦點坐標為(0,2),準線l的方程為y = -2.
(2)如圖4,設[PB]交[x]軸于點[D]. ∵點[P]([m],[n])([m>0])到焦點A的距離是它到x軸距離的3倍,
∴PA = 3PD = 3[n].
∵PA = PB,PB = [n] + 2,
∴ PB = 3PD,即n + 2 = 3n,
解得n = 1,
∴[P]([22],1).
(3)如圖5,設[PB]交[x]軸于點[H],[AP]的延長線交直線[n]于點[D],直線[n]交[y]軸于點[E].
則[d1+d2] = PH + PD = PB - 2 + PD = PA + PD - 2 ≥ AD - 2,
當A,P,D三點共線且AD ⊥ n時,
PA + PD - 2 = AD - 2,即此時[d1+d2]的值最小.
由[y=3x-4]可求得[E](0,-4),∠AED = 30°,
∴AE = 6,AD = AE·sin 30° = 3.
∴[d1+d2]的最小值為1.
(4)由已知可求得[y=18x2-2]焦點坐標為原點O,準線l的表達式為y = -4.
如圖6,∵PO + PQ = PB + PQ ≥ BQ,
∴當B,P,Q三點共線且BQ ⊥ l時,PO + PQ最小,最小值為7,
則此時P[2,-32],
∴PQ = 3 - [-32] = [92],∴[S△POQ=12?PQ?xQ=12×92×2=92].
23. (1)證明:如圖7,連接CE,在PE上截取PF = PC,連接CF.
由已知可得AC = AE,∠ACB = ∠AED,∠CAE = ∠BAD = 60°,
∴△ACE是等邊三角形,∴CE = AC,∠ACE = 60°.
在△AGE與△PCG中,
∵∠AGE = ∠PGC,∠AEG = ∠PCG,
∴∠CPG = ∠CAE = 60°.
又∵PC = PF,
∴△PCF為等邊三角形,
∴CF = CP,∠PCF = 60°,
∴∠1 + ∠3 = 60°.
∵∠3 + ∠2 = 60°,∴∠1 = ∠2.
又∵CP = CF,AC = CE,
∴△ACP ≌ △ECF,
∴PA = EF,
∴PE = PF + EF = PC + PA.
(2)[PC2=2PA2+PB2].
理由如下:如圖8,將△ABP繞點A逆時針旋轉90°得到△ACD,連接PD.
則△APD為等腰直角三角形,DA = PA,DC = PB,∠ADC = ∠APB = 135°,
∴ [PD2=PA2+DA2=2PA2],∠ADP = 45°,
∴ ∠PDC = 90°,
∴ [PC2=PD2+CD2=2PA2+PB2].
(3)如圖9,將△BCP繞點B順時針旋轉90°得到△BC'P',連接P'P.
則△PBP'為等腰直角三角形,所以PP' = [2]PB,C'P' = PC.
∴ 總運費 = [PA×1+2PB+PC×1] = [PA+P'P+P'C'≥AC'].
過點C'作C'D⊥AB,交AB的延長線于點D.
∵∠ABC = 30°,∠CBC' = 90°,C'B = CB = 3,
∴∠C'BD = 60°,BD = [32],C'D = [323],
∴AD = 4 + [32] = [112],
∴[AC'=AD2+C'D2=37],
答:總的運輸成本最低為[37]元.