999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

氧化應(yīng)激對(duì)母畜卵巢功能影響的研究進(jìn)展

2024-09-22 00:00:00孟亞軒劉彥王晶陳國(guó)順馮濤
畜牧獸醫(yī)學(xué)報(bào) 2024年7期
關(guān)鍵詞:氧化應(yīng)激

摘 要:卵巢是母畜生殖系統(tǒng)的重要組成部分,其功能受多種因素的調(diào)控,其中氧化應(yīng)激作為一種重要的細(xì)胞生物學(xué)過(guò)程,被發(fā)現(xiàn)對(duì)卵巢功能產(chǎn)生深遠(yuǎn)影響。卵巢內(nèi)氧化與抗氧化物的平衡對(duì)維持卵巢功能意義重大,卵巢內(nèi)活性氧(reactive oxygen species,ROS)參與卵母細(xì)胞生長(zhǎng)、減數(shù)分裂、排卵和其他生理過(guò)程的調(diào)節(jié),ROS堆積可導(dǎo)致卵巢功能紊亂,影響優(yōu)勢(shì)卵泡形成,對(duì)卵母細(xì)胞成熟、受精以及隨后的胚胎植入和發(fā)育均有影響。本文針對(duì)氧化應(yīng)激對(duì)母畜卵巢功能的影響,進(jìn)一步探究了氧化應(yīng)激對(duì)母畜卵母細(xì)胞、顆粒細(xì)胞、卵泡膜細(xì)胞以及黃體的影響,深入了解其機(jī)制有助于揭示卵巢生理和病理的內(nèi)在聯(lián)系,為相關(guān)疾病的預(yù)防和治療提供新的思路。

關(guān)鍵詞:母畜;氧化應(yīng)激;卵巢;卵母細(xì)胞;顆粒細(xì)胞;黃體;線粒體

中圖分類號(hào):S814.1

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)07-2825-11

收稿日期:2024-01-02

基金項(xiàng)目:國(guó)家自然科學(xué)基金(31972575);北京市農(nóng)林科學(xué)院課題(CZZJ202205)

作者簡(jiǎn)介:孟亞軒(2000-),女,甘肅金昌人,碩士生,主要從事繁殖營(yíng)養(yǎng)調(diào)控研究,E-mail:18793606358@163.com

*通信作者:陳國(guó)順,主要從事家畜營(yíng)養(yǎng)調(diào)控研究,E-mail:chengs@gsau.edu.cn;馮 濤,主要從事動(dòng)物繁殖調(diào)控研究,E-mail:fengtao_gs@163.com

Research Progress in the Effect of Oxidative Stress on Ovarian Function in

Female Livestock

MENGYaxuan1,2,3,LIUYan1,2,WANGJing1,2,CHENGuoshun3*,F(xiàn)ENGTao1,2,3*

(1.Institute of Animal Husbandry and Veterinary Medicine(IAHVM),Beijing Academy of

Agriculture and Forestry Sciences(BAAFS),Beijing100097,China; 2.Joint Laboratory of

Animal Science between IAHVM of BAAFS and Division of Agricultural Science and

Natural Resource of Oklahoma State University,Beijing100097,China;

3.College of Animal Science and Technology,Gansu Agricultural

University,Lanzhou730070,China)

Abstract:The ovary is an important component of the reproductive system of female livestock,and its function is regulated by many factors,among which oxidative stress,as an important cellular biological process,has been found to have aprofound effect on the ovarian function.The balance between oxidation and antioxidants in the ovary plays asignificant role in maintaining ovarian function.Reactive oxygen species(ROS)in the ovary participates in the regulation of oocyte growth,meiosis,ovulation,and other physiological processes.The accumulation of ROS can lead to ovarian dysfunction and affect the formation of dominant follicles.It has influence on oocyte maturation,fertilization,and subsequent embryo implantation and development.Aiming at the effects of oxidative stress on ovarian function of female animals,this paper further explored the effects of oxidative stress on oocytes,granulosa cells,follicular membrane cells and corpus luteum of female animals,and in-depth understanding of the mechanism will help reveal the internal relationship between ovarian physiology and pathology,and provide new ideas for the prevention and treatment of reproduction related diseases.

Key words:female livestock; oxidative stress; ovary; oocyte; granulosa cell; corpus luteum; mitochondria

*Corresponding authors:CHEN Guoshun,E-mail:chengs@gsau.edu.cn; FENG Tao,E-mail:fengtao_gs@163.com

氧化應(yīng)激是當(dāng)動(dòng)物機(jī)體受某種外界因素影響或自身生理活動(dòng)調(diào)節(jié)紊亂時(shí)細(xì)胞內(nèi)產(chǎn)生大量的氧自由基無(wú)法及時(shí)清除,使活性氧(reactive oxygen species,ROS)水平遠(yuǎn)高于細(xì)胞自身的抗氧化能力,引發(fā)氧化-抗氧化動(dòng)態(tài)失衡,發(fā)生細(xì)胞和組織炎性浸潤(rùn),進(jìn)而造成氧化損傷的非正常生命活動(dòng)[1]。氧化損傷主要是由促氧化劑和抗氧化劑之間的不平衡引起的,平衡比例可通過(guò)ROS或活性氮自由基水平升高或抗氧化防御機(jī)制降低來(lái)改變[2-3]。然而,過(guò)量的ROS產(chǎn)生會(huì)損壞母畜的天然抗氧化防御系統(tǒng),導(dǎo)致生殖系統(tǒng)機(jī)能異常,嚴(yán)重時(shí)會(huì)引起卵子的氧化損傷,致使其發(fā)育和質(zhì)量受損,進(jìn)而降低受精率和胚胎發(fā)育率。此外,氧化應(yīng)激還會(huì)干擾母畜體內(nèi)的生殖激素水平,影響卵泡的發(fā)育和排卵過(guò)程等。本文從生殖激素、卵泡發(fā)育、黃體發(fā)育等方面綜述了氧化應(yīng)激對(duì)母畜卵巢功能的影響,以期為保障動(dòng)物生殖健康和提高生殖效率提供參考。

1 氧化應(yīng)激對(duì)母畜生殖激素水平的影響

下丘腦-垂體-卵巢軸系參與調(diào)控母畜的生殖內(nèi)分泌活動(dòng),其分泌的激素調(diào)控母畜發(fā)情、排卵等過(guò)程[4]。下丘腦、垂體和卵巢三者之間形成一個(gè)反饋調(diào)節(jié)系統(tǒng),存在負(fù)反饋?zhàn)饔煤驼答佔(zhàn)饔茫鼓感蟮纳硟?nèi)分泌系統(tǒng)之間維持在動(dòng)態(tài)平衡狀態(tài),共同參與母畜生殖活動(dòng)。據(jù)報(bào)道,17β-雌二醇(estradiol,E2)通過(guò)其抗氧化活性、自由基清除能力來(lái)增加卵巢細(xì)胞活力,并通過(guò)雌二醇受體α和β抑制神經(jīng)毒性[5]。另外,下丘腦-垂體-腎上腺軸在氧化應(yīng)激下被激活,由此釋放的皮質(zhì)酮(大鼠中)或皮質(zhì)醇(人類中)會(huì)干擾或改變對(duì)性腺激素的反應(yīng)。氧化應(yīng)激期間細(xì)胞因子的分泌通過(guò)激活下丘腦、腎上腺糖皮質(zhì)激素的釋放及其對(duì)神經(jīng)元的作用來(lái)抑制下丘腦的GnRH分泌以及性腺類固醇生成。

生殖階段,在激素的調(diào)控下母畜會(huì)經(jīng)歷卵巢和子宮的周期性變化。隨著年齡的增長(zhǎng),雌激素分泌減少,導(dǎo)致氧化應(yīng)激失衡[6]。ROS可參與脂質(zhì)過(guò)氧化,生成乙烯、丙醇和丙二醛等產(chǎn)物,這些產(chǎn)物與DNA相互作用或結(jié)合進(jìn)而破壞DNA結(jié)構(gòu)[7-8]。雌激素對(duì)氧化應(yīng)激的保護(hù)作用是通過(guò)胞質(zhì)溶膠中特定酶的易位介導(dǎo)的,這些酶可防止線粒體DNA(mitochondrial DNA,mtDNA)受到自由基的氧化攻擊[9]。母畜衰老期雌激素水平的降低導(dǎo)致血脂水平變化[9]和脂質(zhì)過(guò)氧化增加[10]。雌激素通過(guò)增加抗氧化酶(如谷胱甘肽過(guò)氧化物酶)的活性并引起抗氧化維生素水平的增加,從而產(chǎn)生直接的抗氧化作用[11]

氧化應(yīng)激是導(dǎo)致卵巢激素減少的一個(gè)重要原因[12-13]。有研究已經(jīng)證明,大腦中抗氧化酶的活性在發(fā)情周期中和性腺切除術(shù)后會(huì)發(fā)生變化,并且在性別之間存在差異,這表明性腺激素參與了控制抗氧化防御的過(guò)程[14]。Zarida等[15]發(fā)現(xiàn),在性腺切除和性別改變的大鼠血漿和肝臟中,谷胱甘肽相關(guān)酶的活性也發(fā)生了變化。在性腺切除的雌性和雄性大鼠的大腦中,添加外源性孕酮(progesterone,P4)或E2抑制了錳超氧化物歧化酶活性[16-17]。卵巢激素的喪失顯著增強(qiáng)了切除性腺的雌性大鼠腦中的氧化應(yīng)激[18]。研究發(fā)現(xiàn),E2和P4增加了卵巢內(nèi)過(guò)氧化氫酶(catalase,CAT)的活性,而E2降低谷胱甘肽過(guò)氧化物酶、谷胱甘肽巰基轉(zhuǎn)移酶和谷胱甘肽還原酶活性。總體而言,組織中抗氧化狀態(tài)不平衡和氧化應(yīng)激導(dǎo)致激素失衡,不利于卵巢正常功能的發(fā)揮。

2 氧化應(yīng)激對(duì)卵巢功能的作用

在卵巢中,ROS參與卵母細(xì)胞生長(zhǎng)、減數(shù)分裂、排卵和其他生理過(guò)程的調(diào)節(jié)[19]。在卵泡生長(zhǎng)期間,類固醇生成增加上調(diào)細(xì)胞色素P450的表達(dá),從而導(dǎo)致ROS的形成。同時(shí),E2分泌增加會(huì)觸發(fā)CAT的表達(dá),影響ROS與抗氧化劑之間的動(dòng)態(tài)平衡[20]。ROS增加誘導(dǎo)顆粒細(xì)胞凋亡,進(jìn)一步導(dǎo)致卵泡壁破裂和排卵。同樣,黃體退化也是由氧化應(yīng)激誘導(dǎo)的黃素化顆粒細(xì)胞凋亡介導(dǎo)的[21]。ROS的平衡在體外環(huán)境中也很重要,并能對(duì)卵母細(xì)胞成熟、受精以及隨后的胚胎植入和發(fā)育產(chǎn)生影響[22]

線粒體介導(dǎo)的內(nèi)源性凋亡途徑、死亡受體介導(dǎo)的外源性凋亡途徑以及內(nèi)質(zhì)網(wǎng)介導(dǎo)的凋亡途徑是細(xì)胞凋亡的3個(gè)途徑,其中線粒體介導(dǎo)的內(nèi)源性凋亡途徑是氧化應(yīng)激引起卵母細(xì)胞凋亡的重要途徑[23]。氧化應(yīng)激是導(dǎo)致卵母細(xì)胞和顆粒細(xì)胞凋亡的關(guān)鍵因素,過(guò)高的ROS激活線粒體介導(dǎo)的細(xì)胞凋亡信號(hào)通路[24],誘導(dǎo)顆粒細(xì)胞凋亡,導(dǎo)致卵母細(xì)胞閉鎖。

2.1 氧化應(yīng)激對(duì)卵母細(xì)胞的影響

氧化應(yīng)激是誘導(dǎo)哺乳動(dòng)物卵母細(xì)胞凋亡的主要因素之一[25]。當(dāng)畜體內(nèi)ROS和抗氧化劑平衡被打破,氧化應(yīng)激會(huì)觸發(fā)卵巢內(nèi)大多數(shù)生殖細(xì)胞甚至卵母細(xì)胞的凋亡,并引起卵泡異常閉鎖、減數(shù)分裂異常、受精率降低、胚胎發(fā)育延遲等問(wèn)題[26]。線粒體同時(shí)是細(xì)胞生物氧化、能量轉(zhuǎn)化以及產(chǎn)生ROS的主要場(chǎng)所,與卵母細(xì)胞質(zhì)量下降密切相關(guān)。當(dāng)機(jī)體發(fā)生氧化應(yīng)激時(shí),產(chǎn)生大量的ROS,導(dǎo)致卵母細(xì)胞線粒體形態(tài)和功能改變進(jìn)而影響三磷酸腺苷(adenosine triphosphate,ATP)的合成;同時(shí),干擾卵母細(xì)胞減數(shù)分裂,使卵母細(xì)胞內(nèi)非整倍體染色體數(shù)目增多,造成胚胎DNA損傷和早期發(fā)育停滯,最終導(dǎo)致不良妊娠。

2.1.1 造成mtDNA氧化損傷

線粒體功能障礙是導(dǎo)致卵母細(xì)胞衰老的重點(diǎn)[27]。在正常情況下,線粒體中ROS的過(guò)量產(chǎn)生受到限制,以保護(hù)細(xì)胞器免受酶促和非酶促防御系統(tǒng)的氧化損傷。mtDNA因其結(jié)構(gòu)中缺乏組蛋白和有效的修復(fù)機(jī)制,特別容易受到某些應(yīng)激誘導(dǎo)的損傷。而mtDNA拷貝數(shù)不足會(huì)造成卵母細(xì)胞發(fā)育潛能降低[28]。當(dāng)抗氧化防御不堪重負(fù)時(shí),過(guò)量產(chǎn)生的ROS導(dǎo)致線粒體中的蛋白質(zhì)、DNA和脂質(zhì)發(fā)生氧化損傷,引起mtDNA突變[29]。而mtDNA突變的積累反過(guò)來(lái)又會(huì)破壞線粒體結(jié)構(gòu)和功能,改變抗氧化防御系統(tǒng),擾亂鈣穩(wěn)態(tài),導(dǎo)致ATP生成降低,最終影響母畜繁殖。根據(jù)生殖衰老理論,高齡雌性的卵母細(xì)胞質(zhì)量下降是由線粒體端粒縮短引起的,ROS水平過(guò)高可引起不同類型的端粒DNA損傷,DNA損傷時(shí)母畜體內(nèi)卵母細(xì)胞由于老化導(dǎo)致氧化應(yīng)激增加,造成卵母細(xì)胞質(zhì)量下降[30]

2.1.2 影響ATP的合成

線粒體通過(guò)氧化磷酸化合成ATP,同時(shí)通過(guò)三羧酸循環(huán)和脂肪酸β氧化提供能量。線粒體連接蛋白43(mitochondrion connexion43,mtCx43)通過(guò)介導(dǎo)線粒體內(nèi)膜的K+、H+和ATP轉(zhuǎn)移以及與線粒體ATP合成酶的相互作用來(lái)調(diào)節(jié)線粒體ATP的產(chǎn)生,有助于維持線粒體氧化還原水平穩(wěn)定[31]。氧化應(yīng)激發(fā)生時(shí),可能觸發(fā)線粒體膜中高電導(dǎo)線粒體通透性過(guò)渡孔(permeability transition pore,PTP)的打開,導(dǎo)致質(zhì)子泄漏[32],線粒體通透性變化與基質(zhì)膨脹、呼吸鏈解開、Ca2+流失、膜電位喪失、ROS過(guò)度產(chǎn)生和促凋亡因子(細(xì)胞色素c)釋放有關(guān),最終導(dǎo)致細(xì)胞凋亡。mtCx43在線粒體內(nèi)膜形成半通道,調(diào)節(jié)線粒體中K攝取、ROS產(chǎn)生和能量代謝[33],Cx43通常存在于質(zhì)膜中,在質(zhì)膜中形成間隙連接通道并促進(jìn)細(xì)胞間通訊,也作為各種細(xì)胞類型的半通道存在于線粒體膜中[34]。mtCx43參與線粒體膜電位,mtCx43半通道參與膜間空間和基質(zhì)間質(zhì)子梯度的維持,增強(qiáng)線粒體ATP的產(chǎn)生。當(dāng)急性氧化應(yīng)激發(fā)生時(shí),Cx43迅速轉(zhuǎn)位到線粒體內(nèi)膜,通過(guò)調(diào)節(jié)K流入線粒體基質(zhì),增加線粒體呼吸和ATP產(chǎn)生,并誘導(dǎo)心肌細(xì)胞產(chǎn)生ROS[35]。在正常情況下,線粒體內(nèi)存在少量的mtCx43,而在氧化應(yīng)激作用下,mtCx43在線粒體中積累并增強(qiáng)ATP的產(chǎn)生,進(jìn)而輸出到胞質(zhì)溶膠中發(fā)揮重要作用。研究發(fā)現(xiàn),線粒體只有產(chǎn)生足量的ATP才能支持卵母細(xì)胞和早期胚胎發(fā)育[36-37]。線粒體在形態(tài)和功能上出現(xiàn)改變時(shí),氧化應(yīng)激水平增加,ATP產(chǎn)生減少,導(dǎo)致染色體的分離異常或發(fā)育停滯,最終影響卵母細(xì)胞的發(fā)育[38]

2.1.3 干擾鈣離子動(dòng)態(tài)平衡

線粒體除了通過(guò)氧化磷酸化產(chǎn)生ATP之外,也參與調(diào)控細(xì)胞Ca2+動(dòng)態(tài)平衡、凋亡等諸多生物過(guò)程[39]。位于線粒體中的許多離子通道參與線粒體膜之間的離子交換,包括鈣、鈉、鉀、氫、氯等,不僅參與維持正常的線粒體膜電位,而且還參與調(diào)節(jié)其他途徑。研究表明,質(zhì)膜中的Ca2+通道是氧化應(yīng)激的主要靶標(biāo),Ca2+靶向并激活那些被認(rèn)為是線粒體中ROS關(guān)鍵來(lái)源的線粒體脫氫酶,來(lái)滿足ROS增加時(shí)不斷增長(zhǎng)的能量需求。Ca2+是ATP合成的正效因子,但Ca2+超負(fù)荷可導(dǎo)致線粒體功能障礙和卵母細(xì)胞死亡[40]。線粒體對(duì)Ca2+的攝取通過(guò)調(diào)節(jié)線粒體與內(nèi)質(zhì)網(wǎng)和質(zhì)膜轉(zhuǎn)運(yùn)蛋白之間的微結(jié)構(gòu)參與塑造細(xì)胞。Ca2+的攝取導(dǎo)致線粒體Ca2+過(guò)載,觸發(fā)PTP打開,PTP由Ca2+觸發(fā)并被ROS增強(qiáng),與細(xì)胞凋亡或線粒體損傷導(dǎo)致的細(xì)胞壞死有關(guān)[41]。由于氧化應(yīng)激,當(dāng)PTP打開變?yōu)槌掷m(xù)開放后,線粒體會(huì)發(fā)生塌陷進(jìn)而結(jié)構(gòu)被破壞,當(dāng)涉及大部分線粒體受損時(shí)就會(huì)導(dǎo)致細(xì)胞死亡[42]。小鼠卵母細(xì)胞培養(yǎng)時(shí)添加地西泮(一種與線粒體外膜上的苯二氮卓受體結(jié)合的藥物,這種結(jié)合可能會(huì)限制ATP的合成,影響鈣的調(diào)節(jié),并破壞線粒體的分布),可導(dǎo)致小鼠卵母細(xì)胞成熟和染色體非整倍體的延遲[43]。氧化應(yīng)激也會(huì)影響卵母細(xì)胞紡錘體形成,因其會(huì)降低卵母細(xì)胞中ATP的含量,并觸發(fā)PTP張開導(dǎo)致線粒體功能障礙繼而影響紡錘體形成和衰老卵母細(xì)胞成熟期間染色體的分離[43]。此外,線粒體Ca2+的攝取以犧牲膜電位為代價(jià)而導(dǎo)致ROS產(chǎn)生增加[44-45]。因此,線粒體Ca2+攝取引起的ROS增加對(duì)卵母細(xì)胞的信號(hào)傳導(dǎo)非常重要,但ROS過(guò)量會(huì)導(dǎo)致氧化應(yīng)激和卵母細(xì)胞損傷[46]。相反,ROS能調(diào)節(jié)卵母細(xì)胞內(nèi)氧化還原酶和離子通道的活性,包括Ca2+渠道。有研究指出,Ca2+可以通過(guò)刺激CAT和谷胱甘肽還原酶來(lái)調(diào)節(jié)細(xì)胞抗氧化防御系統(tǒng),與鈣調(diào)蛋白相互作用后與參與ROS穩(wěn)態(tài)的酶相互作用[47-48],導(dǎo)致呼吸鏈抑制和進(jìn)一步的ROS生成[49]。可見,Ca2+滲透通道對(duì)正常的線粒體功能非常重要,尤其是ATP的產(chǎn)生。卵母細(xì)胞內(nèi)ROS含量升高可破壞細(xì)胞內(nèi)膜離子轉(zhuǎn)換通道,使Ca2+外流,引起線粒體膜電位紊亂而影響其功能[50],隨后導(dǎo)致氧化應(yīng)激產(chǎn)生增加,線粒體進(jìn)一步損傷,最終導(dǎo)致卵母細(xì)胞凋亡。

2.1.4 誘導(dǎo)線粒體自噬

自噬是一種與細(xì)胞應(yīng)激反應(yīng)密切相關(guān)的降解過(guò)程[51]。線粒體自噬是細(xì)胞通過(guò)自噬選擇性去除多余或受損線粒體的過(guò)程,對(duì)線粒體穩(wěn)態(tài)和細(xì)胞存活至關(guān)重要。線粒體決定卵母細(xì)胞的發(fā)育能力,在卵子發(fā)生的早期階段,異常的線粒體可以通過(guò)線粒體自噬去除。線粒體自噬在誘導(dǎo)線粒體介導(dǎo)的凋亡信號(hào)傳導(dǎo)之前,對(duì)消除受損的線粒體發(fā)揮重要作用,從而減輕細(xì)胞氧化應(yīng)激和死亡[52]。但在卵母細(xì)胞形成后,盡管卵母細(xì)胞中存在線粒體自噬調(diào)節(jié)劑,但線粒體自噬不會(huì)主動(dòng)清除受損的線粒體,這導(dǎo)致功能失調(diào)的線粒體從卵母細(xì)胞傳遞到胚胎[53]。說(shuō)明在卵母細(xì)胞發(fā)育過(guò)程中,線粒體自噬介導(dǎo)的功能失調(diào)和線粒體清除受損導(dǎo)致的線粒體積累,使得卵母細(xì)胞具有更大的死亡信號(hào)傳導(dǎo)傾向。SIRT是一種重要的線粒體脫乙酰酶,可調(diào)節(jié)線粒體功能[54]。SIRT-1與卵母細(xì)胞中線粒體自噬和功能的調(diào)節(jié)有關(guān),可以增加卵母細(xì)胞內(nèi)ATP含量并保護(hù)它們免受過(guò)多的ROS和氧化損傷[55]。因此在卵母細(xì)胞發(fā)育過(guò)程中,線粒體自噬作為一種防御機(jī)制,可以選擇性地去除細(xì)胞中受損和功能失調(diào)的線粒體,以維持線粒體的質(zhì)量,從而保持卵母細(xì)胞的正常功能[56]

值得注意的是,氧化應(yīng)激影響卵母細(xì)胞幾種途徑之間存在著相互作用[57]。如ROS會(huì)直接攻擊線粒體膜和mtDNA的形成位置,導(dǎo)致線粒體功能障礙和更多的ROS產(chǎn)生。ROS與核DNA和蛋白質(zhì)存在較為廣泛的相互作用,導(dǎo)致DNA損傷[58]。ROS與細(xì)胞膜的脂質(zhì)相互作用以干擾其功能。在動(dòng)物整個(gè)繁殖過(guò)程中,已經(jīng)發(fā)現(xiàn)了由氧化應(yīng)激誘導(dǎo)的大量DNA突變或排列、基因組不穩(wěn)定、蛋白質(zhì)功能受損以及代謝和信號(hào)通路的改變[59]。另外,當(dāng)氧化還原反應(yīng)發(fā)生時(shí),線粒體中的電子通過(guò)呼吸鏈的復(fù)合物Ⅰ、Ⅲ轉(zhuǎn)移給氧,使氧化磷酸化活性增強(qiáng),ROS產(chǎn)生增加[60];當(dāng)ROS過(guò)高時(shí),易與mtDNA結(jié)合導(dǎo)致突變,引起線粒體功能障礙,影響電子傳遞鏈?zhǔn)闺娮有孤叮c氧分子結(jié)合生成大量的ROS,造成惡性循環(huán)從而導(dǎo)致卵母細(xì)胞損傷及線粒體自噬[61],不能產(chǎn)生足夠的ATP,最終影響卵子和胚胎發(fā)育。

2.2 氧化應(yīng)激誘導(dǎo)顆粒細(xì)胞凋亡

在卵泡微環(huán)境中,卵母細(xì)胞被幾層顆粒細(xì)胞包圍,這些顆粒細(xì)胞在卵泡發(fā)育的最后階段分化為壁顆粒細(xì)胞和卵丘顆粒細(xì)胞。顆粒細(xì)胞提供營(yíng)養(yǎng)物質(zhì)以確保卵母細(xì)胞的成熟和發(fā)育能力,而且在卵母細(xì)胞成熟過(guò)程中通過(guò)其自身的抗氧化系統(tǒng)保護(hù)卵母細(xì)胞免受氧化損傷。顆粒細(xì)胞對(duì)ROS很敏感,ROS包括過(guò)氧化氫(H2O2)在顆粒細(xì)胞凋亡中發(fā)揮關(guān)鍵作用[62]。當(dāng)細(xì)胞中氧化和還原之間的平衡被破壞并且細(xì)胞不能修復(fù)所產(chǎn)生的氧化損傷時(shí),增加的ROS可以誘導(dǎo)氧化應(yīng)激,導(dǎo)致顆粒細(xì)胞凋亡。顆粒細(xì)胞凋亡的實(shí)質(zhì)就是細(xì)胞內(nèi)氧化系統(tǒng)與抗氧化系統(tǒng)之間動(dòng)態(tài)平衡被打破的結(jié)果。

卵母細(xì)胞線粒體通過(guò)代謝為顆粒細(xì)胞提供能量,以維持其正常功能。當(dāng)機(jī)體處于氧化應(yīng)激狀態(tài)時(shí),線粒體膜通透性增加,大量Ca2+流入線粒體內(nèi)使得跨膜電位降低,同時(shí)ROS激增,二者共同作用誘導(dǎo)顆粒細(xì)胞凋亡[63]。在卵泡發(fā)育過(guò)程中顆粒細(xì)胞是E2生物合成的主要來(lái)源,顆粒細(xì)胞凋亡減少E2的生物合成,在卵巢中產(chǎn)生低雌激素狀態(tài)[64]。有研究指出,E2激活了SIRT3基因啟動(dòng)子上調(diào)基因表達(dá),促進(jìn)了自噬,減弱氧化應(yīng)激[65]。在小鼠有腔卵泡體外培養(yǎng)液中加入高劑量的E2,能夠降低卵泡液中ROS的水平,抑制卵泡閉鎖的發(fā)生,進(jìn)而降低氧化應(yīng)激對(duì)顆粒細(xì)胞的損害[66]。所以,雌激素水平降低可能對(duì)自噬產(chǎn)生不利影響。另外,氧化應(yīng)激介導(dǎo)的顆粒細(xì)胞凋亡減少了顆粒細(xì)胞-卵母細(xì)胞之間的聯(lián)系,從而減少了卵母細(xì)胞的營(yíng)養(yǎng)供應(yīng),進(jìn)一步影響卵母細(xì)胞的質(zhì)量[67]

促卵泡激素(follicle-stimulating hormone,F(xiàn)SH)刺激卵巢顆粒細(xì)胞從而獲得產(chǎn)生E2的能力,是卵巢顆粒細(xì)胞分化和成熟的里程碑[68]。研究表明,自噬參與FSH對(duì)顆粒細(xì)胞的生理學(xué)調(diào)節(jié)[69]。FSH不僅通過(guò)上調(diào)HIF1A/HIF-1α表達(dá)促進(jìn)顆粒細(xì)胞自噬,而且保護(hù)顆粒細(xì)胞免于快速增殖而引起氧化應(yīng)激的損傷[70],也可以減少氧化應(yīng)激介導(dǎo)的過(guò)度自噬,維持顆粒細(xì)胞的存活[71]。有關(guān)顆粒細(xì)胞的新證據(jù)表明,自噬可能主要作為促死亡途徑,在有害刺激下加劇細(xì)胞損傷[72]。此外,氧化應(yīng)激激活的自噬在多種類型的哺乳動(dòng)物細(xì)胞中啟動(dòng)非凋亡形式的程序性細(xì)胞死亡,而不誘導(dǎo)細(xì)胞凋亡[73]。因此,抑制過(guò)度自噬與增強(qiáng)顆粒細(xì)胞的活力有關(guān),可能是FSH對(duì)顆粒細(xì)胞氧化應(yīng)激保護(hù)作用的一種新機(jī)制。

參與顆粒細(xì)胞凋亡的主要因子有Bcl-2和Bax基因,其中Bax是促凋亡基因,Bcl-2是抑凋亡基因,二者表達(dá)水平的比值與凋亡是否發(fā)生及其嚴(yán)重程度密切相關(guān)[74]。Wang等[75]發(fā)現(xiàn),氧化應(yīng)激通過(guò)調(diào)整Bax/Bcl-2的比值以及降低超氧化物歧化酶(superoxide dismutase,SOD)的表達(dá)來(lái)誘導(dǎo)顆粒細(xì)胞凋亡。董若曦[76]研究表明,氧化應(yīng)激能夠下調(diào)抗氧化基因如SOD的表達(dá),引發(fā)卵巢過(guò)氧化反應(yīng),從而觸發(fā)顆粒細(xì)胞凋亡,導(dǎo)致卵母細(xì)胞質(zhì)量下降和卵巢功能衰退,對(duì)母畜繁殖性能產(chǎn)生負(fù)面影響。

2.3 氧化應(yīng)激對(duì)卵泡膜細(xì)胞的影響

膜細(xì)胞是卵泡的重要組成部分,在次級(jí)卵母細(xì)胞形成后,圍繞在顆粒層周圍的一層扁平細(xì)胞,被認(rèn)為起源于卵巢基質(zhì)中的成纖維細(xì)胞。卵泡膜分為卵泡內(nèi)膜和卵泡外膜,兩者之間是免疫細(xì)胞和血管的混合物[77-78]。卵泡外膜起支持和保護(hù)卵泡的作用,而卵泡內(nèi)膜合成和分泌激素[79]。在卵泡發(fā)育過(guò)程中,卵泡膜細(xì)胞會(huì)迅速增殖和分化[80],之后它們攝取和代謝大量的葡萄糖和脂肪酸用于產(chǎn)生能量,過(guò)程中生成大量具有高能鍵的氧化性游離劑。在正常細(xì)胞中,ROS可迅速被清除,因此生理水平的ROS不會(huì)損害卵泡膜細(xì)胞,而過(guò)量的ROS會(huì)誘導(dǎo)氧化應(yīng)激損傷,導(dǎo)致卵泡膜細(xì)胞凋亡。

適當(dāng)?shù)穆殉舶l(fā)育和體內(nèi)平衡需要精確的機(jī)制來(lái)調(diào)節(jié)卵泡膜細(xì)胞的增殖。研究表明,胰島素和腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)可刺激卵泡膜細(xì)胞增殖[81]。在生理和病理?xiàng)l件下,氧化劑和抗氧化劑參與調(diào)控基因表達(dá)。高濃度的ROS可誘導(dǎo)氧化損傷并具有細(xì)胞毒性,但在中等濃度下,ROS在細(xì)胞生長(zhǎng)和細(xì)胞抗凋亡信號(hào)轉(zhuǎn)導(dǎo)過(guò)程中發(fā)揮重要作用[82]。ROS誘導(dǎo)多種細(xì)胞類型的增殖,包括成纖維細(xì)胞和主動(dòng)脈內(nèi)皮細(xì)胞[83]。包括α-生育酚在內(nèi)的抗氧化劑可抑制多種細(xì)胞的增殖,以及血管平滑肌、成纖維細(xì)胞和各種癌細(xì)胞系[84]。TNF-α也參與氧化應(yīng)激,血漿TNF-α水平與脂質(zhì)過(guò)氧化之間存在關(guān)聯(lián)[85]。在體外,TNF-α也誘導(dǎo)氧化應(yīng)激[86],卵泡膜細(xì)胞具有胰島素、IGFs和TNF-α的受體[87],這些藥物已被證明可以誘導(dǎo)卵泡膜細(xì)胞增殖,這種作用是通過(guò)誘導(dǎo)氧化應(yīng)激介導(dǎo)的。

2.4 氧化應(yīng)激對(duì)排卵的影響

研究證明,ROS特別是H2O2、超氧陰離子和過(guò)氧亞硝酸鹽在排卵后隨著時(shí)間的增加在卵母細(xì)胞中積累[88]。由于ROS逐漸增加和隨之而來(lái)的抗氧化保護(hù)的消耗,使得卵母細(xì)胞排卵后經(jīng)歷了氧化應(yīng)激狀態(tài),進(jìn)而造成疾病的發(fā)生。氧化應(yīng)激與多囊卵巢綜合征(polycystic ovarian syndrome,PCOS)的發(fā)生發(fā)展密切相關(guān)[89]。在氧化應(yīng)激狀態(tài)下,PCOS病患的卵泡液會(huì)產(chǎn)生過(guò)多的ROS,導(dǎo)致微環(huán)境中氧化和抗氧化失衡,并損害卵泡液中線粒體的功能[90]。功能失調(diào)的線粒體在減數(shù)分裂過(guò)程中停滯并降解卵母細(xì)胞,直接損傷卵母細(xì)胞,并導(dǎo)致卵泡凋亡和排卵障礙[90]。另外,高雄激素血癥(hyperandrogenism,HA)是PCOS的主要臨床特征之一。HA可通過(guò)增加IGF-1受體的表達(dá)來(lái)刺激早期卵泡發(fā)育啟動(dòng),使得竇卵泡過(guò)度增殖和卵巢中生長(zhǎng)的小卵泡比例增加[91-92]。氧化應(yīng)激、HA和胰島素抵抗在PCOS的發(fā)生發(fā)展中起著重要作用,它們之間的惡性循環(huán)加重了PCOS的排卵障礙。

2.5 氧化應(yīng)激對(duì)黃體細(xì)胞的影響

ROS誘導(dǎo)的細(xì)胞凋亡參與非生育周期結(jié)束時(shí)黃體的消退機(jī)制。在每個(gè)非生育周期中,黃體消退的特征是黃體細(xì)胞產(chǎn)生和分泌黃體酮的能力喪失和黃體細(xì)胞死亡。ROS是決定黃體壽命的關(guān)鍵因素,發(fā)情周期中,抗氧化劑在黃體生理過(guò)程中發(fā)揮重要作用[93]。黃體中的ROS由巨噬細(xì)胞和黃體細(xì)胞產(chǎn)生,并能調(diào)節(jié)黃體酮等類固醇激素的生物合成[94]。黃體生成素(luteinizing hormone,LH)誘導(dǎo)卵巢SOD產(chǎn)生H2O2的研究表明,ROS可以有效地控制黃體細(xì)胞在生殖周期過(guò)程中產(chǎn)生黃體酮,并在周期結(jié)束時(shí)抑制黃體酮的合成[95]。大量證據(jù)表明[93,96-97],ROS在大鼠黃體細(xì)胞消退中發(fā)揮重要作用,ROS的生成導(dǎo)致生物大分子發(fā)生不可逆的改變,并最終導(dǎo)致黃體線粒體功能障礙和黃體凋亡[98]。另外,促炎細(xì)胞因子和LH通過(guò)調(diào)節(jié)SOD1和SOD2的表達(dá)來(lái)控制黃體ROS的生成和功能[99]。人絨毛膜促性腺激素通過(guò)增加妊娠早期Bcl-2的表達(dá)、降低Bax的表達(dá)而延長(zhǎng)人黃體的壽命[100]。盡管哺乳動(dòng)物物種在調(diào)控黃體消退方面有不同的凋亡機(jī)制,但ROS誘導(dǎo)的細(xì)胞凋亡對(duì)決定黃體壽命至關(guān)重要。

3 總結(jié)與展望

研究表明,氧化應(yīng)激在卵巢中可以影響卵泡發(fā)育、成熟和排卵過(guò)程。過(guò)度的氧化應(yīng)激可能干擾卵巢細(xì)胞的正常功能,導(dǎo)致卵巢功能障礙。氧化應(yīng)激與卵巢中激素的合成和釋放有關(guān),可能影響雌激素和孕激素等重要激素的產(chǎn)生,進(jìn)而影響生殖周期和生育能力。在多囊卵巢綜合征、卵巢癌等卵巢相關(guān)的疾病中,氧化應(yīng)激可能是病理生理的關(guān)鍵因素,調(diào)控病程的發(fā)展。因此,深入探索氧化應(yīng)激影響卵巢的分子機(jī)制,解析其發(fā)揮作用的途徑和信號(hào)通路,為進(jìn)一步研究抗氧化劑在防治卵巢相關(guān)疾病中的作用奠定理論基礎(chǔ)。氧化應(yīng)激影響卵巢健康的機(jī)制在不同年齡階段和生理狀態(tài)下可能不同,有針對(duì)性的開展研究有助于提高雌性家畜繁殖效率,也可為保持女性生殖健康提供參考。

參考文獻(xiàn)(References):

[1]馮 鑫,欒嘉明,張 敏,等.反芻動(dòng)物胃腸道菌群與機(jī)體氧化應(yīng)激調(diào)節(jié)的研究進(jìn)展[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2023,35(4):2063-2071.

FENG X,LUAN JM,ZHANG M,et al.Research progress of gastrointestinal microbiota and regulation of oxidative stress in ruminants[J].Chinese Journal of Animal Nutrition,2023,35(4):2063-2071.(in Chinese)

[2]范 港,黃 鑫,張偉偉,等.大麻二酚對(duì)脂多糖誘導(dǎo)的小鼠乳腺上皮細(xì)胞氧化損傷的保護(hù)作用[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2023,35(2):1298-1307.

FAN G,HUANG X,ZHANG WW,et al.Protective effects of cannabidiol on oxidative damage of mouse mammary epithelial cells induced by lipopolysaccharide[J].Chinese Journal of Animal Nutrition,2023,35(2):1298-1307.(in Chinese)

[3]韓書宇,孫海霞,劉 靜,等.淫羊藿提取物對(duì)老齡種公雞精液品質(zhì)、生殖內(nèi)分泌激素及繁殖性能的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2024,36(1):312-322.

HAN SY,SUN HX,LIU J,et al.Effects of epimedium extract on semen quality,reproductive endocrine hormone,reproduction performance of aged breeder roosters[J].Chinese Journal of Animal Nutrition,2024,36(1):312-322.(in Chinese)

[4]彭 巍,付長(zhǎng)其,王國(guó)文,等.不同營(yíng)養(yǎng)水平對(duì)牦牛生產(chǎn)性能、代謝水平和生殖激素的影響研究[J].中國(guó)畜禽種業(yè),2023,19(10):107-113.

PENG W,F(xiàn)U CQ,WANG GW,et al.Effects of different nutrition levels on performance,metabolism and reproductive hormone of Yak[J].The Chinese Livestock and Poultry Breeding,2023,19(10):107-113.(in Chinese)

[5]廖文雙,周 敏,徐 暢,等.玉米赤霉烯酮和雌二醇對(duì)斷奶仔豬生長(zhǎng)性能、養(yǎng)分利用率和卵巢形態(tài)的影響[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2020,32(3):1127-1135.

LIAO WS,ZHOU M,XU C,et al.Effects of zearalenone and estradiol on growth performance,nutrient utilization and ovary morphology of weaned piglets[J].Chinese Journal of Animal Nutrition,2020,32(3):1127-1135.(in Chinese)

[6]ZHANG LL,WANG Z,KONG LN,et al.Effect of SGLT2inhibitors on improving glucolipid metabolism and reproductive hormone status in overweight/obese women with PCOS:a systematic review and meta-analysis[J].Reprod Sci,2023,doi:10.1007/s43032-023-01415-5.

[7]MOLDOGAZIEVA NT,MOKHOSOEV IM,MEL’NIKOVA TI,et al.Oxidative stress and advanced lipoxidation and glycation end products(ALEs and AGEs)in aging and age-related diseases[J].Oxid Med Cell Longev,2019,2019:3085756.

[8]W?ODARCZYK M,NOWICKA G.Obesity,DNA damage,and development of obesity-related diseases[J].Int JMol Sci,2019,20(5):1146.

[9]王 鑫,聶 桐,李阿群,等.橙皮苷通過(guò)氧化磷酸化途徑緩解高脂飼喂誘導(dǎo)的小鼠肝氧化應(yīng)激[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(3):1302-1313.

WANG X,NIE T,LI AQ,et al.Hesperidin alleviates high-fat-diet induced hepatic oxidative stress in mice via oxidative phosphorylation pathway[J].Acta Veterinaria et Zootechnica Sinica,2024,55(3):1302-1313.(in Chinese)

[10]李曉曉,吳文星,白云飛,等.產(chǎn)后抑郁大鼠子宮組織中氧化應(yīng)激指標(biāo)、炎性因子及雌激素受體表達(dá)分析[J].生殖醫(yī)學(xué)雜志,2023,32(11):1710-1717.

LI XX,WU WX,BAI YF,et al.Analysis of oxidative stress indicators,inflammatory factors and estrogen receptor expression in the uterine tissues of postpartum depression rat model[J].Journal of Reproductive Medicine,2023,32(11):1710-1717.(in Chinese)

[11]于婷喬,劉藝芳,袁慶葉,等.脂聯(lián)素對(duì)KGN細(xì)胞雌激素合成和氧化應(yīng)激的影響[J].生殖醫(yī)學(xué)雜志,2022,31(10):1403-1409.

YU TQ,LIU YF,YUAN QY,et al.Effects of adiponectin on estrogen synthesis and oxidative stress in KGN cells[J].Journal of Reproductive Medicine,2022,31(10):1403-1409.(in Chinese)

[12]HA BJ,LEE SH,KIM HJ,et al.The role of Salicornia herbacea in ovariectomy-induced oxidative stress[J].Biol Pharm Bull,2006,29(7):1305-1309.

[13]MU?OZ-CASTA?EDA JR,MUNTANéJ,HERENCIA C,et al.Ovariectomy exacerbates oxidative stress and cardiopathy induced by adriamycin[J].Gynecol Endocrinol,2006,22(2):74-79.

[14]EL-GINDY YM,ZAHRAN SM,AHMED MH,et al.Enhancing semen quality,antioxidant status and sex hormones of V-line rabbit bucks fed on supplemented diets with dried Moringa leaves[J].Anim Biotechnol,2023,34(7):2626-2635.

[15]ZARIDA H,NGAH WW,KHALID BA.Effect of gonadectomy and sex hormones replacement on glutathione related enzymes in rats[J].Asia Pac JPharmacol,1993,8(4):223-230.

[16]DOS SANTOS DR,F(xiàn)IAIS GA,DE OLIVEIRA PASSOS A,et al.Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats[J].J Steroid Biochem Mol Biol,2022,218:106048.

[17]BRZóSKA MM,GA?AZ·YN-SIDORCZUK M,KOZ?OWSKA M,et al.The Body status of manganese and activity of this element-dependent mitochondrial superoxide dismutase in arat model of human exposure to cadmium and Co-administration of Aronia melanocarpa L.extract[J].Nutrients,2022,14(22):4773.

[18]ALBRAHIM T,ALANGRY R,ALOTAIBI R,et al.Effects of regular exercise and intermittent fasting on neurotransmitters,inflammation,oxidative stress,and brain-derived neurotrophic factor in cortex of ovariectomized rats[J].Nutrients,2023,15(19):4270.

[19]張民瑩,陳素娟,王曉萌,等.褪黑素影響雌性動(dòng)物生殖機(jī)能的研究進(jìn)展[J].黑龍江畜牧獸醫(yī),2023(23):110-115,137.

ZHANG MY,CHEN SJ,WANG XM,et al.Research progress on effects of melatonin on reproductive function in female animals[J].Heilongjiang Animal Science and Veterinary Medicine,2023(23):110-115,137.(in Chinese)

[20]季浩然,盧 建,張 欣,等.不同濃度葡萄糖對(duì)蛋雞卵泡膜細(xì)胞增殖、雌二醇水平及類固醇合成相關(guān)基因表達(dá)的影響[J].中國(guó)家禽,2022,44(10):56-61.

JI HR,LU J,ZHANG X,et al.Effect of different concentrationon of glucose on proliferation,estradiol level and genes expression related to steroidogenesis in follicular theca cells of laying hens[J].China Poultry,2022,44(10):56-61.(in Chinese)

[21]馬林納,馬 堃,范曉迪,等.HIF-1α對(duì)卵泡發(fā)育及排卵生物學(xué)作用的研究進(jìn)展[J].生理學(xué)報(bào),2023,75(5):727-735.

MA LN,MA K,F(xiàn)AN XD,et al.Research progress on the biological effects of HIF-1α on follicle development and ovulation[J].Acta Physiologica Sinica,2023,75(5):727-735.(in Chinese)

[22]VON MENGDEN L,KLAMT F,SMITZ J.Redox biology of human cumulus cells:basic concepts,impact on oocyte quality,and potential clinical use[J].Antioxid Redox Signal,2020,32(8):522-535.

[23]YADAV PK,TIWARI M,GUPTA A,et al.Germ cell depletion from mammalian ovary:possible involvement of apoptosis and autophagy[J].J Biomed Sci,2018,25(1):36.

[24]JIA ZZ,WANG HY,F(xiàn)ENG ZY,et al.Fluorene-9-bisphenol exposure induces cytotoxicity in mouse oocytes and causes ovarian damage[J].Ecotoxicol Environ Saf,2019,180:168-178.

[25]曹倍嘉,秦建鵬,潘 波,等.超低溫冷凍引發(fā)卵母細(xì)胞氧化應(yīng)激及抗氧化劑的應(yīng)用[J].黑龍江動(dòng)物繁殖,2023,31(1):26-31,37.

CAO BJ,QIN JP,PAN B,et al.Oxidative stress and oocyte cryopreservation:Recent advances in mitigation strategies involving antioxidants[J].Heilongjiang Journal of Animal Reproduction,2023,31(1):26-31,37.(in Chinese)

[26]WANG L,TANG JH,WANG L,et al.Oxidative stress in oocyte aging and female reproduction[J].J Cell Physiol,2021,236(12):7966-7983.

[27]張學(xué)凱,姜 敏,邢仲耘,等.冷應(yīng)激下褐色脂肪細(xì)胞線粒體生物發(fā)生研究進(jìn)展[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2024,36(2):737-746.

ZHANG XK,JIANG M,XING ZY,et al.Research progress of mitochondrial biogenesis in brown adipocytes under cold stress[J].Chinese Journal of Animal Nutrition,2024,36(2):737-746.(in Chinese)

[28]ZOU WW,ZONG K,ZHANG ZK,et al.Novel economical,accurate,sensitive,single-cell analytical method for mitochondrial DNA quantification in mtDNA mutation carriers[J].J Assist Reprod Genet,2023,40(9):2197-2209.

[29]李秀芳,王忠清,朱 蕾,等.補(bǔ)腎中藥改善高齡不孕女性卵母細(xì)胞氧化應(yīng)激損傷的研究進(jìn)展[J].世界中醫(yī)藥,2022,17(22):3263-3269.

LI XF,WANG ZQ,ZHU L,et al.Kidney-tonifying chinese medicine in alleviating oxidative stress in oocyte in older infertile women:a review[J].World Chinese Medicine,2022,17(22):3263-3269.(in Chinese)

[30]劉鶴潔,吉木斯,謝望為,等.活性氧對(duì)精子氧化損傷及獲能影響的研究進(jìn)展[J].黑龍江畜牧獸醫(yī),2023(24):31-34,56.

LIU HJ,JI MS,XIE WW,et al.Research progress on the effects of reactive oxygen species on oxidative damage and capacitation of sperm[J].Heilongjiang Animal Science and Veterinary Medicine,2023(24):31-34,56.(in Chinese)

[31]XIAN HX,LIU Y,RUNDBERG NILSSON A,et al.Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3inflammasome activation and pulmonary inflammation[J].Immunity,2021,54(7):1463-1477.e11.

[32]SHANG DH,HUANG MH,WANG BY,et al.mtDNA maintenance and alterations in the pathogenesis of neurodegenerative diseases[J].Curr Neuropharmacol,2023,21(3):578-598.

[33]KNORRE DA.Intracellular quality control of mitochondrial DNA:evidence and limitations[J].Philos Trans RSoc BBiol Sci,2020,375(1790):20190176.

[34]PéREZ-TREVI?O P,VELáSQUEZ M,GARCíA N.Mechanisms of mitochondrial DNA escape and its relationship with different metabolic diseases[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(6):165761.

[35]FEISSNER RF,SKALSKA J,GAUM WE,et al.Crosstalk signaling between mitochondrial Ca2+and ROS[J].Front Biosci(Landmark Ed),2009,14(4):1197-1218.

[36]MURPHY MP.Understanding and preventing mitochondrial oxidative damage[J].Biochem Soc Trans,2016,44(5):1219-1226.

[37]莊翠翠,韓 博.大腸桿菌感染奶牛乳腺上皮細(xì)胞和小鼠乳腺組織致其線粒體損傷的機(jī)制研究[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(2):822-833.

ZHUANG CC,HAN B.Mechanism of mitochondrial damage in bovine mammary epithelial cells and mouse mammary gland infected with Escherichia coli isolated from bovine mastitis[J].Acta Veterinaria et Zootechnica Sinica,2024,55(2):822-833.(in Chinese)

[38]MARTíN-ROMERO FJ,ORTíZ-DE-GALISTEO JR,LARA-LARANJEIRA J,et al.Store-operated calcium entry in human oocytes and sensitivity to oxidative stress[J].Biol Reprod,2008,78(2):307-315.

[39]段晨陽(yáng).缺氧后線粒體Drp1通過(guò)LRRK2-HK2誘導(dǎo)mPTP過(guò)度開放的機(jī)制研究[J].重慶醫(yī)科大學(xué)學(xué)報(bào),2023,48(2):117-123.

DUAN CY.Mechanisms of mitochondrial Drp1inducing excessive opening of mPTP channel through LRRK2-HK2after hypoxia[J].Journal of Chongqing Medical University,2023,48(2):117-123.(in Chinese)

[40]景祎馨,張貽幗,潘 銳,等.線粒體通透性轉(zhuǎn)換孔改變致mtDNA釋放在腸缺血再灌注損傷中的作用[J].武漢大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2023,44(4):421-427.

JING YX,ZHANG YG,PAN R,et al.Role of mitochondrial DNA release induced by altered mitochondrial permeability transition pore in intestinal ischemia reperfusion injury[J].Medical Journal of Wuhan University,2023,44(4):421-427.(in Chinese)

[41]ZOROV DB,JUHASZOVA M,SOLLOTT SJ.Mitochondrial reactive oxygen species(ROS)and ROS-induced ROS release[J].Physiol Rev,2014,94(3):909-950.

[42]WANG LY,WANG DH,ZOU XY,et al.Mitochondrial functions on oocytes and preimplantation embryos[J].J Zhejiang Univ Sci B,2009,10(7):483-492.

[43]盧青青,范婷婷,萬(wàn)彩云,等.基于Ca2+濃度及線粒體氧化應(yīng)激探討補(bǔ)陽(yáng)還五湯對(duì)脊髓損傷大鼠受損紅核神經(jīng)元的保護(hù)作用[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2023,43(4):598-604.

LU QQ,F(xiàn)AN TT,WAN CY,et al.Protective effects of Buyang Huanwu Decoction on damaged rubrospinal neurons in rats after spinal cord injury based on Ca2+concentration and mitochondrial oxidative stress[J].Journal of Hunan University of Chinese Medicine,2023,43(4):598-604.(in Chinese)

[44]STARKOV AA,CHINOPOULOS C,F(xiàn)ISKUM G.Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury[J].Cell Calcium,2004,36(3-4):257-264.

[45]陳 舟.Ca2+通過(guò)CaMKⅡ調(diào)控牦牛卵母細(xì)胞體外成熟的機(jī)制[D].蘭州:西北民族大學(xué),2022.

CHEN Z.Mechanism of Ca′+regulating oocyte maturation through CaMKII in Yak[D].Lanzhou:Northwest University for Nationalities,2022.(in Chinese)

[46]BROOKES PS,YOON Y,ROBOTHAM JL,et al.Calcium,ATP,and ROS:a mitochondrial love-hate triangle[J].Am JPhysiol Cell Physiol,2004,287(4):C817-C833.

[47]YAN Y,WEI CL,ZHANG WR,et al.Cross-talk between calcium and reactive oxygen species signaling[J].Acta Pharmacol Sin,2006,27(7):821-826.

[48]SHAIDULLOV IF,ERMAKOVA EV,SOROKINA DM,et al.Salts of Short-chain fatty acids increase the activity of large conductance Ca2+-Activated K+channels and decrease calcium oscillations in rat GH3cells[J].Biophysics,2023,68(4):561-569.

[49]MALEKI B,MODARRES P,SALEHI P,et al.Identification of ITPR1gene as anovel target for hsa-miR-34b-5p in non-obstructive azoospermia:a Ca2+/apoptosis pathway cross-talk[J].Sci Rep,2023,13(1):21873.

[50]KROEMER G,MARI?O G,LEVINE B.Autophagy and the integrated stress response[J].Mol Cell,2010,40(2):280-293.

[51]SHEN QZ,LIU Y,LI HG,et al.Effect of mitophagy in oocytes and granulosa cells on oocyte quality[J].Biol Reprod,2021,104(2):294-304.

[52]FAUSTINI M,AGRADI S,VIGO D,et al.Bioencapsulation of oocytes and granulosa cells[J].Methods Mol Biol,2024,2749:103-108.

[53]JIANG Y,HE YT,PAN XC,et al.Advances in oocyte maturation in vivo and in vitro in mammals[J].Int JMol Sci,2023,24(10):9059.

[54]KUBLI DA,GUSTAFSSON ?B.Mitochondria and mitophagy:the yin and yang of cell death control[J].Circ Res,2012,111(9):1208-1221.

[55]LI AQ,GAO M,JIANG WT,et al.Mitochondrial dynamics in adult cardiomyocytes and heart diseases[J].Front Cell Dev Biol,2020,8:584800.

[56]BHATTI JS,BHATTI GK,REDDY PH.Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies[J].Biochim Biophys Acta Mol Basis Dis,2016,1863(5):1066-1077.

[57]MURPHY E,ARDEHALI H,BALABAN RS,et al.Mitochondrial function,biology,and role in disease:a scientific statement from the American Heart Association[J].Circ Res,2016,118(12):1960-1991.

[58]GONG GH,SONG MS,CSORDAS G,et al.Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice[J].Science,2015,350(6265):aad2459.

[59]MONZEL AS,ENRíQUEZ JA,PICARD M.Multifaceted mitochondria:moving mitochondrial science beyond function and dysfunction[J].Nat Metab,2023,5(4):546-562.

[60]賈振偉.線粒體代謝功能對(duì)早期胚胎表觀遺傳組和發(fā)育的影響[J].中國(guó)細(xì)胞生物學(xué)學(xué)報(bào),2020,42(4):733-740.

JIA ZW.The effect of mitochondrial function on epigenome and development in preimplantation embryos[J].Chinese Journal of Cell Biology,2020,42(4):733-740.(in Chinese)

[61]DEVINE PJ,PERREAULT SD,LUDERER U.Roles of reactive oxygen species and antioxidants in ovarian toxicity[J].Biol Reprod,2012,86(2):27.

[62]MATSUDA F,INOUE N,MANABE N,et al.Follicular growth and atresia in mammalian ovaries:regulation by survival and death of granulosa cells[J].J Reprod Dev,2012,58(1):44-50.

[63]KAUR S,KUROKAWA M.Regulation of oocyte apoptosis:a view from gene knockout mice[J].Int JMol Sci,2023,24(2):1345.

[64]香秀婷.17β-雌二醇通過(guò)上調(diào)SIRT3表達(dá)和促進(jìn)自噬抑制過(guò)氧化氫誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞衰老的機(jī)制研究[D].廣州:南方醫(yī)科大學(xué),2021.

XIANG XT.Mechanism of17β-estradiol inhibiting hydrogen peroxide induced senescence of human umbilical vein endothelial cells by up regulating SIRT3expression and promoting autophagy[D].Guangzhou:Southern Medical University,2021.(in Chinese)

[65]GRAHAM BM,DAHER M.Estradiol and progesterone have opposing roles in the regulation of fear extinction in female rats[J].Neuropsychopharmacology,2016,41(3):774-780.

[66]CHAUBE SK,SHRIVASTAV TG,TIWARI M,et al.Neem(Azadirachta indica L.)leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals[J].SpringerPlus,2014,3:464.

[67]劉陽(yáng)光,章會(huì)斌,文浩宇,等.豬卵泡液外泌體處理卵巢顆粒細(xì)胞的SNP/Indel篩選分析[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(2):576-586.

LIU YG,ZHANG HB,WEN HY,et al.SNP/indel screening analysis of porcine ovarian granulosa cells treated with follicular fluid exosomes[J].Acta Veterinaria et Zootechnica Sinica,2024,55(2):576-586.(in Chinese)

[68]SUGIURA K,SU YQ,LI QL,et al.Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9and BMP15[J].Mol Endocrinol,2010,24(12):2303-2314.

[69]ZHOU JL,YAO W,LI CY,et al.Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells[J].Cell Death Dis,2017,8(8):e3001.

[70]SHEN M,JIANG Y,GUAN ZQ,et al.Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy[J].Autophagy,2017,13(8):1364-1385.

[71]DAI WJ,YANG H,XU B,et al.Human umbilical cord-derived mesenchymal stem cells(hUC-MSCs)alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model[J].J Ovarian Res,2023,16(1):198.

[72]PAN XH,LIU DS,WANG J,et al.Peneciraistin Cinduces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells[J].Cancer Sci,2013,104(11):1476-1482.

[73]SHARMA P,KAUSHAL N,SALETH LR,et al.Oxidative stress-induced apoptosis and autophagy:Balancing the contrary forces in spermatogenesis[J].Biochim Biophys Acta Mol Basis Dis,2023,1869(6):166742.

[74]張 萍.從線粒體介導(dǎo)的細(xì)胞凋亡途徑探討多囊卵巢綜合征痰證的生物學(xué)基礎(chǔ)[D].福州:福建中醫(yī)藥大學(xué),2020.

ZHANG P.Exploring the biological basis of polycystic ovary syndrome phlegm syndrome frommitochondria-mediated apoptosis pathway[D].Fuzhou:Fujian University of Traditional Chinese Medicine,2020.(in Chinese)

[75]WANG YR,YANG CX,ELSHEIKH NA H,et al.HO-1reduces heat stress-induced apoptosis in bovine granulosa cells by suppressing oxidative stress[J].Aging(Albany NY),2019,11(15):5535-5547.

[76]董若曦.淫羊藿苷抑制氧化應(yīng)激改善大鼠化療損傷性卵巢早衰的機(jī)制研究[D].上海:上海中醫(yī)藥大學(xué),2019.

DONG RX.Mechanism research of icariin improves chemotherapy-induced premature Ovarian failure in rats by inhibiting oxidative stress[D].Shanghai:Shanghai University of Traditional Chinese Medicine,2019.(in Chinese)

[77]LLIBEROS C,LIEW SH,ZAREIE P,et al.Evaluation of inflammation and follicle depletion during ovarian ageing in mice[J].Sci Rep,2021,11(1):278.

[78]李 萌,肖 飛,嚴(yán) 醒,等.基于生物信息學(xué)分析和實(shí)驗(yàn)驗(yàn)證的肥胖相關(guān)蛋白促進(jìn)腎小球系膜細(xì)胞自噬和抑制炎癥反應(yīng)的機(jī)制研究[J].中國(guó)醫(yī)院藥學(xué)雜志,2024,44(2):138-145.

LI M,XIAO F,YAN X,et al.Study on the mechanism of fat mass and obesity associated proteins in promoting autophagy and inhibiting inflammatory response in glomerular mesangial cells based on bioinformatics analysis and experimental verification[J].Chinese Journal of Hospital Pharmacy,2024,44(2):138-145.(in Chinese)

[79]麻俊淵.褪黑素調(diào)控綿羊卵泡膜細(xì)胞生物學(xué)功能及抗焦亡分子機(jī)制研究[D].蘭州:西北民族大學(xué),2023.

MA JY.Study of molecular mechanism of melatoninregulates the biological function and anti-pyroptosis in sheep theca cells[D].Lanzhou:Northwest Minzu University,2023.(in Chinese)

[80]YUAN CF,CHEN X,SHEN CM H,et al.Follicular fluid exosomes regulate oxidative stress resistance,proliferation,and steroid synthesis in porcine theca cells[J].Theriogenology,2022,194:75-82.

[81]ESQUIVEL MR,HAYES E,LAKOMY O,et al.Salt-inducible kinases regulate androgen synthesis in theca cells by enhancing CREB signaling[J].Mol Cell Endocrinol,2023,577:112030.

[82]MEDINA-MOCTEZUMA ZB,HERNáNDEZ-CORONADO CG,MARíN-LóPEZ L,et al.Sphingosine-1-phosphate regulation of luteinising hormone-induced steroidogenesis and proliferation of bovine theca cells in vitro[J].Reprod Fertil Dev,2023,35(9):518-526.

[83]DAS A,ROYCHOUDHURY S.Reactive oxygen species in the reproductive system:sources and physiological roles[M]//KESARI KK,ROYCHOUDHURY S.Cham:Springer,2022:9-40.

[84]REYES-PEREA AD,GUERRERO-NETRO HM,MEZA-SERRANO E,et al.The mycotoxin de-epoxy-deoxynivalenol(DOM-1)increases endoplasmic reticulum stress in ovarian theca cells[J].Toxins(Basel),2023,15(3):228.

[85]VLIEGHE H,LEONEL EC R,ASIABI P,et al.The characterization and therapeutic applications of ovarian theca cells:An update[J].Life Sci,2023,317:121479.

[86]MA JY,WANG JN,HU SM,et al.Effects of melatonin on development and hormone secretion of sheep theca cells in vitro[J].Theriogenology,2023,198:172-182.

[87]BECK AL,REHFELD A,MORTENSEN LJ,et al.Ovarian follicular fluid levels of phthalates and benzophenones in relation to fertility outcomes[J].Environ Int,2024,183:108383.

[88]LORD T,AITKEN RJ.Oxidative stress and ageing of the post-ovulatory oocyte[J].Reproduction,2013,146(6):R217-R227.

[89]SANDHU JK,WAQAR A,JAIN A,et al.Oxidative stress in polycystic ovarian syndrome and the effect of antioxidant N-acetylcysteine on ovulation and pregnancy rate[J].Cureus,2021,13(9):e17887.

[90]BHATTACHARYA K,DEY R,SEN D,et al.Polycystic ovary syndrome and its management:In view of oxidative stress[J].Biomol Concepts,2024,15(1),doi:10.1515/bmc-2022-0038.

[91]PEREZ GI,ACTON BM,JURISICOVA A,et al.Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure[J].Cell Death Differ,2007,14(3):524-533.

[92]CHEN ZY,ZHANG DD,SUN ZY,et al.A proper increasing in the testosterone level may be associated with better pregnancy outcomes for patients with tubal or male infertility during in vitro fertilization/intracytoplasmic sperm injection[J].Front Physiol,2021,12:696854.

[93]SCHüTZ LF,HEMPLE AM,MORRELL BC,et al.Changes in fibroblast growth factor receptors-1c,-2c,-3c,and-4mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle[J].Domest Anim Endocrinol,2022,80:106712.

[94]SHI YQ,ZHU XT,ZHANG SN,et al.Premature ovarian insufficiency:a review on the role of oxidative stress and the application of antioxidants[J].Front Endocrinol(Lausanne),2023,14:1172481.

[95]SIES H,BELOUSOV VV,CHANDEL NS,et al.Defining roles of specific reactive oxygen species(ROS)in cell biology and physiology[J].Nat Rev Mol Cell Biol,2022,23(7):499-515.

[96]MATSUMOTO H.Molecular and cellular events during blastocyst implantation in the receptive uterus:clues from mouse models[J].J Reprod Dev,2017,63(5):445-454.

[97]ATEN RF,KOLODECIK TR,ROSSI MJ,et al.Prostaglandin F2α treatment in vivo,but not in vitro,stimulates protein kinase C-activated superoxide production by nonsteroidogenic cells of the rat corpus luteum[J].Biol Reprod,1998,59(5):1069-1076.

[98]REID K,DANIELS EG,VASAM G,et al.Reducing mitochondrial ribosomal gene expression does not alter metabolic health or lifespan in mice[J].Sci Rep,2023,13(1):8391.

[99]SUGINO N,KARUBE-HARADA A,KASHIDA S,et al.Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase by progesterone withdrawal in human endometrial stromal cells[J].Mol Hum Reprod,2002,8(1):68-74.

[100]SUGINO N,OKUDA K.Species-related differences in the mechanism of apoptosis during structural luteolysis[J].J Reprod Dev,2007,53(5):977-986.

(編輯 郭云雁)

猜你喜歡
氧化應(yīng)激
熊果酸減輕Aβ25-35誘導(dǎo)的神經(jīng)細(xì)胞氧化應(yīng)激和細(xì)胞凋亡
中成藥(2021年5期)2021-07-21 08:39:04
基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
戊己散對(duì)腹腔注射甲氨蝶呤大鼠氧化應(yīng)激及免疫狀態(tài)的影響
中成藥(2018年6期)2018-07-11 03:01:24
基于氧化應(yīng)激探討參附注射液延緩ApoE-/-小鼠動(dòng)脈粥樣硬化的作用及機(jī)制
中成藥(2018年5期)2018-06-06 03:11:43
植物化學(xué)物質(zhì)通過(guò)Nrf2及其相關(guān)蛋白防護(hù)/修復(fù)氧化應(yīng)激損傷研究進(jìn)展
氧化應(yīng)激與糖尿病視網(wǎng)膜病變
尿酸對(duì)人肝細(xì)胞功能及氧化應(yīng)激的影響
DNA雙加氧酶TET2在老年癡呆動(dòng)物模型腦組織中的表達(dá)及其對(duì)氧化應(yīng)激中神經(jīng)元的保護(hù)作用
從六經(jīng)辨證之三陰病干預(yù)糖調(diào)節(jié)受損大鼠氧化應(yīng)激的實(shí)驗(yàn)研究
乙肝病毒S蛋白對(duì)人精子氧化應(yīng)激的影響
主站蜘蛛池模板: 日本精品视频| 亚洲综合狠狠| 亚洲成人网在线观看| AⅤ色综合久久天堂AV色综合| 在线国产欧美| 色播五月婷婷| 爱色欧美亚洲综合图区| 欧美成人第一页| 日韩欧美在线观看| www.狠狠| 日本午夜影院| 热久久这里是精品6免费观看| 国产内射一区亚洲| 亚洲免费福利视频| 波多野结衣中文字幕一区二区 | 91精品最新国内在线播放| 国产欧美高清| 日本黄网在线观看| 欧美日本在线观看| 免费国产不卡午夜福在线观看| 国产制服丝袜无码视频| 十八禁美女裸体网站| 人妖无码第一页| 永久毛片在线播| 一区二区无码在线视频| 91九色视频网| 国产精品蜜芽在线观看| 九色视频在线免费观看| 日韩无码黄色| 国产日韩久久久久无码精品| 精品视频在线一区| 青青操国产| 久久香蕉国产线看观看亚洲片| 国产人免费人成免费视频| 午夜a级毛片| 国产小视频a在线观看| 精品免费在线视频| AV无码国产在线看岛国岛| 亚洲国产天堂在线观看| 秋霞一区二区三区| 亚洲全网成人资源在线观看| 91精品国产一区自在线拍| 国产69囗曝护士吞精在线视频| 免费人成视网站在线不卡| 国产成人精品一区二区三区| 久久精品视频一| 亚洲国产无码有码| 免费又黄又爽又猛大片午夜| 5555国产在线观看| 日韩亚洲高清一区二区| 色妞永久免费视频| 精品91视频| 在线观看无码av免费不卡网站| 国产香蕉一区二区在线网站| 无码免费试看| 在线免费看黄的网站| 综1合AV在线播放| 国产精品免费入口视频| 国产视频自拍一区| 亚洲成人动漫在线| 97人人做人人爽香蕉精品| 超清无码熟妇人妻AV在线绿巨人 | 亚洲黄色片免费看| av尤物免费在线观看| AⅤ色综合久久天堂AV色综合 | 青青草原国产av福利网站| 国产日韩精品一区在线不卡| 国产剧情国内精品原创| 久草视频中文| 999国内精品视频免费| 国产成人夜色91| 国产精品不卡永久免费| 国产色伊人| 欧美一区日韩一区中文字幕页| 无码综合天天久久综合网| 成人久久精品一区二区三区| 伊人色天堂| 亚洲无线国产观看| 欧美一级夜夜爽| 国产成人高清精品免费| 国产凹凸一区在线观看视频| 久久99国产综合精品1|