999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Cr離子摻雜超寬帶近紅外發光材料的設計方法

2024-09-29 00:00:00尚蒙蒙孫藝昕
中國粉體技術 2024年5期

摘要:【目的】Cr離子摻雜近紅外(near-infrared,NIR)熒光材料在食品安全、醫療診斷、現代農業與環境保護等各領域廣泛應用,獲得研究人員的大量關注。NIR熒光材料的發射帶寬對近紅外光譜技術檢測分析的靈敏度和檢測范圍至關重要,為獲得Cr離子激活的超寬帶NIR熒光材料,分析Cr離子的價態和晶格格位占據,理解發光構效關系,對實現新型Cr離子激活的超寬帶NIR熒光材料具有重要意義?!狙芯楷F狀】綜述NIR熒光材料中Cr離子的常見價態,總結Cr離子摻雜超寬帶NIR熒光材料的設計方法,概括不同方法制備材料的發光機制,對比不同近紅外熒光材料設計方法的優缺點?!窘Y論與展望】認為選取弱晶體場環境基質材料,進行晶格位點調控是獲得高效Cr離子摻雜超寬帶近紅外發光材料的有效方法。

關鍵詞:Cr離子摻雜;近紅外發光;發光機制

中圖分類號:O611.3;TB4文獻標志碼:A

引用格式:

尚蒙蒙,孫藝昕.Cr離子摻雜超寬帶近紅外發光材料的設計方法[J].中國粉體技術,2024,30(5):91-101.

SHANG Mengmeng,SUN Yixin.Progress on design methods of Cr-doped ultra-broadband near-infrared luminescent materials[J].China Powder Science and Technology,2024,30(5):91?101.

近紅外光譜技術是利用化學鍵(或化學基團)對特征光的反射、透射和散射原理進行定性、定量分析的技術,在食品安全、生物醫學成像、現代農業與環境保護等領域具有廣泛的應用前景。近紅外光譜利用近紅外波段對C—H、O—H和N—H基團的不同響應[1],對有機體具有良好的穿透性,且不損傷生物組織,可用于實時的健康監測、質量監測和成分分析。隨著社會的發展,公眾對食品安全和身體健康日益關注,迫切需要開發能夠用于日常食品檢測和健康狀況監測的集成、便攜式光譜儀[2]。實現便攜式光譜分析技術的關鍵在于開發小型化、可集成化的近紅外光源。目前常見的傳統近紅外光源有白熾燈、鹵素燈和近紅外發光二極管,其中白熾燈和鹵素燈存在發光效率低、壽命短、體積大、發熱量大、工作溫度高等缺點;近紅外(near-infrared,NIR)二極管發射峰偏窄,光譜難以調控。相比之下,由藍光芯片和近紅外熒光材料組成的新型NIR熒光轉換發光二極管(phosphor converted light-emitting diode,pc-LED)具有體積小、壽命長、效率高、發射峰波長與半峰寬易調控等優點,成為近紅外光源的研究熱點。

迄今為止,已經有許多關于稀土離子(Nd3+、Dy3+、Er3+、Yb3+和Eu2+)[3-8]或過渡金屬離子(Cr3+、Ni2+、Mn2+、Mn4+和Fe3+)[9-10]激活的新型近紅外熒光材料的研究報道。3價稀土離子產生的發射峰大多為4f-4f躍遷的銳線發射,發射帶寬窄,吸收效率較低,而具有f-d電子組態的Eu2+通常在紫外或可見光譜區表現出較寬的發射。雖然近年來Eu2+激活的近紅外熒光材料逐漸被研發,但發射波長都難以超過1 000 nm,如Ca9NaZn1-yMgy(PO4)7∶Eu2+(波長450~750 nm)[11]、SrLaScO4∶Eu2+(波長550~800 nm)[12]、(Sr,Ba)Y2O4∶Eu2+(波長600~1 000 nm)[13],不能覆蓋長波長的近紅外區域,因此無法滿足作為光源的要求。

具有d-d躍遷的過渡金屬離子摻雜的熒光材料雖較稀土離子具有更寬的發射波長范圍,但在近紅外范圍內,發射半峰寬(full width at half maxima,FWHM)并不理想,如Mn4+激活的熒光材料,發射波長為650~800 nm,如LaAlO3∶Mn4+[14]的FWHM僅為50 nm;Ti3+激活的熒光材料FWHM也相對較窄,如SrAl12O19∶Ti3+[15]的FWHM約為100 nm;Fe3+摻雜的A2BB′O6(A=Sr2+,Ca2+,B,B′=In3+,Sb5+,Sn4+)[16]體系,雖然其FWHM可以達到146 nm,但Fe3+激活的基質與商業藍光LED芯片匹配較差,實際應用并不理想。Ni2+摻雜的熒光材料大多在NIR-Ⅱ區[17]。

相比之下,Cr離子是一種理想的近紅外發光中心,在紫外-可見光譜范圍內表現出寬帶吸收,與藍光LED具有良好匹配性,因此,Cr離子激活的近紅外發光材料被認為是近紅外pc-LED光源的最優選擇。表1所示為Cr3+在各種熒光材料中的FWHM。可以看出,大多數近紅外熒光材料的FWHM小于200 nm,限制了近紅外pc-LED光源在光譜分析技術領域的探測范圍和精度,因此,開發具有優異性能的超寬帶發射近紅外發光材料對近紅外pc-LED能否盡早實現商業應用具有重要意義。本文中根據已報道的Cr離子激活近紅外發光材料的文獻,總結了Cr離子激活超寬帶發射材料的設計方法,通過對相關研究實例進行對比,分析Cr離子在晶體材料中的存在價態、占位情況,對理解Cr離子的發光構效關系和開發新型熒光材料及推動未來應用具有重要意義。

1常見的3種Cr離子發光中心

與許多過渡金屬一樣,Cr離子在其化合物中表現出不同的氧化態(化學價-2~+5)和配位幾何結構(立方、八面體、四面體),且具有不同的特性,但在近紅外發光材料中最常見的主要有3種類型的發光中心:六配位和四配位的Cr3+及四配位的Cr4+,且在某些條件下Cr3+和Cr4+可以相互轉換。本文中主要對這3種類型的Cr離子占據不同格位的情況進行分析討論。

圖1所示為Cr3+的價層電子構型為3d3,配位數為6時占據具有八面體配位的晶格位點,離子半徑為0.615?,其能級分布可以用Tanabe-Sugano(田邊-菅野,簡稱T-S)圖描述,如圖1(a)所示,其中縱坐標中E代表能量,B為Racah(拉卡)參數,橫坐標中Dq和B分別為晶體場強度和拉卡參數。除2E能級和2T1能級外,大多數Cr3+晶體場能級(如4T2、4T1、2A1)對Dq/B值有很強的依賴性[27-28]。在可見光譜范圍內,激發光譜通常具有2個較寬的吸收帶,分別由自旋4A2→4T2和4A2→4T1躍遷引起。Cr3+的發射帶形狀由基質晶體場強決定。當Cr3+占據弱晶體場格位時(Dq/Blt;2.3)時,2E能級高于4T2能級,4T2→4A2的允許躍遷將主導Cr3+的發光,呈現寬帶發射[21],且發射峰位置易受到周圍晶體場環境的影響而發生改變。當Cr3+占據強晶體場格位時(Dq/Bgt;2.3),2E為發射態,Cr3+的發射光譜特征為尖銳的R線發射(2E→4A2躍遷)[29],基質的晶體場環境對其影響不大。此外,當Cr3+的摻雜濃度越來越高[30],即相鄰Cr3+距離越來越近時,Cr3+還易形成[Cr3+-Cr3+]離子對[31](即不同大小2個或3個單元的Cr3+團簇)作為獨立的發光中心,如Serment等[32]報道的SnO2:Cr3+,隨Cr3+的摻雜濃度越來越高,在EPR中屬于[Cr3+-Cr3+]離子對的g=1.98(g因子,描述電子自旋在磁場中的響應)共振信號越來越強且寬,表明[Cr3+-Cr3+]離子對的含量越來越高。

通常來說Cr3+會占據八面體格位,但Mg、Al等尖晶石構型的化合物中因為反位的影響,四面體格位也有可能被Cr3+占據[33],此時Cr3+配位數為4,離子半徑為0.46?,其T-S圖如圖1(b)所示。當Cr3+位于弱晶體場時,2T1→4T1躍遷占主導呈寬帶發射,發射峰傾向于出現相對較長的波長,如Zhou等[34]報道的BaMgAl10O17:0.01Cr3+樣品,Cr3+在基質中分別占據了2個四面體格位和2個八面體格位,而占據2個四面體格位的發射峰皆處于長波長區域;反之為2G→4T1躍遷發射峰波長較短。

采用固相法制備Cr離子激活的氧化物或含氧酸鹽類近紅外材料時,通常選取Cr2O3為原料,但在高溫燒結或低價元素取代高價元素條件下,特別是有適宜Cr4+占據的四面體位點時,Cr3+易被氧化成Cr4+。Cr4+離子半徑為0.41?,價層電子構型為3d2,T-S圖如圖1(c)所示,3d2構型的自由Cr4+的最低光譜項為3F。當其位于具有Td-symmetry的理想四面體位置時,3F項會被晶體場分裂為3A2、3T2和3T1能級,其吸收帶通常有3個,分別位于波長300~500、500~850、850~1 200 nm,對應3A2→3T1(3P)、3A2→3T1(3F)和3A2→3T2(3F)躍遷。Cr4+激活的材料發射范圍一般覆蓋波長1 000~1 400 nm,峰值波長超過1 200 nm,主要由3T2→3A2躍遷引起的寬帶發射[37-38]。Cr3+和Cr4+在合適的條件下可以相互轉換:如在適當基質化合物中通入還原性氣氛或利用電荷平衡原理(共取代或電荷補償),可抑制Cr4+形成,獲得Cr3+離子的寬帶發射;反之,選擇合適基質(如含有[GeO4]的四面體結構,其離子半徑與Cr4+相近,電荷一致)或采用高氧化型氣氛燒結等方法獲得單一價態的Cr4+的特征長波長發射。

當基質中同時具有Cr3+和Cr4+時,也會收獲意想不到的效果。Cai等[39]報道的Mg2GeO4∶Cr3+,Cr4+通過精確控制燒結條件和化學成分獲得了Cr3+、Cr4+發射強度相近的雙峰近紅外發射。Mg2GeO4的晶體結構如圖2所示。Mg2GeO4屬于正交晶系Pnma空間群的橄欖石型結構。Mg1占據具有反演對稱性的4a位,Mg2占據具有鏡像對稱性的4c位。Mg1和Mg2由6個O配位形成[MgO6]八面體,Ge由4個O配位形成[GeO4]四面體,多面體之間通過角共享和邊共享連接,且[Mg2O6]的多面體體積大于[Mg1O6]。Mg2GeO4晶體結構由[Mg1O6]-[GeO4]層和[Mg2O6]層沿a方向交替排列構成。具有不同配位環境的多格位情況使自主設計發光位點成為可能。在Mg2GeO4中,Mg2+(配位數為6時,離子半徑為0.72?)格位和Ge4+(配位數為4時,離子半徑為0.39?)格位可以容納Cr離子分別形成Cr3+(配位數為6時,離子半徑為0.615?)和Cr4+(配位數為4時,離子半徑為0.41?)發光中心。混合價態熒光材料的設計原則如圖3所示。Li+(配位數為6時,離子半徑為0.76?)作為電荷補償劑被共摻雜到Mg2+位點中,以補償Cr3+取代Mg2+時引起的電荷失衡(Li++Cr3+→2Mg2+),電荷平衡的環境可以穩定Cr3+的價態,并最終形成單一Cr3+的寬帶發射[40]。一旦缺乏Li+,如果Cr3+仍然進入Mg2+的位置,就會形成大量的空位缺陷,(2Cr3++□→3Mg2+,□代表空位缺陷)。在缺乏Li+的環境下,Cr4+的形成能低于缺陷形成能,所以Mg2GeO4∶Cr的近紅外發光性能強烈依賴于Li+電荷補償,因此,Cai等通過1 500℃高溫燒結、確定化學式為Mg2-2zLizCrzGeO4(z為Cr離子的摻雜濃度),通過控制Cr3+與Cr4+的比例,實現該材料的超寬帶(波長650~1 600 nm)雙峰近紅外發光。在激發波長為465 nm時,低摻雜濃度(z=0.005)樣品中獲得了2個峰相近的雙寬帶發射,同樣的現象也出現在激發波長為660 nm的高摻雜濃度樣品的發射光譜中,如圖4所示。

2 Cr離子激活超寬帶發射近紅外材料的設計方法

想要獲得Cr摻雜的超寬帶發射近紅外材料主要有2種方法:一是將Cr3+與其他離子如三價稀土金屬離子(RE3+)、過渡族金屬離子(如Ni2+)等共摻雜;二是設計篩選具有不同陽離子晶格位點的基質材料,實現不同價態Cr離子對不同晶格位點的占據或者單一價態Cr3+同時占據不同晶格格位。

2.1 Cr離子與其他離子共摻雜

共摻雜體系中研究報道最多的是Cr離子與RE3+共摻,表2總結了近幾年報道的Cr離子與RE3+共摻雜的近紅外材料體系。從表中可以看出,以共摻Yb3+[41]居多。由于Yb3+的2F7/2→2F5/2躍遷,通常在波長900~1 050 nm處出現吸收帶,發致發光(PL)光譜范圍為950~1 100 nm,自旋禁阻的f-f躍遷特征使Yb3+本身具有較好的量子效率和熱穩定性。較單摻Cr3+的體系,Yb3+與Cr3+共摻可拓寬PL譜范圍,提高熱穩定性。以LiScP2O7(LSP)∶Cr3+,Yb3+[42]體系為例,如圖5所示,LSP:0.06 Cr3+的發射峰與LSP:0.03Yb3+的吸收峰重疊,表明Yb3+將有效吸收Cr3+發射的光,即Cr3+作為敏化劑,產生Cr3+→Yb3+的有效能量傳遞。同時,LSP:0.06Cr3+的PLE光譜在波長470 nm處表現出強烈的吸收帶,而LSP:0.03Yb3+在波長470 nm處幾乎沒有吸收峰,表明在激發波長為470 nm時,LSP:0.06Cr3+,yYb3+中Yb3+的發射主要由Cr3+→Yb3+的能量傳遞導致,如圖6所示。隨著Yb3+摻雜濃度的增加,波長1 001 nm處Yb3+的發射峰強度逐漸增強,Cr3+峰的強度不斷減弱。共摻Yb3+后,發射光譜的FWHM從170 nm拓寬到210 nm,其熱穩定性也有大幅度提高,因此,當Cr3+在共摻體系中作為敏化劑時,共摻RE3+雖有效拓寬近紅外發射范圍,但要以犧牲Cr3+的發射強度為代價。

當RE3+在體系中作為敏化劑向Cr3+傳能時,是不能拓寬近紅外的發射范圍的,如Liang等[50]報道的Zn0.5Mg0.5Al2O4(ZMAO)∶Cr3+,Tb3+體系,ZMAO∶Tb3+的發射范圍與ZMAO∶Cr3+的激發范圍重合,可發生Tb3+→Cr3+的能量傳遞,提高Cr3+的發射強度,且拓寬光譜發射范圍,但遺憾的是向Cr3+傳能就意味著RE3+的發射范圍在Cr3+發射范圍之前,其拓寬的是可見光范圍的發射而非近紅外光區域,如圖7所示。

2.2設計篩選具有不同陽離子晶格位點的基質材料

設計篩選具有不同陽離子晶格位點的基質材料,實現不同價態Cr離子對基質中不同晶格位點的占據,或者單一價態Cr3+同時占據不同晶格格位,顯得尤為重要。在單一純相基質中獲得占據多個位點的Cr離子激活發光材料主要有3種策略:1)選擇合適的多陽離子位點基質;2)同位點陽離子取代,額外引入不同晶體場環境的晶格位點;3)控制實驗條件。

2.2.1選擇合適的多陽離子位點基質

當基質中含有多個陽離子位點,摻雜離子與晶格陽離子半徑相近,位點對稱性和電價匹配時,更易出現Cr離子同時占據多個格位的情況。如配位數為6的Cr3+易占據電價一致Al3+、Ga3+、In3+和Sc3+八面體格位,還有半徑相近的Ge4+、Mg2+、Ca2+八面體格位;如Sun等[51]報道的Mg7Ga2GeO12∶Cr3+體系,Cr3+在基質中就占據[MgO6]和[GaO6]八面體。由于含Mg、Al離子的基質中常出現反位缺陷,且Mg2+(配位數CN為4,離子半徑r為0.57?)和Al3+(CN為4,r為0.39?)與Cr3+(CN為4,r為0.46?)的離子半徑相近,使Cr3+更易占據四配位的[MgO4]和[AlO4]四面體位點。Zhou等[34]報道的BaMgAl10O17∶Cr3+體系中,Cr3+同時占據[AlO4]四面體和[AlO6]八面體格位。此外,Cr4+與Ge4+(CN為4,r為0.39?)、Si4+(CN為4,r為0.26?)的電價一致,離子半徑相近,晶格中存在[GeO4]和[SiO4]四面體格位時,Cr離子更容易形成Cr4+離子取代Ge4+或者Si4+占據四面體位點。如Mg2SiO4∶Cr3+,Cr4+體系中[52],Cr4+占據其中的[SiO4]四面體格位形成波長為1 000~1 600 nm的超寬帶發射。綜上,當基質中含有以上所述的多個特性時,則為Cr離子多格位占據的概率較大。

2.2.2同位點陽離子取代,額外引入不同晶體場環境的格位

除直接選擇具有多格位基質晶格外,也可以通過實驗策略在原有晶格中引入新位點,如同位點陽離子取代策略,即借助額外引入的陽離子制造新的可以被Cr離子占據的格位[7,11],以此來拓寬發射光譜。如在Ca3?xLux Ga2+x Ge3?xO12∶Cr3+(CLGGG∶Cr3+)(x=0~1)體系中[53],通過[Lu3+-Ga3+]對[Ca2+-Ge4+]的共取代,使近紅外光譜在波長460 nm的藍光激發下,表現出顯著的光譜展寬,其FWHM從129 nm拓寬到267 nm,如圖8所示。隨取代量的增加,發射峰紅移,激發光譜也在不斷紅移。這是因為CN為8時Lu3+的離子半徑為0.97?,小于CN為8時Ca2+的離子半徑1.12?,導致晶格收縮,而Ga3+(CN為4,r為0.47?)取代Ge4+(CN為4,r為0.39?)的離子半徑相似,影響可以忽略。同時,[Lu3+-Ga3+]引入后,晶格中的Lu與Ga的原子比變大,結構紊亂增加。隨著離子半徑較小的Lu3+取代較大的Ca2+,Ca(Lu)-Ca(Cr)的平均距離從3.764 1?增加到3.795 3?,離子間相對斥力較小,使得Cr3+可以遷移到富Lu的格位。同時Lu3+被Cr3+包圍形成了一個相對穩定的電場,更多的Cr3+可以穩定在Ca2+的格位上,特別是在相鄰Lu3+和O2?的正、負電場共同影響下,使原本占據[GaO6]八面體格位的Cr3+更有效地占據Ca2+格位。采用此種同位離子取代的方法,可以有效拓寬發射光譜。

2.2.3控制實驗條件

Da Silva等[54]采用高溫固相反應,將原料在溫度為800℃預燒結12 h后,再于溫度為1 350℃燒結12 h成功制備了Mg2Al4Si5O18∶Cr3+體系;該材料發射光譜由波長為695 nm處的尖峰發射和峰值位于波長為750 nm的寬帶組成,如圖9所示,研究證實Cr3+占據[MgO6]八面體格位。Zou等[55]將原材料在還原氣氛(N2與H2的體積比為95∶5)時,1 550℃燒結4 h,自然冷卻后在溫度為750℃下進一步退火5 h,釋放內部應力。最后,在溫度為1 120°C下加熱15 min,冷卻至室溫,制得的Mg2Al4Si5O18:Cr3+樣品發射光譜呈現峰值位于波長為867 nm的超寬帶發射,如圖10所示,并證實Cr3+占據2個不同[AlO4]四面體格位,因此,通過控制制備條件可以改變Cr3+所處的晶體場環境,從而實現寬帶發射。此外,提高燒結溫度,延長燒結時間,可實現Cr3+對不同晶格位點的占據,從而實現Cr3+向Cr4+的轉變[36],更易獲得Cr3+和Cr4+共存的超寬近紅外發射光譜,如Mg2GeO4∶Cr[39],隨燒結溫度提高,燒結時間延長,Cr4+含量提高。

3結論

本文中綜述了Cr離子激活超寬帶NIR發光材料的價態與設計方法。Cr離子摻雜的寬帶近紅外熒光材料主要以Cr3+與Cr4+2種價態存在于基質化合物中,在一定晶體場環境中,均可呈現寬帶近紅外發射的特征。目前獲得Cr離子摻雜的超寬帶發射近紅外材料主要有2種方法:一是將Cr3+與其他離子如3價稀土金屬離子(RE3+)、過渡族金屬離子(如Ni2+)等共摻雜;二是設計篩選具有不同陽離子晶格位點的基質材料,實現不同價態Cr離子對不同晶格位點的占據,或者單一價態Cr3+同時占據不同晶格格位。當設計Cr離子與RE3+共摻時,可作為敏化劑拓寬紅外發射范圍,但要以降低Cr離子的發射強度為代價,因此,設計篩選具有不同陽離子晶格位點的基質材料,實現不同價態Cr離子對不同晶格位點的占據方法更為可取,當Cr離子占據基質中的不同格位時,不僅可以獲得較寬的近紅外發射范圍(700~1 600 nm),且由于容納的Cr離子總量增多,所以Cr3+在多格位基質中的摻雜濃度猝滅值升高,調控Cr離子發光光譜的手段也較為靈活。

利益沖突聲明(Conflict of Interests)

所有作者聲明不存在利益沖突。

All authors disclose no relevant conflict of interests.

作者貢獻(Authors’Contributions)

尚蒙蒙進行了論文的寫作和修改,孫藝昕對文獻進行了綜述。所有作者均閱讀并同意了最終稿件的提交。

The manuscript was written and revised by SHANG Mengmeng,and the literature review was summarized by SUN Yixin.Both authors have read the last version of paper and consented to its submission.

參考文獻(References)

[1]MARQUES E J,de FREITAS S T,PIMENTEL M F,et al.Rapid and non-destructive determination of quality parameters in the“Tommy Atkins”mango using a novel handheld near infrared spectrometer[J].Food Chemistry,2016,24:1207-1217.

[2]WANG Y,WANG Z J,WEI G H,et al.Ultra-broadband and high efficiency near-infrared Gd3ZnxGa5-2xGeO12∶Cr3+(x=0-2.0)garnet phosphors via crystal field engineering[J].Chemical Engineering Journal,2022,437(11):135346.

[3]XIE X J,LI T J,SUI M Y,et al.A potential temperature-sensitive fluorescent material based on thermal coupling effect for temperature sensors[J].Energy,2018,159(15):429-439.

[4]ZHANG Y H,CAO Y G,ZHAO Y,et al.Optical temperature sensor based on upconversion luminescence of Er3+doped GdTaO4 phosphors[J].Journal of the American Ceramic Society,2020,104(1):361-368.

[5]PIOTROWSKI W M,MACIEJEWSKA K,DALIPI L,et al.Cr3+ions as an efficient antenna for the sensitization and brightness enhancement of Nd3+,Er3+-based ratiometric thermometer in GdScO3 perovskite lattice[J].Journal of Alloys and Compounds,2022,923:166343.

[6]LIAO J,WANG M H,LIN F L,et al.Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3∶Yb/Er with two-dimensional negative thermal expansion[J].Nature Communication,2022,13(1):2090.

[7]CAO F B,XIONG Y,LIU J,et al.Eu2+as the structural probe in the phase transformation of CMSA by site-selective occupancy and adjustable multimode white luminescence inCa2(Mg0.5Al0.5)(Si1.5Al0.5O7)akermanite based on high-aluminum blast furnaceslag[J].Dalton Transaction,2022,51:13301-13310.

[8]GAN W J,LIOU B M,HUANG L,et al.Manganeseion?sensitizednear?infrared light in Cs2NaBi1?xErxCl6 lead?free double perovskite[J].Advanced Optical Materials,2022,10(9):210285.

[9]SHI R,NING L X,WANG Z Q,et al.Zero?thermal quenching of Mn2+red luminescence via efficient energy transfer from Eu2+in BaMgP2O7[J].Advanced Optical Materials,2019,7(23):1901187.

[10]XIANG L,ZHOU X J,WANG Y J,et al.Environmentally-friendly and low-cost Fe3+-doped broadband NIR light-emitting phosphors[J].Journal of Luminescence,2022,252:119293.

[11]ZHANG D,ZHENG B F,ZHENG Z B,et al.Multifunctional Ca9NaZn1-yMgy(PO4)7∶Eu2+phosphor for full-spectrum lighting,optical thermometry and pressure sensor applications[J].Chemical Engineering Journal,2021,431(11):133805.

[12]YANG Z Y,LIU G C,ZHAO Y F,et al.Competitive site occupation toward improved quantum efficiency of SrLaScO4∶Eu red phosphors for warm white LEDs[J].Advanced Optical Materials,2022,10(6):2102373.

[13]YANG Z Y,ZHAO Y F,ZHOU Y Y,et al.Giant red-shifted emission in(Sr,Ba)Y2O4∶Eu2+phosphor toward broadband near-infrared luminescence[J].Advanced Functional Materials,2021,32(1):2103927.

[14]LI S Y,ZHU Q,SUN X D,et al.Magical polyhedral twist via chemical unit co-substitution in LaAlO3∶Mn4+to greatly enhance the zero phononline for high-efficiency plant-growth LEDs[J].Journal of Materials Chemistry C,2021,9(22):7163-7173.

[15]LIN X H,LI Y,SARAVANAKUMAR S,et al.Sunlight-operable light converting smart windows for fertilizer-free plant growth enhancement[J].Nano Today,2020,34:100918.

[16]LIU D J,LI G G,DANG P P,et al.Highly efficient Fe3+-doped A2BB′O6(A=Sr2+,Ca2+;B,B′=In3+,Sb5+,Sn4+)broad?band near-infrared-emitting phosphors for spectroscopic analysis[J].Light Science Application,2022,11(1):112.

[17]WANG W C,ZHOU R,LE H Q,et al.Ni-doped fluorosulfates with broad NIR luminescence[J].Journal of Lumines?cence,2019,210:457-463.

[18]HUANG D C,HE X G,ZHANG J R,et al.Efficient and thermally stable broadband near-infrared emission from near zero thermal expansion AlP3O9∶Cr3+phosphors[J].Inorganic Chemistry Frontiers,2022,9:1692-1700.

[19]XU X X,SHAO Q Y,YAO L Q,et al.Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications[J].Chemical Engineering Journal,2020,383:123108.

[20]BAI B,DANG P P,HUANG D Y,et al.Broadband near-infrared emitting Ca2LuScGa2Ge2O12∶Cr3+phosphors:lumines?cence properties and application in light-emitting diodes[J].Inorganic Chemistry,2020,59(18):13481-13488.

[21]YAN Y,SHANG M M,HUANG S,et al.Photoluminescence properties of AScSi2O6:Cr3+(A=Na and Li)phosphors with high efficiency and thermal stability for near-infrared phosphor-converted light-emitting diode light sources[J].ACS Applied Material Interfaces,2022,14(6):8179-8190.

[22]LI J,MING H,ZHOU Y,et al.A near-infrared phosphor doped with Cr3+towards zero-thermal-quenching for high-power LEDs[J].Materials Today Chemistry,2022,24:100839.

[23]CHEN X H,SONG E H,ZHOU Y Y,et al.Distorted octahedral site occupation-induced high-efficiency broadband near-infrared emission in LiScGe2O6∶Cr3+phosphor[J].Journal of Materials Chemistry C,2021,9(39):13640-13646.

[24]HUANG D C,ZHU H M,DENG Z H,et al.A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes[J].Journal of Materials Chemistry C,2021,9(1):164-172.

[25]WANG Q,WANG S W,TAN T,et al.Efficient Cr3+-activated NaInP2O7 phosphor for broadband near-infrared LED appli?cations[J].Inorganic Chemistry Frontiers,2022,9(15):3692-3701.

[26]LI R Y,LIU Y F,YUAN C X,et al.Thermally stable CaLu2Mg2Si3O12∶Cr3+phosphors for NIR LEDs[J].Advanced Opti?cal Materials,2021,9(16):2100388.

[27]ADACHI S.Spectroscopy of Cr3+activator:Tanabe?Sugano diagram and Racah parameter analysis[J].Journal of Lumines?cence,2021,232:117844.

[28]SHAO Q Y,DING H,YAP L Q.Photoluminescence properties of a ScBO3∶Cr3+phosphor and its applications for broadband nearinfrared LEDs[J].RSC Advances,2018,8:12035-12042.

[29]HAO Y,WANG S,ZHANG K,et al.Effect of Y3+on the photoluminescence of MgAl2O4∶Cr3+nanopowders[J].Materials Chemistry and Physics,2020,253:123323.

[30]LI C J,ZHONG J Y.Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnetY3In2Ga3O12∶Cr3+phosphors[J].Chemistry of Materials,2022,34(18):8418-8426

[31]CHEN G,NIE W D,ZUO J X,et al.A new broadband near-infrared emitting Mg2Al4Si5O18∶Cr3+phosphor for night-vision imaging[J].Dalton Transactions,2022,51(33):12576-12584.

[32]SERMENT B,GAUDON M,TOULEMONDE O,et al.Tuning the Cr(IV)/Cr(III)valence states in purple Cr-doped SnO2 nanopowders:the key role of Cr(IV)centers and defects[J].Inorganic Chemistry,2020,59(1):678-686.

[33]GAI S J,ZHOU C,PENG L,et al.A novel Cr3+-doped stannate far red phosphor for plant lighting:structure evolution,broad-narrow spectrum tuning and application prospect[J].Materials Today Chemistry,2022,26:101107.

[34]ZHOU Y P,LI C C,WANG Y H.Crystal?field engineering control of an ultraviolet-visible?responsivenear?infrared?emitting phosphor and its applications in plant growth,night vision,and NIR spectroscopy detection[J].Advanced Optical Materials,2022,10(8):2102246.

[35]RAJENDRAN V,FANG M-H,De GUZMAN G N,et al.Super broadband near-infrared phosphors with high radiant flux as future light sources for spectroscopy applications[J].ACS Energy Letters,2018,3(11):2679-2684.

[36]ZHAO F Y,SONG Z,LIU Q L.Advances in chromium?activated phosphors for near?infrared light sources[J].Laseramp;Photonics Reviews,2022,16(11):2200380.

[37]SHAN Y,ZHANG L,ZHOU T Y,et al.One-order-higher Cr4+conversion efficiency in Cr4+∶YAG transparent ceramics for a high-frequency passively Q-switched laser[J].Photonics Research,2019,7(8):2327-9125.

[38]ZHU H,CAI H,ZHAO J,et al.Crystallographic control for Cr4+activators toward efficient NIR-II luminescence[J].Inorganic Chemistry Frontiers,2022,9:1912-1919.

[39]CAI H,CHEN H,ZHOU H,et al.Controlling Cr3+/Cr4+concentration in single-phase host toward tailored super-broad near-infrared luminescence for multifunctional applications[J].Materials Today Chemistry,2021,22:100555.

[40]CAI H,LIU S Q,SONG Z,et al.Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nonde?structive analysis[J].Journal of Materials Chemistry C,2021,9(16):5469-5477.

[41]ZHANG X B,ZHANG L,XU Y H,et al.Broadband near-infrared-emitting phosphors with suppressed concentration quenching in a two-dimensional structure[J].Inorganic Chemistry,2022,61(19):7597-7607.

[42]YAO L Q,SHAO Q Y,HAN S Y,et al.Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+codoped LiScP2O7∶Cr3+[J].Chemistry of Materials,2020,32(6):2430-2439.

[43]WU J P,ZHUANG W D,LIU R H,et al.Broadband near-infrared luminescence and energy transfer of Cr3+,Ce3+co-doped Ca2LuHf2Al3O12 phosphors[J].Journal of Rare Earths,2021,39(3):269-276

[44]WANG T,CAO L W,WANG Z J,et al.Luminescence properties and energy transfer of the near-infrared phosphor Ca3In2Ge3O12∶Cr3+,Nd3+[J].RSC Advances,2022,12(44):28405-28413.

[45]ZHANG P,TONG J X,LUO Z W,et al.Effects of Er3+and/or Cr3+doping on crystallization activation energy and fluores?cence properties of transparent ZnGa2O4 glass-ceramics[J].Ceramics International,2022,48(24):36347-36357.

[46]XIANG J M,ZHANG J M,ZHAO X Q,et al.Synthesis of broadband NIR garnet phosphor Ca4ZrGe3O12∶Cr3+,Yb3+for NIR pc-LED applications[J].Materials Chemistry Frontiers,2022,6(4):440-449.

[47]ZHAO S,MU Z F,LOU L L,et al.Broadening and enhancing emission of Cr3+simultaneously by co-doping Yb3+in Ga1.4In0.6SnO5[J].Journal of Rare Earths,2023,41(12):1895-1903.

[48]WANG Q Q,ZHANG S Y,LI Z W,et al.Near infrared-emitting Cr3+/Eu3+co-doped zinc gallogermanate persistence lumi?nescent nanoparticles for cell imaging[J].Nanoscale Research Letters,2018,13(1):64.

[49]DONG J,DENG P Z,XU J.Spectral and luminescence properties of Cr4+and Yb3+ions in yttrium aluminum garnet(YAG)[J].Optical Materials,2000,14(2):109-113.

[50]LIANG Y Y,MU Z,CAO Q T,et al.Efficient ultraviolet to far-red spectral conversion:Tb3+,Cr3+co-doped Zn0.5Mg0.5Al2O4 phosphors and their application[J].Journal of the American Ceramic Society,2022,105(12):7399-7414.

[51]SUN Y,YUAN L F,LIU H,et al.Multi-site occupation of Cr3+toward developing broadband near-infrared phosphors[J].Ceramics International,2021,47(16):23558-23563.

[52]NANAI Y,ISHIDA R,URABE Y,et al.Octave-spanning broad luminescence of Cr3+,Cr4+-codoped Mg2SiO4 phosphor for ultra-wideband near-infrared LEDs[J].Japanese Journal of Applied Physics,2019,58:SFFD02.

[53]LIANG T C,CAI M S,FANG S Q,et al.Trade-off lattice site occupancy engineering strategy for near-infrared phosphorswith ultrabroad and tunable Emission[J].Advanced Optical Materials,2022,10(2):2101633.

[54]DA SILVA M A F M,PEDRO S S,LóPEZ A,et al.Investigation on the structural and photoluminescent properties of chromium-doped ceramics cordierite[J].Optical Materials,2016,60:188-195.

[55]ZOU X K,ZHANG H R,LI W,et al.Ultra-wide vis-NIR Mg2Al4Si5O18∶Eu2+,Cr3+phosphor containing unusual NIR lumi?nescence induced by Cr3+occupying tetrahedral coordination for hyperspectralimaging[J].Advanced Optical Material,2022,10(19):2200882.

Progress on design methods of Cr-doped ultra-broadband near-infrared luminescent materials

SHANG Mengmeng,SUN Yixin

College of Materials Science and Engineering,Shandong University,Jinan 250061,China

Abstract

Significance In recent years,near-infrared(NIR)fluorescent materials have gained significant attention due to their wide applications in food safety,medical diagnosis,modern agriculture,and environmental protection.The emission bandwidth of NIR fluorescent materials is crucial for the sensitivity and detection range of NIR spectroscopy.Novel NIR fluorescent materials activated by rare earth ions(Nd3+、Dy3+、Er3+、Yb3+)or transition metal ions(Cr3+、Ni2+、Mn2+/4+,and Fe3+)have been widely reported.However,trivalent rare earth ions have narrow emission bandwidths and low absorption efficiency.Although transition metal ions with d-d transitions exhibit a wider emission range,their emission half-peak width and excitation-emission wave?length mismatch in the NIR range are suboptimal.Cr ions are ideal NIR luminescence centers with broad absorption in the UV-visible spectrum.Understanding the valence states and lattice sites of Cr ions is essential for developing high-performance Crion-activated ultra-broadband NIR fluorescent materials,which are significant for NIR spectroscopy applications.

Progress This review discusses the two common valence states(+3 and+4)and three luminescent centers of Cr ions in NIR fluorescent materials:hexacoordinated Cr3+,tetracoordinated Cr3+,and tetracoordinated Cr4+.Hexacoordinated Cr3+occupies octahedral lattice sites,and its luminescence varies with crystal field strength,displaying either sharp peaks or broad emissions.In spinel compounds,elements such as Mg and Al influence site occupancy,causing Cr3+ions to occupy tetrahedral lattice sites,resulting in emission peaks that tend to appear at relatively longer wavelengths.Cr4+typically emits in the 1 000~1 400 nm range,with peak wavelengths exceeding 1 200 nm.The review summarizes two design methods for Cr ion-doped ultra-broadband NIR fluorescent materials:co-doping Cr3+with other ions such as rare earth(RE3+)and transition(Ni2+)ions,and selecting matrix materials with different cation lattice sites to achieve varying Crion valence states or having Cr3+occupy multiple lattice sites.The emission mechanisms of these methods are compared,highlighting their advantages and disadvantages.When co-doping Cr ions with RE3+ions,Cr ions can act as sensitizers to broaden the infrared emission range,although this may reduce Crionemission intensity.

Conclusions and Prospects Selecting matrix materials with weak crystal field environments and regulating lattice sites areeffec?tive strategies for obtaining efficient Cr-doped ultra-broadband NIR fluorescent materials.By occupying different lattice sites,Cr ions can achieve a wider NIR emission range and higher concentration quenching values due to the increased total Crion con?tent.These regulatory methods are also flexible,providing various ways to optimize material performance.

Keywords:Crion doping;near-infrared emission;luminescence mechanism

(責任編輯:王雅靜)

主站蜘蛛池模板: 亚洲无码免费黄色网址| 国产欧美日韩在线在线不卡视频| 欧美日韩另类在线| 久久超级碰| 国产在线第二页| 国产精品福利导航| 91精品国产情侣高潮露脸| 久久综合九色综合97婷婷| 国产精品成人免费综合| 国产精品人人做人人爽人人添| 国产免费人成视频网| 日本在线免费网站| 男人天堂伊人网| 69视频国产| 国产va在线| 亚洲h视频在线| 福利在线不卡一区| 亚洲精选无码久久久| 国产00高中生在线播放| av午夜福利一片免费看| 亚洲欧洲自拍拍偷午夜色无码| 国产成人精品视频一区二区电影| 狠狠亚洲五月天| 国产chinese男男gay视频网| 人人91人人澡人人妻人人爽| 黄色网址手机国内免费在线观看| 伊人91视频| 国产成人一区免费观看| 精品无码一区二区三区在线视频| 国模粉嫩小泬视频在线观看| 久久性妇女精品免费| 亚洲无码视频图片| 欧洲高清无码在线| 亚洲IV视频免费在线光看| 亚洲 成人国产| 亚洲男女在线| 成人无码一区二区三区视频在线观看| 成人毛片在线播放| 欧美成人一级| 久久久波多野结衣av一区二区| 国内精品小视频在线| 97综合久久| 噜噜噜久久| 免费毛片视频| 午夜a视频| 国产特一级毛片| 国产办公室秘书无码精品| 欧美成人综合在线| 2021国产精品自产拍在线| 欧美精品在线观看视频| 亚洲天堂区| 福利视频99| 99在线视频网站| 老司机午夜精品视频你懂的| 成人免费午夜视频| 97国内精品久久久久不卡| 一级全免费视频播放| 欧美国产日产一区二区| 毛片网站观看| 国产精品自在在线午夜| 四虎永久免费在线| 国产精品网址在线观看你懂的| 亚洲国产亚洲综合在线尤物| 欧美中文字幕在线二区| 国产在线无码一区二区三区| 天天色天天综合网| 成人永久免费A∨一级在线播放| 亚洲人成网站日本片| 亚洲av色吊丝无码| 欧美一道本| 五月激情婷婷综合| 国产亚洲男人的天堂在线观看| 亚洲无码精彩视频在线观看| 国产91小视频在线观看| 第九色区aⅴ天堂久久香| 精品无码日韩国产不卡av | 成人字幕网视频在线观看| 国产欧美视频一区二区三区| 亚洲欧美在线综合一区二区三区| 国产高清精品在线91| 日本成人在线不卡视频| 久久久久国产一级毛片高清板|