999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

集中式MIMO組網雷達系統波形設計

2024-11-10 00:00:00張翔文才許金金孟一諾
航空科學技術 2024年8期

摘 要:波形設計是集中式MIMO組網雷達信號處理的關鍵技術之一。為了提高該系統在雜波或干擾下的目標探測能力,同時兼顧硬件兼容性以及所設計波形良好的模糊函數和脈沖壓縮特性,本文考慮在恒模約束和波形相似性度量下構建關于雷達輸出信雜噪比(SCNR)的優化模型;通過對原非凸問題的等價轉換,提出了一種基于連續凸近似的多項式時間迭代算法,并分析了其收斂性;為了進一步降低計算復雜度,提出了一種基于梯度投影(GP)的算法。最后,對所提方法進行了仿真驗證,結果表明,該方法能夠為組網雷達系統下各發射站點的波形設計提供一種新的可行方法。

關鍵詞:組網雷達系統; 波形相似性; 可行點追蹤-連續凸近似; 梯度投影

中圖分類號:TN958 文獻標識碼:A DOI:10.19452/j.issn1007-5453.2024.08.010

基金項目: 航空科學基金 (20182098002)

與發射特定波形的相控陣雷達相比,多輸入多輸出(MIMO)雷達可經其不同的天線發射不同的波形(波形分集)。這種波形分集也是其在目標探測、估計和跟蹤方面優于傳統雷達的關鍵因素[1-2]。根據不同的天線間隔,MIMO雷達可以分為分布式MIMO雷達和集中式MIMO雷達兩類[3-5]。前者天線間隔較大,使得各個天線陣元從不同的視角觀測目標,因此能夠充分利用空間分集增益;后者天線間隔較小,各個天線陣元對目標的觀測角近似相同,能夠獲得波形分集增益。

近年來,波形設計作為雷達領域中的一個重要問題已經引起了研究人員的廣泛關注。一般來說,與集中式MIMO雷達波形設計相關的工作主要集中在以下4個方面:(1)設計具有良好自相關/互相關特性的波形,這意味著發射波形與其自身或者其他發射波形在任意時延處互不相關[6-8];(2)通過最大化雷達回波信號與目標沖激響應之間的互信息來設計波形[9-11];(3)設計期望的MIMO雷達發射波束方向圖,使得發射功率在期望的角度下達到最大,同時抑制雜波等干擾所在角度的發射功率[12-14];(4)著眼于收發處理,通過最大化信干噪比來完成對發射波形的設計或發射波形和接收濾波器的聯合設計[15-21]。

為了使接收機區分來自不同發射機的回波,分布式MIMO雷達的大部分波形設計標準旨在獲得彼此正交的發射波形[26-35]。Stoica等[27]提出了三種新的計算效率高的用于MIMO雷達恒模波形設計的循環算法。Chen Yifan等[28]基于認知雷達開發了一個自適應分布式MIMO雷達框架,并在該框架下設計了一種新的兩階段波形優化算法。Xu Leilei等[30]考慮了多普勒靈敏度對恒模分布式MIMO發射波形自相關和互相關旁瓣的影響。隨后又提出了一種正交相位編碼信號和失配濾波器組的設計方法[30-31]。Dontamsetti等[32]提出了一種發射和接收信號聯合優化的分布式MIMO雷達方案,基于信道矩陣的估計情況來最大限度地提高輸出信噪比。Luo Xi等[33]利用遺傳算法設計了步進頻分線性調頻和步進頻分脈沖編碼調制兩種正交波形。

值得注意的是,之前大部分學者對分布式MIMO雷達波形設計問題的研究都是基于每個波形站點是相控陣的情況下進行的。而本文中所提到的集中式MIMO組網雷達系統對分布式和集中式MIMO雷達的優點進行了融合,在這種情況下不僅能夠利用分布式MIMO雷達的空間分集增益,同時也能夠充分利用集中式MIMO雷達波形分集的優勢來對每一個站點的波形進行重新設計。目前,在這種組網雷達系統下的波形設計研究相對較少,主要的研究工作集中在總功率約束下對發射波形進行設計[36],但沒有考慮實際的系統實現問題。事實上,雷達放大器往往工作在飽和條件,若沒有恒模約束,則不能有效利用非線性功率放大器。此外,現有設計沒有考慮到目標方向上波形的模糊特性和脈沖壓縮特性,本文擬對發射波形施加相似性約束,以保證所設計波形在目標方向上獲得優良的模糊特性[15, 37-39]。

本文討論的是一種集中式MIMO組網雷達系統,該系統的各節點由集中式MIMO雷達構成,因而同時具備了分布式和集中式MIMO雷達的優點。目前,針對這種組網雷達系統的研究大多集中在資源管理方面[40-44],但波形設計也對提升該系統目標探測性能具有重要意義。

具體來說,本文的主要貢獻如下:(1)研究了在恒模約束下的集中式MIMO組網雷達系統各發射站點的波形設計問題。為了使設計的波形具有優良的模糊特性,本文將波形相似性度量作為懲罰項引入優化問題和信雜噪比(SCNR)一起構成新的優化目標。為了解決這個NP-Hard問題,本文提出了基于可行點追蹤-連續凸近似(FPPSCA)和梯度投影(GP)算法框架下的兩種解決方案,然后對兩種算法的收斂性和復雜性進行了分析。(2)與以往相似性約束中參考波形的選取有所不同。在之前的工作中往往選取線性調頻信號來使設計波形擁有好的模糊函數和脈沖壓縮特性,但在實際應用中僅僅需要使目標方向上的波形擁有好的波形特性。因此,本文設計了一種新的角度依賴的參考波形以及相應的波形相似性度量。(3)仿真結果驗證了所提解決方案在不同的模擬場景中的性能。對基于FPP-SCA和GP框架下所設計的波形進行了對比,試驗結果表明FPP-SCA算法的性能優于GP算法,但GP算法的計算復雜度低于FPP-SCA算法。

1 集中式MIMO組網雷達信號模型

rdAT8L4Rn7lA9UrkmajDmlw/jCCUtlkysYoqHFJUaXY=

同時,本文考慮了設計波形在目標方向上的模糊特性。從圖7中兩種算法下不同的相似性水平曲線,不難推測出在FPP-SCA算法下設計波形在目標方向上的模糊特性基本不會隨著相似性度量權重λ的變化而變化,而在GP算法下設計波形在目標方向上的模糊特性會隨著相似性度量權重λ的增大越來越好。這也在圖10中得以驗證,可以看到在λ=0.1時FPP-SCA算法下的設計波形和參考波形在目標方向的模糊特性已基本相同,而GP算法下設計波形在目標方向的模糊特性在λ=0.5時才能達到同樣的效果。

5.2 天線數目的影響

最后,考慮天線數目對設計波形的影響,本文分別設置了Pm=Qn?{810}m=12;n=12,每次試驗中只考慮天線數目單個變量的影響。從圖11中可以清楚地看到,不論是哪一個TX,設置的天線數目越多,所得到的SCNR越高。這是因為隨著天線數目的增多,波形優化的自由度和雜波抑制能力也隨之增加,能夠獲得更好的性能。

6 結束語

本文討論了在集中式MIMO平臺組網雷達系統下發射波形的設計問題,以提高該系統在雜波干擾下的探測能力。在各節點波形設計中,考慮到如何保持波形恒模特性以及波形模糊特性,以便于實際系統應用。本文把波形設計問題表述為一個非凸的優化問題,并引入了多項式復雜度的FPPSCA算法或GP算法求解發射波形。此外,本文設計了一種新的角度依賴的參考波形。仿真結果表明,通過所提算法設計的波形在目標方向上確實擁有好的模糊特性和脈沖壓縮特性。未來潛在方向為涉及多目標情況的研究,以及在非均勻雜波干擾情況下的自適應波形設計。

參考文獻

[1]曹蘭英,董曄,郭維娜. 機載火控雷達發展趨勢探究[J].航空科學技術,2021,32(6): 1-8. Cao Lanying, Dong Ye, Guo Weina. Development trend analysis of airborne fire-control radars[J]. Aeronautical Science& Technology, 2021,32(6): 1-8.(in Chinese)

[2]宋婷,賀豐收,程宇峰. 深度學習技術在雷達目標檢測中的研究進展[J].航空科學技術,2020,31(10): 12-20. Song Ting, He Fengshou, Cheng Yufeng. Research progress of deep learning technology in radar target detection[J]. Aeronautical Science & Technology, 2020, 31(10): 12-20. (in Chinese)

[3]Li Jian, Stoica P. MIMO radar signal processing[M]. U. S.: Wiley-IEEE Press, 2009.

[4]Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Maga‐zine, 2008, 25(1): 116-129.

[5]Li Jian, Stoica P. MIMO radar with colocated antennas[J].IEEE Signal Processing Magazine, 2007, 24(5): 106-114.

[6]Song Junxiao, Babu P P. Palomar D. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866-2879.

[7]Li Yongzhe, Vorobyov S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197-1212.

[8]Alaee-Kerahroodi M, Modarres-Hashemi M, Naghsh M M. Designing sets of binary sequences for MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3347-3360.

[9]Yang Yang, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330-343.

[10]Leshem A, Naparstek O, Nehorai A. Information theoretic adaptive radar waveform design for multiple extended targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 42-55.

[11]Chen Yifan, Nijsure Y, Yuen C, et al. Adaptive distributed mi‐mo radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374-1385.

[12]Cheng Ziyang, He Zishu, Zhang Shengmiao, et al. Constant modulus waveform design for mimo radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912-4923.

[13]Cheng Ziyang, Han Chunlin, Liao Bin, et al. Communicationaware waveform design for mimo radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549-5562.

[14]Yu Xianxiang, Qiu Hui, Yang Jing, et al. Multispectrally constrained mimo radar beampattern design via sequential convex approximation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 2935-2949.

[15]Cui Guolong, Li Hongbin, Rangaswamy M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343-353.

[16]Cui Guolong, Yu Xianxiang, Carotenuto V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116-1129.

[17]Cheng Ziyang, He Zishu, Fang Min, et al. Spectrally compati‐ble waveform design for mimo radar transmit beampattern with par and similarity constraints[C]. 2018 IEEE International Con‐ference on Acoustics, Speech and Signal Processing (ICASSP), 2018: 3286-3290.

[18]Cheng Ziyang, Liao Bin, He Zishu, et al. Spectrally compatible waveform design for mimo radar in the presence of multiple targets[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3543-3555.

[19]Yu Xianxiang, Alhujaili K, Cui Guolong, et al. MIMO radar waveform design in the presence of multiple targets and practi‐cal constraints[J]. IEEE Transactions on Signal Processing, 2020, 68: 1974-1989.

[20]Liu Rang, Li Ming, Liu Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918-1931.

[21]Tsinos C G, Arora A, Chatzinotas S, et al. Joint transmit waveform and receive filter design for dual-function radarcommunication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378-1392.

[22]Wen Cai, Peng Jinye, Zhou Yan, et al. Enhanced ThreeDimensional joint domain localized STAP for airborne FDAMIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154-4166.

[23]Wen Cai, Huang Yan, Peng Jinye, et al. Slow-time FDAMIMO technique with application to STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 74-95.

[24]Wen Cai, Huang Yan, Davidson T. Efficient transceiver design for MIMO dual-function radar-communication systems [J]. IEEE Transactions on Signal Processing, 2023, 71: 1786-1801.

[25]Wen Cai, Huang Yan, Zheng Le, et al. Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding[J]. IEEE Transactions on Signal Processing, 2023, 71: 2130-2145.

[26]Qu Junliang, Jia Xu, Peng Yingning, et al. Optimal waveform design for MIMO radar detection with clutter and noise[C]. IEEE CIE International Conference on Radar, 2011: 559-563.

[27]He Hao, Stoica P, Li Jian. Designing Unimodular sequence sets with good correlations:including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391-4405.

[28]Chen Yifan, Nijsure Y, Yuen C, et al. Adaptive distributed MIMO radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374-1385.

[29]Zhou Shenghua, Liu Hongwei, Zang Huikai. Doppler sensitivity of MIMO radar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2091-2110.

[30]Xu Leilei, Liu Hongwei, Li Qiang, et al. Distributed MIMO ra‐dar orthogonal waveforms and mismatched filters design with expanded mainlobe[C]. 2016 CIE International Conference on Radar (RADAR), 2016.

[31]徐磊磊,周生華,劉宏偉,等. 一種分布式MIMO雷達正交波形和失配濾波器組聯合設計方法[J]. 電子與信息學報,2018,40(6): 1476-1483. Xu Leilei, Zhou Shenghua, Liu Hongwei, et al. Joint design of distributed Mimo radar orthogonal waveforms and mismatched filter bank[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1476-1483. (in Chinese)

[32]Dontamsetti S G, Kumar R V. A Distributed MIMO radar with joint optimal transmit and receive signal combining[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 623-635.

[33]Luo Xi, Guo Lixin, Song Dawei, et al. The research of orthogonal waveform design for ambiguity feature based on distributed MIMO radar[C]. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP), 2021: 425-429.

[34]Tang Bo, Zhang Ning, Zhang Shuo, et al. MMSE-based waveform design for the distributed MIMO radar in spectrally crowded environments[J]. The Journal of Engineering, 2019, 20: 6603-6607.

[35]Shi Chengguang, Wang Fei, Sellathurai M, et al. Low probability of intercept‐based distributed MIMO radar waveform design against barrage jamming in signal‐dependent clutter and coloured noise[J]. IET Signal Processing, 2019, 13(4): 415-423.

[36]Chen Peng, Zheng Le, Wang Xiaodong, et al. Moving target detection using colocated MIMO radar on multiple distributed moving platforms[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4670-4683.

[37]Wu Linlong, Babu P, Palomar D P. Transmit waveform/receive filter design for MIMO radar with multiple waveform constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(6): 526-1540.

[38]Maio A D, Nicola S D, Huang Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610-621.

[39]Yu Xianxiang, Cui Guolong, Kong Lingjiang, et al. Con‐ strained waveform design for colocated MIMO radar with un‐certain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356-370.

[40]Yan Junkun, Liu Hongwei, Pu Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417-6427.

[41]Yi Wei, Yuan Ye, Hoseinnezhad R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602-1617.

[42]Sun Hao, Li Ming, Zuo Lei, et al. Optimal beampattern design for resource-aware multitarget tracking in netted colocated MIMO radar systems[C]. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), 2021: 199-204.

[43]Su Yang, Cheng Ting, He Zishu, et al. Joint waveform control and resource optimization for maneuvering targets tracking in netted colocated MIMO radar systems[J]. IEEE Systems Journal, 2022, 16(3): 3960-3971.

[44]Zhang Haowei, Liu Wejian, Xie Junwei, et al. Joint Subarray selection and power allocation for cognitive target tracking in large-scale MIMO radar networks[J]. IEEE Systems Journal, 2020, 14(2): 2569-2580.

[45]Mehanna O, Huang Kejun, Gopalakrishnan B, et al. Feasible point pursuit and successive approximation of non-convex QC‐QPs[J]. IEEE Signal Processing Letters, 2015, 22(7): 804-808.

[46]Lieven V, Stephen B. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.

[47]Lobo M S, Vandenberghe L, Boyd S, et al. Applications of second-order cone programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193-228.

[48]Bertsekas D P. Nonlinear Programming[M]. Athena: Athena Scientific Press, 1999.

Waveform Design for Netted Colocated-MIMO Radar System

Zhang Xiang, Wen Cai, Xu Jinjin, Meng Yinuo Northwestern University, Xi’an 710127, China

Abstract: Waveform design is one of the key technologies in radar signal processing for the netted collocated Multiple Input Multiple Output (MIMO) radar system. To improve the target detection capability of the system under clutter interference while taking into account hardware compatibility, good ambiguity and pulse compression properties of the designed waveform, the paper considers constructing a model for the radar output Signal to Clutter and Noise Ratio(SCNR) under constant modulus constraints and waveform similarity metrics; then by equivalent transformation of the original non-convex problem, a polynomial-time iterative algorithm based on successive convex approximation is proposed and analyzed for convergence. To further reduce the computational complexity, the paper also proposes an algorithm based on Gradient Projection (GP). Finally, the proposed method is simulated and verified, and the results show that the method can provide a new feasible method for the waveform design of each transmitting site under the netted radar system.

Key Words: netted radar system; waveform similarity; feasible point pursuit-successive convex approximation; gradient projection

主站蜘蛛池模板: 在线观看国产小视频| 国产欧美在线视频免费| 免费可以看的无遮挡av无码| 久无码久无码av无码| 国产丝袜91| 亚洲AⅤ综合在线欧美一区| 久久国产精品国产自线拍| 97免费在线观看视频| 久久综合激情网| 亚洲一区无码在线| 欧美精品亚洲精品日韩专区| 中文毛片无遮挡播放免费| 欧美自拍另类欧美综合图区| 视频二区亚洲精品| 亚洲大学生视频在线播放| 在线观看免费人成视频色快速| 中文字幕欧美日韩| 国产va欧美va在线观看| 国产1区2区在线观看| a色毛片免费视频| 亚洲精品成人福利在线电影| 亚洲成综合人影院在院播放| 国产日韩AV高潮在线| 久久久久青草大香线综合精品| 国产超薄肉色丝袜网站| 欧美亚洲国产视频| 青青青视频91在线 | 四虎精品国产AV二区| 无遮挡一级毛片呦女视频| 亚洲av综合网| 无码高潮喷水专区久久| 欧美亚洲激情| 99成人在线观看| 亚洲天堂精品视频| 茄子视频毛片免费观看| 欧美视频在线播放观看免费福利资源| 国产国产人成免费视频77777| 国产美女在线观看| 亚洲色图欧美激情| 日本www色视频| 久久semm亚洲国产| 久久久久国产精品免费免费不卡| 四虎综合网| 亚洲天堂久久久| 91免费国产在线观看尤物| 中文字幕资源站| 国产精品亚洲精品爽爽| 亚洲成年人网| 婷五月综合| 国产毛片高清一级国语 | 国产成人乱码一区二区三区在线| 在线va视频| 国产午夜精品一区二区三区软件| 992Tv视频国产精品| 国产成人欧美| 无码专区在线观看| 国产三级成人| 无码'专区第一页| 国产传媒一区二区三区四区五区| 国产微拍一区| 日韩视频精品在线| 亚洲国产一成久久精品国产成人综合| 亚洲男人天堂2020| 日韩一区二区在线电影| 国产成人精品综合| 国产va在线| 国产精品无码AⅤ在线观看播放| 丁香五月激情图片| 国产精品三区四区| 日韩国产综合精选| 欧美成人a∨视频免费观看| 久久www视频| 亚洲精品视频网| 无码av免费不卡在线观看| 国产一区二区三区免费观看| 国产精品久久久久久久伊一| 美女一级免费毛片| 亚洲欧美在线看片AI| 亚洲av成人无码网站在线观看| 欧美三级日韩三级| 国产一区二区三区在线精品专区 | 亚洲91精品视频|