999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

架空輸電線壓縮型耐張線夾接續故障分析及無損檢測方法

2024-12-04 00:00:00鐘飛康銥瀟張國才劉桂雄
自動化與信息工程 2024年6期

摘要:耐張線夾是架空輸電線路中承載張力、承受電流的重要電力金具,對其進行失效性能分析及無損檢測非常重要。首先,從行業標準規范入手,詳述壓縮型耐張線夾的典型缺陷及壓接質量評定項;然后,從理論計算與實驗、計算數值模擬等方面闡述耐張線夾接續故障分析的研究進展,并指出耐張線夾的機械性能、電氣性能分析主要集中于單一失效機理分析,較少涉及多物理場下的耐張線夾特征分析;接著,匯總耐張線夾4種無損檢測方法;最后,提出耐張線夾無損檢測值得進一步關注的研究方向。

關鍵詞:壓縮型耐張線夾;壓接缺陷;接續故障;無損檢測

中圖分類號:TM206 """""""""""文獻標志碼:A """""""""文章編號:1674-2605(2024)06-0001-11

DOI:10.3969/j.issn.1674-2605.2024.06.001""""""""""""""""""""開放獲取

Joint Failure Analysis and Non-destructive Testing Method for """"""Compressed Strain Clamps of Overhead Transmission Lines

ZHONG Fei "KANG Yixiao ZHANG Guocai LIU Guixiong

(1.Guangdong Yuedian Science and Testing Technology Co., Ltd., Guangzhou"510006,"China

2.China Southern Power Grid Technology Co., Ltd., Guangzhou"510006,"China

3.South China University of Technology, Guangzhou 510641,"China)

Abstract:"Strain clamps are important electrical fittings for carrying tension and current in overhead transmission lines, and it is crucial to conduct failure performance analysis and non-destructive testing on them. Firstly, starting from industry standards and specifications, describe the typical defects and crimping quality evaluation items of compressed strain clamps in detail; Then, the research progress of fault analysis of strain clamps connection is elaborated from the aspects of theoretical calculation, experiment, and numerical simulation. It is pointed out that the mechanical and electrical performance analysis of strain clamps mainly focuses on the analysis of a single failure mechanism, and rarely involves the analysis of the characteristics of strain clamps under multiple physical fields; Next, summarize four non-destructive testing methods for strain clamps; Finally, research directions worth further attention for non-destructive testing of strain clamps are proposed.

Keywords:"compressed strain clamps; compression defects; joint failure; non-destructive testing

0 引言

耐張線夾作為架空輸電線路的重要電力金具,按其結構及安裝方法可分為壓縮型、螺栓型、楔型和預

絞式等類型。其中,壓縮型耐張線夾主要由鋁管和鋼錨組成,通過施加壓力使鋁管和鋼錨產生塑性變形,從而確保耐張線夾與導線合為一體,使大截面鋼芯鋁

絞線達到較大握力。耐張線夾在服役過程中不僅要承受張力、承載電流[1-2],還處于交替載荷、腐蝕等環境下,導致其易發生失效斷線事故[3-5]。為提升電力系統運行的安全性,國內外對耐張線夾的技術要求及壓接工藝規范均有明確規定,如ANSI/ASME PTC70—2009《接線夾額定值的性能試驗代碼》、GB/T 2314—2008《電力金具通用技術條件》、GB/T 2317.4—2023《電力金具試驗方法 第4部分:驗收規則》、DL/T 757—2009《耐張線夾》、DL/T 5285—2018《輸變電工程架空導線(800 mm2以下)及地線液壓壓接工藝規程》等[6]。

1 耐張線夾典型缺陷

架空輸電線路通常采用鋼芯鋁絞線輸送電能。鋼芯鋁絞線綜合了鋁的輕質、高導電性[7-8]及鋼芯的高強度等特點,能夠提供更大的張力、更小的垂度和更長的跨度。將鋼芯鋁絞線安裝在輸電塔上需使用耐張線夾進行壓接[9-12]。耐張線夾的壓接結構如圖1所示。

耐張線夾壓接缺陷依據T/CEC"526—2021《架空輸電線路線夾X射線檢測技術導則》[16]進行評定,壓接質量評定項主要包括鋼芯與鋼錨壓接、鋁管壓接、鋼芯插入鋼錨深度等12個(如表1所示);壓接典型缺陷主要包括漏壓、欠壓及少壓等類型,如圖2所示[17],其中(a)~(e)為未按壓接標準,人為導致的壓接缺陷;(f)~(h)為在自然環境下,耐張線夾由于長時間、大負荷工作引起的變形現象,以上缺陷均會導致輸電線路故障。

2""耐張線夾接續故障分析的研究進展

耐張線夾接續故障分析包括機械性能、電氣性能分析,主要采用理論計算與實驗[18-24]、計算數值模擬[25]等方法。

2.1 "接續故障機械性能分析

2.1.1""理論計算與實驗方法

GB/T 2314—2008《電力金具通用技術條件》規定,壓縮型耐張線夾試驗握力FS、導線(地線)的額定拉斷力TR應滿足FS ≥"95%TR,且計算握力FJ"="TR。設導線的鋁股拉斷力、鋼芯拉斷力分別為TL、TG,鋁線

2.1.1.1 "鋼錨凹槽壓接剪切握力T1分析

實驗結果表明,隨著防滑槽漏壓程度的增加,耐張線夾的斷裂位置從導線側鋁管端口附近的鋁股轉移到鋼錨出口處的鋼芯上。

2.1.1.2 "鋼錨鋁管壓接握力T2分析

由圖4可知,當鋁管壓接孔深Lg不足時,會導致鋼芯與鋼錨穿管的接觸面積減小,握力降低,致使鋼芯從鋼錨穿管抽出,增大了鋁管的承受載荷[35-37]

2.1.1.3""鋁管壓接鋁絞線握力T3分析

2.1.2 計算數值模擬方法

計算數值模擬方法是耐張線夾壓接過程的力學性能及缺陷影響研究的有效方法。文獻[42]開展了壓接力、壓接有效寬度等參數對模鍛壓接力學性能影響的仿真研究,仿真結果表明:當壓接力較小時,失效形式為鋁絞線從耐張線夾中滑脫;當壓接力逐漸增大時,失效形式轉變為鋁管斷裂。文獻[43]采用ABQUS軟件對大截面導線鋁絞線壓接過程中可能出現的缺陷進行拉斷應力仿真,得到了加載0"~"1"300"MPa壓接壓強時,鋁絞線的拉斷應力曲線。文獻[44]結合理論力學、數值仿真、智能優化以及多學科軟件協同仿真技術,研發了對多種連接工藝普適性較好的優化方法及自適應優化系統。文獻[44]利用Minitab 18程序,優化064系列終端在壓接過程中的拉伸機械性能。文獻[45]建立了壓縮拼接位置電纜的耐張線夾有限元模型,研究彈塑性和收縮問題,并對可壓縮位置的整個壓縮過程進行了模擬。文獻[46]考慮了輻射、空氣自然對流對散熱的影響,采用三維多物理場力-電-熱耦合的方法對J型線夾的應力分布、電流密度以及溫度分布進行分析。文獻[47]對電壓、集磁器及放置位置等工藝參數進行仿真,研究電磁壓接工藝參數的優化組合。文獻[25]采用Forge?軟件模擬壓接操作,評估壓接連接的機械強度、預測應力及應變分布,識別分析因壓接不當而導致的缺陷。

2.2 "接續故障電氣性能分析

DL/T 757—2009《耐張線夾》規定,承受電氣負荷的耐張線夾不應降低導線的導電性能,且壓縮型耐張線夾的電阻≤相同長度導線的電阻;耐張線夾導線接續處的溫升≤被接續導線的溫升;耐張線夾的載流量≥被安裝導線的載流量。

由圖5、6可以看出,導流板處接觸電阻增大,對耐張線夾整體溫度升高影響最大。

此外,文獻[48]深入研究不同的壓接力、壓接點數、壓接位置對壓接電阻的影響。文獻[31]采用一次、兩次壓接的方式分析壓接質量,得出壓力分布不平衡時,功效損失常發生在壓接質量較好的一側。

綜上所述,目前對耐張線夾的機械性能、電氣性能分析主要集中于單一失效機理分析,較少涉及多物理場下的耐張線夾特征分析,包括在各種缺陷下的應力分布、溫度分布及服役過程中應力松弛、熱應力對耐張線夾的性能影響等。同時,在評估耐張線夾的使用壽命時,還應考慮耐張線夾的時間維度應力變化對其性能的影響。

3""耐張線夾無損檢測方法研究進展

耐張線夾無損檢測的常用方法主要包括滲透、熱紅外成像、超聲、X射線等。

3.1 "滲透檢測

首先,在被檢耐張線夾表面施涂含有熒光或著色染料的滲透液,在毛細作用下,滲透液滲入耐張線夾表面開口的缺陷中;然后,去除耐張線夾表面多余的滲透液;最后,在干燥后的耐張線夾表面施涂顯像劑,放大缺陷,在一定光源下可檢測出缺陷形態與分布狀態[51]

滲透檢測方法雖然技術成熟,但僅限于表面開口的缺陷檢測,無法用于深層的內部缺陷檢測,且要求耐張線夾表面清潔。

3.2 "熱紅外成像檢測

3.3 "超聲檢測

超聲檢測是利用不同材料的聲阻抗差異,以及聲波在材料邊界處產生的反射、透射,或超聲在空氣界面產生近似全反射的特性,對壓接缺陷進行檢測。通過檢測壓接區與未壓接區的回波時間、幅值差[58]及壓接區內相控陣超聲成像圖中空氣的大小與分布來檢測漏壓、欠壓等缺陷[27]。

文獻[59-60]利用超聲檢測沿鋼錨側面壓接鋁外殼厚度的變化,定位鋼錨凹槽數量,反映鋼芯鋁絞線的壓接質量。文獻[61]基于壓接后NY-630/45型耐張線夾的內部結構,根據超聲脈沖反射原理,通過理論分析、有限元仿真實驗,探究超聲檢測耐張線夾壓接缺陷的有效性。超聲在鋁管鋁線間空氣界面的反射圖、壓接缺陷時域波形圖分別如圖9、10所示。

超聲檢測方法對漏壓、欠壓缺陷具有較高的檢測精度,但對探頭頻率、操作技能等要求較高。

3.4 "X射線檢測

X射線檢測基于材料對X射線的不同吸收特性,通過X射線穿透物體的影像來探測材料或工件的內部缺陷[63]。文獻[64]采用X射線檢測方法,通過改變鋼錨與外鋁套的壓接部位、芯線與錨管(或芯線連接管)的壓接尺寸、外管與導線(或中間套管)的壓接尺寸,分析典型缺陷對輸電線路配件壓接質量的影響。

通常X射線檢測在役耐張線夾的缺陷時需停電,并由人工將X射線成像板及射線機搬至耐張線夾位置處,耗時耗力,且存在作業危險及輻射危害[65-66]。近年來,我國開展了無人機+X射線檢測設備的研究[67-68],有望在不停電作業下,實現耐張線夾的無損檢測[66,69-70]。目前,X射線檢測主要依賴專業技術人員的經驗,存在漏判、誤判甚至傳輸圖像造假的現象。利用人工智能技術,在復雜環境下開展無人機+X射線耐張線夾的檢測點精確定位與自動路徑規劃[71-72]、缺陷智能識別與評價[70,73]、圖像傳輸可信增強[74-75]等研究是未來的發展趨勢。

4種耐張線夾無損檢測方法的原理、特點和應用場景匯總如表2所示。

滲透檢測方法對表面開口裂紋較敏感,適用于離線檢測耐張線夾導流板與鋁管焊接處的開口裂紋。熱紅外成像檢測方法適用于遠距離耐張線夾在役帶電接觸不良檢測。超聲、X射線檢測方法均通過直觀的圖像來反映耐張線夾的內部壓接質量,但超聲檢測需依賴聲傳遞耦合劑,不適合耐張線夾在役帶電檢測。耐張線夾在役帶電X射線檢測,需提高抗干擾能力及自動化水平(如無人機檢測點的精確定位、拍照等)。

4""結束語

耐張線夾是架空輸電線路中承載張力、承受電流的重要電力金具,對其進行失效性能分析及無損檢測非常重要。目前,對耐張線夾的機械性能、電氣性能分析主要集中于單一失效機理分析;且體積小、質量輕的便攜式X射線數字成像系統已成為耐張線夾在役檢測的主要設備。以下研究方向值得關注:

1)"基于力-熱-電多物理場分析的架空輸電線耐張線夾特性研究,需考慮應力松弛、熱應力、接觸電阻等因素對耐張線夾機械性能、電氣性能的影響,以及耐張線夾在時間維度上的應力變化對性能的影響,尋求建立更接近真實的數值分析模型;研究基于力-熱-電多物理場分析的耐張線夾在各種缺陷下的應力分布、溫度場分布,可進一步為耐張線夾的健康評估提供理論支撐;

2)"無人機+人工智能的X射線耐張線夾在役帶電檢測是重要的發展方向,且需增強無人機系統的抗電磁干擾能力,并適應架空輸電線復雜的布線環境,在檢測過程中,結合人工智能技術實現自主識別導航、懸掛控制以及智能缺陷檢測與分級;

3) 研究含可見光、熱紅外、X射線檢測特征的多模態人工智能算法,是提高耐張線夾缺陷檢測準確性的有效途徑。

?The author(s) 2024. This is an open access article under the CC BY-NC-ND 4.0 License (https://creativecommons.org/licenses/ by-nc-nd/4.0/)

參考文獻

[1] DONG X, QU F, LI Y, et al. Experimental analysis of temperature distribution in high-voltage strain clamp[C]//2018 12th International Conference on the Properties and Applica-tions of Dielectric Materials (ICPADM). IEEE, 2018:829-832.

[2] LI J X, MCCLURE G, WANG S H. Ensuring the structural safety of overhead transmission lines by design [J]. Journal of Aerospace Engineering, 2021,34(3):147-152.

[3] XU C, LI Q, ZHOU Q, et al. Power line-guided automatic electric transmission line inspection system [J]. IEEE Transac-tions on Instrumentation Measurement, 2022,71:1-18.

[4] ROSAS-CASALS M, SOLE R. Analysis of major failures in Europe's power grid [J]. International Journal of Electrical Power amp; Energy Systems, 2011,33(3):805-808.

[5] CONGRESS U S. Office of Technology Assessment. Physical vulnerability of electric system to natural disasters and sabotage [R]. OTA-E-453, Washington, DC: US Government Printing Office, 1990.

[6] 中國電力企業聯合會. DL/T 5285—2018"輸變電工程架空導線(800"mm2以下)及地線液壓壓接工藝規程[S/OL]. [2024-10-21]. https://ebook.chinabuilding.com.cn/zbooklib/"bookpdf/probation?SiteID=1amp;bookID=152739.

[7] YANG J, XIONG H, YAN Z, et al. Variation law of equivalent bending stiffness of steel-cored aluminum stranded wire under bending [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021,676(1):012035.

[8] GUO T. Research on X-ray detection technology and image processing technology of electrical equipment [J]. North China Electric Power University, 2013,13(1):77-89.

[9] ZHOU C, WEI C, WANG W. A new detection method based on magnetic leakage theory and BP neural network for broken steel strands in ACSR conductor [J]. IEEE Sensors Journal, 2022, 22(20):19620-19634.

[10] THRASH F. Transmission conductors–A review of the design and selection criteria [J]. Tech. Support Artic. Southwire Com-pany, 2014,23"(12):90-96.

[11] FARZANEH M, SAVADJIEV K. Evaluation of tensile strength of ACSR conductors based on test data for individual strands [J]. IEEE Transactions on Power Delivery, 2006, 22(1): 627-633.

[12] DRURY M D. The effect of prestressing on the inelastic (creep) behaviour of Australian made bare overhead conductors [J]. Engineering, Materials Science,1993,13(3):100-112.

[13] 楊帆,曾林平,馬永翔,等.架空輸電線路耐張線夾X射線檢測與分析[J].陜西理工大學學報(自然科學版),2018,34(1): 29-33.

[14] OMRANI A, LANGLOIS S, VAN DYKE P, et al. Fretting fatigue life assessment of overhead conductors using a clamp/conductor numerical model and biaxial fretting fatigue tests on individual wires [J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2021,44(6):1498-1514.

[15] LI H, XIE L, WANG X, et al. A comparative study on the detection of tension clamp DR and phased array for transmission line[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1635(1): 012098.

[16] 中國電力企業聯合會.T/CEC 526—2021 架空輸電線路線夾X射線檢測技術導則[S].北京:中國電力出版社,2021.

[17] 國家電網有限公司. Q/GDW 11793—2017"輸電線路金具壓接質量X射線檢測技術導則[S/OL].[2024-10-21]. https://"www.doc88.com/p-6863842260049.html?s=likeamp;id=5.

[18] LIU W, CAO X, HU Y, et al. Failure analysis of the strain clamp steel anchor corrosion of a 500 kV transmission line[C]//E3S Web of Conferences. EDP Sciences, 2021,252: 02032.

[19] 劉縋,劉純,熊亮,等.500"kV輸電線路耐張線夾鋼錨斷裂分析[J].上海電力,2010,23(4):264-266.

[20] 朱迪鋒,吳坤祥,許楊勇.超特高壓輸電線路耐張線夾新缺陷分析與解決措施[J].內蒙古電力技術,2017,35(5):57-60.

[21] 王夫成.高壓輸電耐張線夾腐蝕損傷機理研究[D].合肥:合肥工業大學,2016.

[22] 無損檢測NDT.射線檢測助力三跨輸電線路耐張線夾缺陷量化統計分析[EB/OL]."[2024-10-21]. https://www.ccnta."cn/article/6725.html.

[23] 徐望圣,孫志林,謝億,等.500 kV輸電線路耐張線夾鋼錨斷裂分析[J].礦冶工程,2020,40(2):144-146;153.

[24] 楊思元,劉程.輸電線路耐張線夾壓接工藝檢測系統試驗研究[J].中國金屬通報,2021(10):175-176.

[25] MOCELLIN K, PETITPREZ M. Experimental and numerical analysis of electrical contact crimping to predict mechanical strength [J]. Procedia Engineering, 2014, 81 (C):2018-2023.

[26] FENG L, LI M-Z, LIU L, et al. Study on completed fittings of 1520 mm2 large section conductors [J]. Energy Procedia, 2017, 107:284-290.

[27] SUN M, TAN C, ZHANG C, et al. Analysis of strain clamp failure on 500 kV transmission line [J]. Journal of Materials Science amp; Chemical Engineering, 2018,6(4):47-56.

[28] 陳家慧,王方強,蘭貴天,等.耐張線夾防滑槽漏壓的失效分析與機理研究[J].熱加工工藝,2022,51(12):146-150;155.

[29] GOUDREAU S, LéVESQUE F, CARDOU A, et al. Strain measurements on ACSR conductors during fatigue tests III—Strains related to support geometry[J]. IEEE Transactions on Power Delivery, 2010,25(4):3007-3016.

[30] LI J, BIAN M, LIANG S, et al. Experimental study of strain clamps crimped under unbalanced condition[C]//Journal of Physics: Conference Series. IOP Publishing, 2020,1650(2): 022028.

[31] OCOLEANU C-F, CIVIDJIAN G, MANOLEA G. Solutions for quality pre-control of crimp contacts used in electric power systems and electrical machines[C]//3rd International Sympo-sium on Environmental Friendly Energies and Applications (EFEA). IEEE, 2014: 1-6.

[32] SEEFRIED J, GL??EL T, ZüRN M, et al. Evaluation of monitoring approaches for the ultrasonic crimping process of tubular cable lugs[C]//2017 7th International Electric Drives Production Conference (EDPC). IEEE, 2017:1-6.

[33] 駱國平,章繼高.并溝線夾可靠性研究[J].高壓電器,2000,"36(1):31-34.

[34] 肖貴乾.沖壓連接工藝力學性能優化理論及其自適應優化系統研究[D].重慶:重慶大學,2018.

[35] CHEN Y, ZHANG M, CAO R, et al. Reliability study on crimping joint of copper-clad aluminum wire cable in space-craft[C]//2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020:1-5.

[36] LI P, LIU G, FAN J, et al. Mathematical model for the tensile strength of the crimping assembly of aviation wiring harness end [J]. Scientific Reports, 2021,11(1):17868.

[37] LIU R, HU X, ZHANG H, et al. Research on detection technology of wire clamp on overhead lines [J]. The Journal of Engineering, 2019, 2019(16): 872-875.

[38] MEINERS M, MAYR A, KUHN M, et al. Towards an inline quality monitoring for crimping processes utilizing machine learning techniques [C]//2020 10th International Electric Drives Production Conference (EDPC). IEEE, 2020:1-6.

[39] 朱登杰,趙林杰,李昊,等.耐張線夾失效過程和傳力特性[J].南方電網技術,2022,16(7):61-66.

[40] WILLIAMS D M, RANGE M E, PASCUCCI V C, et al. Forensic analysis of thermally stressed crimp connections[C]// 2015 IEEE 61st Holm Conference on Electrical Contacts (Holm). IEEE, 2015:331-337.

[41] LARIN S, LARINA M, NUZHDIN G. Analysis of the stress state of cylindrical workpieces during pipe end crimping with wall thinning[J]."Journal of Physics: Conference Series, 2021, 1901(1).

[42] 劉光輝,楊曉輝,葉中飛,等.輸電線路耐張線夾模鍛壓接質量分析及實驗研究[J].熱加工工藝,2023,52(3):106-111;119.

[43] 董曉虎,程繩,涂天成,等.大截面鋼芯鋁絞線導線壓接拉斷仿真分析[J].電子測量技術,2021,44(4):62-69.

[44] JONGWUTTANARUK K, THAVORNWAT C. Optimiza-tion of mechanical crimping in the terminal crimping process using a response surface methodology [J]. Advances in Mate-rials Science and Engineering, 2022, 2022(1):6508289.

[45] WANG Z Q, LI J, YANG W G, et al. The finite element analysis on the compression splicing position of strain clamp in guy tower [J]. Applied Mechanics and Materials, 2014, 3571(680):249-253.

[46] 吳勤斌,馬冬二,鄒德華,等.基于多物理場耦合的J型線夾仿真分析[J].南方電網技術, 2021,15(5):115-121.

[47] 韓宏文,冉洋,高雷.接線端子電磁脈沖壓接工藝仿真及驗證[J].激光雜志,2020,41(10):111-116.

[48] MOHD R, HUZAINIE S, AHMAD B. Study of cable crimping factors affecting contact resistance of medium vol-tage cable ferrule and lug [J]. [s.n.], 2013:1017.

[49] 李輝,王曉,賴偉,等.壓接型IGBT器件接觸電阻計算及影響因素分析[J].中國電機工程學報,2021,41(15):5320-5329.

[50] 馬小敏,范松海,畢茂強,等.一種基于溫升監測的輸電線路耐張線夾缺陷智能診斷方法[J].重慶理工大學學報(自然科學),2021,35(5):207-213.

[51] 張鴻武,馮楠楠,劉蕊,等.核電站主變壓器設備線夾斷裂原因分析[J].機械強度,2022,44(5):1101-1106.

[52] LI Z, MENG Z. A review of the radio frequency non-destructive testing for carbon-fibre composites [J]. Measure-ment Science Review, 2016,16(2):68-76.

[53] ZHONGBIN L, LIU X, ZHANG B, et al. Dynamic cha-racteristic of conductor after ice-shedding and simulation analysis of the tension insulator string [J]. IEEE Access, 2022, 10:118484-118497.

[54] 駱國防,章學兵,賴江波.220 kV輸電線路耐張線夾缺陷分析[J].電力與能源,2022,43(2):132-134;158.

[55] JINGSHAN H, YI W, XIAOANG K, et al. Research on abnormal heating alarm technology of conductor strain clamp based on thermal steady state principle [C]//2021 IEEE 5th Information Technology, Networking, Electronic and Auto-mation Control Conference (ITNEC). IEEE, 2021,5:1052-1055.

[56] ALHASSAN A B, ZHANG X, SHEN H, et al. Power transmission line inspection robots: A review, trends and chal-lenges for future research [J]. International Journal of Electrical Power and Energy Systems, 2020,118:105862.

[57] ZHANG J, YANG H-M, ZHANG Z-N, et al. An automatic diagnostic method of abnormal heat defect in transmission lines based on infrared video [C]//2016 IEEE PES 13th International Conference on Transmission amp; Distribution Construction, Operation amp; Live-Line Maintenance (ESMO). IEEE, 2016:1-4.

[58] OUYANG K-J, YANG X-W, ZHAN L, et al. Quality test of clamping connection of transmission lines across tensile line [J]. Vibroengineering Procedia, 2018,20:156-160.

[59] XIE Y, Yang L, Wang S, et al. Study on nondestructive testing methods for crimping quality of steel cored aluminum strand [C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019,295(3):032097.

[60] 季昌國,余超.相控陣超聲檢測成像技術在耐張線夾壓接質量檢測的應用研究[J].應用聲學,2020,39(6):857-867.

[61] 張睿哲,周愷,蔡瀛淼,等.基于脈沖反射法的耐張線夾壓接質量超聲檢測技術研究[J].電測與儀表,2023,60(3):153-156;"171.

[62] 方春華,游海鑫,胡凍三,等.基于超聲脈沖反射法的耐張線夾壓接缺陷檢測[J/OL].中國測試,2022:1-6. https://kns.cnki. net/kcms/detail/51.1714.TB.20220930.1640.002.html.

[63] 李秀坤,李興康,賈益軍,等.DR檢測發現的鋁合金焊接接頭開裂原因分析[J].焊接技術,2022,51(S1):113-116.

[64] BI X, CHEN D, GAO S, et al. Application of X-ray digital imaging technology in hardware quality test of transmission line [C]//2019 IEEE 3rd International Electrical and Energy Conference (CIEEC). IEEE, 2019:1-5.

[65] WANG Y, CHEN J. Research on X-ray digital image defect detection of wire crimp[C]//Communications, Signal Process-ing, and Systems: Proceedings of the 8th International Confer-ence on Communications, Signal Processing, and Systems 8th. Springer Singapore, 2020:2217-2222.

[66] 譚興華,楊東,張輝,等.基于無人機與X射線數字成像技術的輸電線路耐張線夾檢測方法[J].自動化與儀表,2021,"36(9):58-62;68.

[67] 姜宇航.電力耐張線夾原位X射線無損檢測系統的研制[D].長春:長春理工大學,2020.

[68] 楊東,張輝,譚興華,等.考慮線路電磁屏蔽的帶電環境耐張線夾X射線檢測方法[J].機械與電子,2021,39(8):51-55.

[69] 白洋,俞華,韓鈺.面向無人機的X射線耐張線夾檢測系統[J].山西電力,2021(3):6-9.

[70] WEINAN Q, GUANGKAI Y, CHI Y, et al. Research on electromagnetic interference protection of X-ray detecting device for tension clamp of transmission line[C]//2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). IEEE, 2022:1436-1440.

[71] 梁華塵,周穩,倪旭東,等.面向多目標聯合電力巡檢的車載無人機協同巡檢路徑規劃方法[J].南方電網技術,2023,17"(11):138-147.

[72] 粟駿龍.面向風電場巡檢場景的無人機自動路徑規劃方法研究[D].武漢:武漢大學,2023.

[73] LI P, LIU R. X-ray image recognition method for crimping defects of strain clamp based on OpenCV [J]."Journal of Phys-ics: Conference Series,"2021,2121(1):145-179.

[74] SHEN C, KASRA M, PAN W, et al. Fake images: The effects of source, intermediary, and digital media literacy on context-ual assessment of image credibility online [J]. New Media amp; Society, 2019,21(2):438-463.

[75] ZHAO Z, LIU W, REN J, et al. Uncertainty-driven trustworthy defect detection for high-resolution powder bed images in selective laser melting [J]."Journal of Manufacturing Systems, 2024,72:59-73.

[76] HEINZ D, HALEK B, KRE?áK J, et al. Methodology of measurement of steel ropes by infrared technology [J]. Engi-neering Failure Analysis, 2022,133:105978.

[77] QU Z, JIANG P, ZHANG W. Development and application of infrared thermography non-destructive testing techniques [J]. Sensors, 2020,20(14):3851.

[78] 方春華,游海鑫,胡凍三,等.基于相控陣超聲的壓接管潛伏性缺陷檢測技術[J].中國測試,2023,49(5):39-44;163.

[79] LIU Y, ZHAO P, QIN X, et al. Research on X-ray in-situ image processing technology for electric power strain clamp [C] //AOPC 2021: Optical Sensing and Imaging Technology. SPIE, 2021, 12065:335-341.

[80] QIU Z, LI J, SHI D, et al. X-ray imaging defect detection of transmission line strain clamps based on a YOLOX model[C]// 2022 IEEE International Conference on High Voltage Engi-neering and Applications (ICHVE). IEEE, 2022:1-4.

作者簡介:

鐘飛,男,1979年生,博士研究生,教授級高級工程師,主要研究方向:電力設備及材料檢測。E-mail:"1882083721@139.com

劉桂雄(通信作者),男,1968年生,博士研究生,教授,主要研究方向:先進傳感與網絡化控制研究。E-mail:"megxliu@scut.edu.cn

主站蜘蛛池模板: 美女国产在线| 在线看AV天堂| www亚洲精品| 日韩高清欧美| 丰满人妻久久中文字幕| 九色在线观看视频| 91精品国产综合久久不国产大片| 婷婷丁香色| 亚洲av无码久久无遮挡| 国产在线一区二区视频| 精品国产网| 亚洲欧美不卡中文字幕| 欧美a在线| 亚洲精品欧美日本中文字幕| 中文字幕1区2区| 国产欧美自拍视频| 天天综合色网| 91精品久久久久久无码人妻| 91外围女在线观看| 欧美精品成人一区二区在线观看| 伊人中文网| 国产在线视频福利资源站| 国产女人在线| 亚洲国产午夜精华无码福利| 91麻豆精品视频| 亚洲天堂日韩av电影| 2024av在线无码中文最新| 在线观看国产精品第一区免费| 午夜国产理论| 67194亚洲无码| 成人夜夜嗨| 在线无码九区| 亚洲天堂视频网| 久久窝窝国产精品午夜看片| 亚洲天堂日本| 国产精品浪潮Av| 欧美国产日产一区二区| 在线中文字幕日韩| 日韩亚洲高清一区二区| 亚洲综合亚洲国产尤物| 久久午夜影院| 午夜无码一区二区三区| 色天堂无毒不卡| 日韩欧美国产三级| 久久大香伊蕉在人线观看热2| 精品一区二区三区自慰喷水| 国产黑丝一区| 日韩精品毛片| 一区二区影院| 久久综合色88| 欧美成人看片一区二区三区| 婷婷午夜影院| 一级爱做片免费观看久久| 亚洲成年人片| 嫩草在线视频| 国产永久在线观看| 一级片免费网站| 91日本在线观看亚洲精品| 91成人在线观看视频| 中国一级毛片免费观看| 夜夜高潮夜夜爽国产伦精品| 亚洲三级色| 国产日韩精品欧美一区灰| 亚洲精品大秀视频| 日韩av资源在线| 欧美另类图片视频无弹跳第一页| 免费激情网站| 日韩精品一区二区三区swag| 成人午夜天| 亚洲清纯自偷自拍另类专区| 一级一毛片a级毛片| 欧美一级在线看| 欧美 国产 人人视频| 五月天久久综合国产一区二区| 亚洲天堂成人在线观看| 久久久久人妻一区精品| 亚洲二区视频| 狼友av永久网站免费观看| 热久久综合这里只有精品电影| 亚洲人成人无码www| 97国内精品久久久久不卡| 依依成人精品无v国产|