











摘要: 土壤團聚體穩定性是評價土壤結構和土壤肥力的重要指標。為探究固氮樹種馬占相思對巨尾桉人工林土壤團聚體粒徑分布及穩定性的影響,該文以17年生的巨尾桉純林(PP)與巨尾桉/馬占相思(固氮樹種)混交林(MP)為研究對象,采用干篩法和濕篩法分別測定0~10 cm和10~20 cm土層團聚體粒徑分布及平均重量直徑(MWD)、幾何平均直徑(GMD)、分形維數(Dm)、水穩定性團聚體含量(WSA)、團聚體破壞率(PAD)和團聚體穩定性指數(ASI)等穩定性指標。結果表明:(1)與PP相比,MP的土壤理化性質有不同程度的提升,其中以土壤pH、有機碳(SOC)及全氮(TN)最為顯著。(2)MP的土壤團聚體粒徑分布優于PP,差異主要體現在>2.00 mm和<0.25 mm粒徑中,均以大團聚體(>0.25 mm)為主;相較于PP,MP的土壤團聚體機械穩定性僅在0~10 cm土層顯著提高,但其團聚體水穩定性在0~10 cm和10~20 cm土層均顯著提高。(3)Mantel分析結果顯示團聚體穩定性與TN相關性最強,通過RDA分析進一步說明TN是驅動其團聚體穩定性變異的最關鍵因子。綜上認為,固氮樹種馬占相思對巨尾桉人工林土壤團聚體穩定性具有明顯改善作用,該研究結果為南亞熱帶桉樹人工林水土保持、養分管理及可持續經營等提供了科學的理論依據。
關鍵詞: 土壤團聚體, 機械穩定性, 水穩定性, 桉樹人工林, 固氮樹種
中圖分類號: Q948文獻標識碼: A文章編號: 1000-3142(2024)07-1245-12
Effects of nitrogen-fixing tree species Acacia mangium onparticle size distribution and stability of soil aggregatesin Eucalyptus grandis × urophylla plantations
ZHANG Wen1, LI Jiajun1, XIANG Mingzhu1, HUANG Haimei1, LI Changhang1, YAN Jinliu1,
GAO Guannü1, SU Xiaoyan1, YOU Yeming1,2, HUANG Xueman1,2*
( 1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China;2. Guangxi Youyiguang Forest Ecosystem National Observation and Research Station, Youyiguan Forest Ecosystem Observation andResearch Station of Guangxi, Pingxiang 532600, Guangxi, China )
Abstract: Soil aggregates are the basic unit of soil structure. The stability of soil aggregates is an important indicator for evaluating soil structure and soil fertility. In order to explore the effects of Acacia mangium on particle size distribution and stability of soil aggregates of Eucalyptus grandis × urophylla plantations, we measured the distribution and stability of aggregates indicators such as mean weight diameter (MWD), geometric mean diameter (GMD), mass fractal dimension (Dm), water stable aggregates (WSA), percentage of aggregates destruction (PAD) and aggregates stability index (ASI) in the 0-10 cm and 10-20 cm soil layers by the dry sieving method and the wet sieving method, and a pure plantation of E. grandis × urophylla (PP) and a mixed plantation containing E. grandis × urophylla and Acacia mangium (nitrogen-fixing tree species) (MP) were selected as the research objects. The results were as follows: (1) Compared with PP, the soil physicochemical properties of MP were improved in varying degrees, especially soil pH, organic carbon (SOC) and total nitrogen (TN). (2) The particle size distribution of soil aggregates in MP was better than that of PP, and the differences mainly in the particle sizes of >2.00 mm and <0.25 mm, but both were dominated by large aggregates (>0.25 mm). Compared with PP, the mechanical stability of aggregates in MP only increased significantly at 0-10 cm soil layer, but the water stability of aggregates in MP increased significantly at 0-10 cm and 10-20 cm soil layer. The mechanical stability and water stability of soil aggregates tended to decrease with the deepening of soil layer. (3) Mantel analysis showed that the stability of aggregates was significantly correlated with pH, SOC, TN, TP, BD and SP, and the stability of aggregates had the strongest correlation with TN. RDA analysis indicated that TN was the most critical factor driving the variation of stability aggregates. Our findings suggest that nitrogen-fixing tree species A. mangium can significantly improve proportion of macroaggregates (>0.25 mm) and the stability of soil aggregates in Eucalyptus plantations. This study can provide a theoretical reference for soil and water conservation, soil nutrient management and sustainable management of Eucalyptus plantations in the South Asian tropics.
Key words: soil aggregates, mechanical stability, water stability, Eucalyptus plantations, nitrogen-fixing tree species
土壤團聚體是土壤結構的基本單元,有著協調土壤水肥氣熱、影響土壤酶的種類和活性以及維持和穩定土壤疏松熟化層的作用(盧金偉和李占斌,2002;Six et al., 2004)。一般認為,>0.25 mm水穩定性團聚體的數量是判定土壤肥沃的關鍵標志之一,可以反映土壤的養分供給、通氣持水能力,決定土壤生產力水平和抗侵蝕能力(蔡立群等,2008;Delelegn et al., 2017)。
土壤團聚體穩定性是影響土壤結構的重要因素,也是土壤肥力和質量的關鍵指標(Six et al., 2000;Bronick & Lal, 2005)。作為一種土壤物理特性,改善土壤團聚體穩定性有助于抵御土壤破壞,并在土壤受到不同破壞性物理應力(包括降雨和地表徑流)時保持其特定的結構(Besalatpour et al., 2013;Li et al., 2013);提高土壤團聚體穩定性可以極大地改善土壤結構和肥力,防止土壤退化引起的土壤侵蝕和其他環境問題(Zhu et al., 2017)。土壤團聚體穩定性與土壤有機質含量(Bronick & Lal, 2005)、土壤微生物數量和活性(Lin et al., 2019)、土地利用方式、管理措施、氣候條件及植被類型等(董莉麗,2020)密切相關。國內外學者對團聚體穩定性的研究主要集中在團聚體穩定性量化理論與方法(Ding & Zhang, 2016;Aksakal et al., 2020)和團聚體穩定性影響因素及其機制等(董莉麗,2020),涉及農田、濕地、草原、森林等生態系統(劉亞龍等,2023)。團聚體穩定性的測定方法主要有干篩法、濕篩法和Le Bissonnais法等,干篩法用于評估團聚體機械穩定性,濕篩法用于評估團聚體水穩定性,而Le Bissonnais法則用于探究團聚體破碎機制(董莉麗,2020)。濕篩法所得的大團聚體比例往往會低于干篩法,兩種方法在團聚體粒徑分布方面的差異可能主要在于兩種方法施加到土壤上的能量不同(Zhu et al., 2021)以及團聚體破裂的方式不同(王秀穎等,2011)。
桉樹(Eucalyptus)具有適應性廣、抗逆性強、生長迅速等特點,在廣西、廣東、海南及福建等沿海省區被廣泛種植,產生了巨大的經濟效益(溫遠光等,2018)。隨著桉樹人工林產業不斷地發展,各種生態問題逐漸顯現,如不合理的經營措施(短周期、高次代純林連栽、大量施肥和使用除草劑等)導致的土壤退化、林地生產力下降、林下植物多樣性降低等(黃國勤和趙其國,2014;溫遠光等,2018),嚴重制約了桉樹人工林的發展。基于上述背景,改善桉樹人工林生態環境狀況、減緩其土壤退化、維持且提高其土壤養分含量已成為研究熱點。已有的對桉樹人工林土壤的研究大多集中于土壤養分循環及調控機制(Huang et al., 2017;唐健等,2021;邵文哲等,2022),但對團聚體粒徑分布及穩定性機制仍缺乏深入研究。因此,探究桉樹人工林土壤團聚體粒徑分布及穩定性對其土壤肥力維持及恢復具有重要意義。
Wang等(2022)的研究發現,隨著桉樹的連續種植,土壤退化加劇,抗侵蝕能力降低,土壤團聚體穩定性下降;林立文等(2020)對比了杉木、馬尾松和桉樹等南亞熱帶地區5種典型人工林的土壤團聚體穩定性發現,桉樹人工林土壤結構相對較差,團聚體穩定性最低。因此,尋找提高桉樹人工林土壤團聚體穩定性的營林措施顯得尤為重要。前人研究表明,在退化林地引種固氮樹種,如旱冬瓜(Alnus nepalensis)、頂果木(Acrocarpus fraxinifolius)和降香黃檀(Dalbergia odorifera)等,可以顯著提升土壤有機質、總氮和磷素有效性,有效改善林地土壤肥力狀況(李茂萍等,2022;李萌等,2022); 莫雪青等(2022)研究發現,在桉樹人工林中引入固氮樹種后,土壤團聚體的酶活性和化學計量比得到改善,土壤N、P限制得到緩解;Huang 等(2017)研究發現,在桉樹人工林中引入固氮樹種改善了土壤微生物群落結構與土壤胞外酶活性,進而增加了土壤碳儲量和惰性碳含量。然而,固氮樹種在改善土壤理化性質的同時,能否提高桉樹人工林土壤團聚體穩定性,其與土壤理化性質之間有何關系,其影響機制及關鍵驅動因子是什么,我們對這些問題都缺乏深入的認識。因此,本研究以中國林業科學研究院熱帶林業實驗中心的巨尾桉(Eucalyptus grandis × urophylla)純林(pure plantation, PP)和巨尾桉(E. grandis × urophylla)/馬占相思(Acacia mangium)混交林(mixed plantation, MP)為研究對象,采用干篩和濕篩相結合的方法,綜合分析兩種林分的土壤團聚體的粒徑分布及穩定性特征,以期闡明固氮樹種馬占相思對巨尾桉人工林土壤團聚體穩定性的影響機制及其關鍵驅動因子,為桉樹人工林土壤養分管理和可持續經營提供理論基礎。
1材料與方法
1.1 研究區概況
本研究區位于廣西憑祥市中國林業科學研究院熱帶林業實驗中心的實驗場內(106°56′E、22°03′N)。憑祥市地處中國南部,地貌以山區丘陵地形為主,屬亞熱帶季風型氣候,受太陽輻射熱能多,水熱資源豐富,干濕季節明顯,年均溫度21 ℃,年均降雨量1 400 mm,年均無霜期340 d;土壤類型以花崗巖風化后形成的紅壤為主,土壤呈酸性,土壤有機質及全氮含量中等偏低,磷、鉀養分含量不豐富,有效鋅、硼和鉬的含量不高。
選取17年生的巨尾桉純林(PP)和巨尾桉/馬占相思混交林(MP)作為研究對象,每種林分分別設置5個20 m × 20 m的獨立樣方。MP由相同樹齡的巨尾桉和馬占相思構成,混交比例為1∶1,混交方式為行間混交。2種林分均是在2004年將1977年種植的馬尾松林皆伐后經煉山整地后同時種植,在整個研究過程中均采用相似的林分管理制度。在造林前,每株施基肥500 g,并在前2年每半年人工除草和施肥1次,施肥總量為氮200 kg·hm-2、磷150 kg·hm-2、鉀100 kg·hm-2。樣地基本情況如表1所示。
1.2 樣品采集和處理
根據植物生長的特點,于2021年8月初植物生長旺季采集土壤樣品。以 0°為起始,每隔45°設置一條方向線,在每條方向線上距樣方中心點5 m處設置一個采樣點;清除土壤表面的凋落物、動植物殘體、石塊等雜質后,每個采樣點從土壤表層向下按照0~10 cm和10~20 cm分2層采集原狀土,將8個采樣點的土壤混合后保存于硬質塑料盒內,防止運輸過程中土壤原有結構被擠壓破壞。此外,還需用體積為100 cm3 的環刀分層采集土壤,用于測定土壤容重(bulk density, BD)和土壤孔隙度(soil porosity, SP)。土壤樣品運回實驗室后,剔除土壤內砂石和動植物殘體,一部分于常溫下晾干至田間含水量的20%,按其天然紋理掰成直徑約1 cm的小塊,用于土壤團聚體指標的測定;另一部分經研磨過篩,用于土壤理化性質的測定。
1.3 樣品測定方法
1.3.1 干篩法參考林立文等(2020)的方法,取500 g土樣,依次過孔徑為2.00、1.00、0.50 mm和0.25 mm的套篩后,測得>2.00 mm、1.00~2.00 mm、0.50~1.00 mm、0.25~0.50 mm和<0.25 mm粒徑團聚體質量,計算各粒徑團聚體的百分比含量及團聚體機械穩定性指標。
1.3.2 濕篩法參考Elliott(1986)的方法,將干篩法獲得的各粒徑團聚體按比例配制50 g土樣用于濕篩。濕篩孔徑大小與干篩一致,在篩分之前,將土壤置于去離子水中浸泡30 min,之后啟動團粒分析儀,在振幅為38 mm、振動頻率為30 times·min-1的設置下運行30 min,待分析過程結束后,將各粒徑團聚體轉入鋁盒,于105 ℃烘箱中烘干后測得各粒徑團聚體質量,計算各粒徑團聚體的百分比含量及團聚體水穩定性指標。
1.3.3 土壤理化性質的測定參考《土壤農化分析》對土壤理化性質進行測定(鮑士旦,2000)。采用pH計測定土壤pH(1∶2.5土水比);采用環刀法測定土壤容重(BD)、土壤孔隙度(SP);采用重鉻酸鉀-外加熱法測定土壤有機碳(soil organic carbon, SOC);采用凱氏定氮法測定土壤全氮(total nitrogen, TN);采用鉬銻抗比色法測定土壤全磷(total phosphorus, TP)。
1.4 數據處理和分析
單一指標往往不能全面反映團聚體穩定性,為綜合評價土壤團聚體穩定性,以平均重量直徑(mean weight diameter, MWD)(Bravel,1950)、幾何平均直徑(geometric mean diameter, GMD)(Mazurak,1950)、分形維數(mass fractal dimension, Dm)(Tyler et al., 1992;楊培嶺等,1993)、水穩定性團聚體含量(water stable aggregates, WSA)(冷暖等,2021)、團聚體破壞率(percentage of aggregates destruction, PAD)(韋慧等,2022)和團聚體穩定性指數(aggregates stability index, ASI)(石輝,2006)作為評價團聚體穩定性的指標。其中,MWD和GMD是表征土壤團聚體直徑大小組成情況的綜合指標,MWD和GMD越大表明團聚體越穩定;WSA表征水穩定性團聚體的含量,WSA越高,說明團聚體水穩定性越強;Dm通常表示團聚體的均勻程度,Dm越小表明大團聚體比例越高,團聚體穩定性越好;PAD結合干濕篩法表征機械穩定性大團聚體(>0.25 mm)經濕篩后破損為小團聚體(<0.25 mm)的比例,PAD越小表明團聚體越穩定;ASI結合干濕篩法表征各粒徑機械穩定性團聚體經濕篩篩分后仍保存在原粒徑的概率,是表征團聚體穩定性的綜合指標,ASI越大,團聚體越穩定。
計算公式如下:
(1)平均重量直徑(MWD,mm)與幾何平均直徑(GMD,mm):
MWD=∑ni=1xiwi ①
GMD=exp∑ni=1(wilnxi)∑ni=1wi②
式中:xi為任一粒徑團聚體的平均直徑(mm);wi為第i粒徑團聚體的質量占總團聚體的百分比(%)。
(2) 分形維數(Dm): 分形維數計算方法參考Tyler等(1992)和楊培嶺等(1993)提出的方法。
logM(r<xi)MT=3-Dmlogxixmax ③
以logM(r<xi)MT為橫坐標、logxixmax為縱坐標進行擬合,直線斜率K為(3-Dm),分形維數Dm=3-K。
式中: xi為任一粒徑團聚體的平均直徑(mm);M(r<xi)為小于第i粒徑團聚體的質量;MT為團聚體總質量(g);xmax為團聚體最大粒徑的平均直徑(mm);Dm為分形維數。
(3)水穩定性團聚體含量(WSA)與團聚體破壞率(PAD):
WSA=WM>0.25MT ④
PAD=DM>0.25-WM>0.25DM>0.25 ⑤
式中: WM>0.25為濕篩>0.25 mm團聚體質量(g);DM>0.25為干篩>0.25 mm團聚體質量(g);MT為濕篩團聚體總質量(g)。
(4) 團聚體穩定性指數(ASI): 采用石輝(2006)提出的轉移矩陣法,充分利用團聚體分析所得的信息,通過計算機械穩定性團聚體轉化水穩定性團聚體過程中各粒徑團聚體的保存概率,進一步反映團聚體穩定性。假設將i個粒徑范圍的機械穩定性團聚體百分比構成矩陣Mi,濕篩后對應的水穩定性團聚體百分比為矩陣Ni,每個粒徑在篩分時保存在原有粒徑的概率為X1、X2、…、Xi,可得MX=N,以各徑級保存概率Xi的和作為土壤團聚體穩定指數ASI。
ASI=X1+X2+X3+…+Xi ⑥
式中: X為各粒徑團聚體保存概率,由于<0.25 mm的徑級是最小的粒徑,在濕篩的過程中不可能再破壞為其下一個徑級,因此其保存概率為1。
采用Excel 2019和SPSS 25軟件對數據進行統計和分析。運用獨立樣本t檢驗比較相同土層不同林分間土壤理化性質、團聚體粒徑分布及穩定性特征的差異,顯著性水平設置為P<0.05。利用R 4.0.3的vegan程序包中的Mantel函數進行Mantel檢驗,分析土壤理化性質與土壤團聚體穩定性的相關性,顯著性水平設置為P<0.05。利用 Canoco 5軟件,以土壤團聚體穩定性特征為響應變量、土壤理化性質為解釋變量進行冗余分析。利用Origin Pro 2023和R 4.0.3軟件繪圖, 圖表中所有結果均為平均值±標準誤,n=5。
2結果與分析
2.1 不同林分土壤理化性質
由表2可知,相較于PP,在0~10 cm土層,MP的pH、SOC、TN和SP分別顯著提高了18.93%、63.17%、88.70%和11.63%(P<0.05);在10~20 cm土層,MP的pH、SOC、TN分別顯著提高了19.71%、40.16% 和60.24%(P<0.05),而TP、BD分別顯著降低了31.25% 和9.52%(P<0.05)。
2.2 不同林分土壤團聚體粒徑分布特征
由圖1可知,不同篩分方式下,兩種林分的土壤團聚體粒徑分布特征各有差異,但均以大團聚體(>0.25 mm)為主。
由表3可知,干篩條件下,PP和MP土壤團聚體粒徑分布在0~10 cm和10~20 cm土層均以>2.00 mm粒徑團聚體為主,占整個團聚體含量的68.04%~75.66%。相較于PP,在0~10 cm土層中,MP的>2.00 mm粒徑團聚體顯著提升(P<0.05),而0.50~1.00 mm粒徑團聚體顯著降低(P<0.05);在10~20 cm土層,MP的0.50~1.00 mm和0.25~0.50 mm粒徑團聚體均顯著降低(P<0.05)。
由表4可知,濕篩條件下,PP和MP的土壤團聚體粒徑分布在0~10 cm土層中,從大到小均依次為>2.00 mm、<0.25 mm、0.50~1.00 mm、1.00~2.00 mm、0.25~0.50 mm;相較于PP,MP的>2.00 mm和0.25~0.50 mm粒徑團聚體均顯著提高(P<0.05),而<0.25 mm粒徑團聚體顯著降低(P<0.05)。PP和MP的土壤團聚體粒徑分布在10~20 cm土層呈現出不同的規律,PP占比最高的團聚體粒徑為<0.25 mm,MP為>2.00 mm;相較于PP,MP的>2.00 mm和0.25~0.50 mm粒徑團聚體均顯著提高(P<0.05),而<0.25 mm粒徑團聚體顯著降低(P<0.05)。
2.3 不同林分土壤團聚體穩定性特征
干篩條件下,MP的MWD和GMD在0~10 cm土層顯著高于PP(P<0.05)(圖2:A,B)。濕篩條件下,MP的MWD、GMD和WSA在0~10 cm和10~20 cm土層均顯著高于PP(P<0.05),分形維數均顯著低于PP(P<0.05)(圖2:A,B,C;圖3:A)。
統計分析結果顯示,MP的PAD在0~10 cm和10~20 cm土層均顯著低于PP(P<0.05)(圖3:B),而ASI顯著高于PP(P<0.05)(圖3:C),表明MP團聚體綜合穩定性顯著優于PP。
2.4 土壤團聚體穩定性與理化性質相關性分析
采用Mantel檢驗對不同林分土壤理化性質與團聚體穩定性的相關性進行分析。圖4結果表明,pH、SOC、TN、TP、BD和SP與團聚體穩定性特征均有不同程度的相關性。TN與團聚體穩定性相關性最強,而與PAD呈不顯著相關(P>0.05);TP與團聚體穩定性相關性最弱,而與WSA呈顯著相關(P<0.05)。
以土壤團聚體穩定性指標為響應變量、土壤理化性質為解釋變量進行冗余分析(RDA)。圖5結果表明,第一主軸和第二主軸分別解釋了土壤團聚體穩定性變異的92.75%和5.50%。第一主軸將PP與MP明顯分開,表明固氮樹種馬占相思的引入能顯著改變土壤團聚體穩定性。TN(F=16.3,P=0.002)可以解釋團聚體穩定性變異的47.50%(表5),是驅動團聚體穩定性變異的最關鍵因子。
3討論
3.1 固氮樹種馬占相思對巨尾桉人工林土壤團聚體粒徑分布及穩定性特征的影響
土壤團粒結構有著良好的水分和空氣協調能力以及養分貯存能力,是最理想的土壤結構。本研究中,干篩與濕篩測得的結果有所區別,2種林分的團聚體機械穩定性僅在0~10 cm土層有顯著差異,團聚體水穩定性在0~10 cm和10~20 cm土層均有顯著差異,說明巨尾桉純林引入固氮樹種后,團聚體機械穩定性得到一定改善,但更多的是促進水穩定性團聚體的形成,并使其具有較好的水穩定性團聚體粒徑分布及水穩定性;PAD與ASI從團聚體破碎的角度進一步表明團聚體綜合穩定性得到顯著提高。此外,隨著土層深度增加,團聚體粒徑分布及穩定性呈降低的趨勢,這與童晨暉等(2022)的研究結果基本一致,其原因主要歸結于表層土壤相較于底層土壤具有更高的有機質含量。
土壤團聚體的形成過程是土壤顆粒在各種膠結物質作用下團聚以及團聚體受外力破壞這兩個過程不斷平衡的結果(余潔等,2022)。林分類型對土壤團聚體的形成有重要影響,本質上是受土壤肥力、凋落物及根系等因素的綜合影響(楊洪炳等,2022)。本研究中,MP的土壤團聚體穩定性有較大改善,其原因可能有以下3個方面: (1)相對于PP,MP具有更豐富的植物多樣性,更高的地上生物量和枯落物量對降水和徑流有更好的截留作用(申衛軍等,2001),有效減緩了降水引起的消散作用對團聚體的破壞(韋慧等,2022);(2)MP具有更高質量和數量的凋落物,增加了土壤有機質的輸入(Huang et al., 2014),而土壤有機質作為團聚體重要的膠結物質為大團聚體的形成及穩定起到了促進作用(劉亞龍等,2023);(3)與馬占相思混交種植后可能產生更多的根系分泌物和真菌菌根,有助于微團聚體黏合成大團聚體(Demenois et al., 2018)。
3.2 土壤團聚體穩定性與土壤理化性質關系
王磊等(2022)研究發現,與人工純林相比,混交林可以提高凋落物分解速率,增加土壤養分的歸還量,進而引起土壤理化性質的差異。本研究中,馬占相思與巨尾桉混交主要對pH、SOC和TN產生了顯著影響,這與Wang等(2010)的研究結果類似,固氮樹種在土壤C、N恢復方面有積極作用,與非固氮樹種相比,固氮樹種對土壤有機質和總氮含量的提高具有更明顯的促進作用,并且馬占相思在重建中國南方退化土地的碳氮循環方面更為有效。這可能是固氮樹種通過其根系與固氮菌共生的固氮作用來提高土壤氮含量,促進桉樹人工林地上植被的生長,提高林地生產力,增加凋落物輸入量和凋落物質量, 進而改善土壤理化性質(Kelty, 2006;Huang et al., 2014;Huang et al., 2017)。這一觀點也被Marron和Epron(2019)的研究證明,其在全球尺度上統計了34個實驗人工林的148個案例,并通過薈萃分析發現固氮樹種混交林的生物量比非固氮樹種純林提高了18%。
Mantel檢驗結果顯示,pH、SOC、TN和BD均與土壤團聚體穩定性存在較強的顯著相關性,說明固氮樹種馬占相思引起的土壤理化性質變化對土壤團聚體穩定性有著強烈的影響。pH的升高會加強土壤團聚作用,尤其是影響大團聚體的形成,進而提高團聚體穩定性(徐海東等,2020);BD是土壤結構的綜合反映,BD越大,土壤越緊實,持水和通氣能力越弱,從而限制了微生物的活動,不利于團聚體膠結物質的形成(劉亞龍等,2023)。土壤有機質作為團聚體膠結物質,已被廣泛認為是團聚體穩定性諸多影響因子中最重要的影響因子之一;有機質可以促進團聚體的形成,而團聚體又作為有機質的儲存場所,有利于有機質的累積,二者相互耦合(林立文等,2020)。但是,RDA結果表明,TN是影響團聚體穩定性的關鍵環境因子,解釋了團聚體穩定性變異的47.50%。先前的研究表明,由于TN并不會對土壤團聚體穩定性產生直接影響,因此固氮樹種馬占相思可能是通過增加土壤N含量促進巨尾桉人工林SOC積累,間接影響團聚體穩定性。首先,TN的增加可以改善桉樹人工林凋落物數量和凋落物N含量,促進土壤有機質的輸入和養分歸還量的增加(莫雪青等,2022);其次,結合生態化學計量理論(邢偉等,2015),TN的增加緩解了土壤N限制,尤其是在N限制的生態系統中;N有效性的增加導致微生物生物量及活性提升,促進凋落物分解初期穩定土壤有機質的形成(Cotrufo et al., 2013)。此外,Huang 等(2014)的研究表明,固氮樹種的引入提高了桉樹人工林土壤微生物生物量碳,而微生物生物量碳作為SOC形成的最重要前驅體(Liang et al., 2017),是SOC的重要來源,其對SOC形成的貢獻可能在10%~27%之間(Fan et al., 2021)。因此,巨尾桉人工林土壤團聚體穩定性的變異是由固氮樹種馬占相思誘導的涉及生物和非生物因子的復雜生態過程相互作用引起的。
4結論
綜上所述,固氮樹種馬占相思與巨尾桉混交17年后,pH、SOC和TN等土壤理化性質得到顯著改善。混交林土壤團聚體機械穩定性僅在0~10 cm土層顯著提升,而土壤團聚體水穩定性在0~10 cm和10~20 cm土層均顯著提升,說明馬占相思對巨尾桉人工林土壤水穩定性團聚體的影響大于機械穩定性團聚體。此外,土壤團聚體機械穩定性和水穩定性均有隨土層加深而降低的趨勢。土壤團聚體穩定性與土壤理化性質存在較強的相關性,其中TN是驅動團聚體穩定性變異的最關鍵因子。
參考文獻:
AKSAKAL EL, ANGIN L, SARI S, 2020. A new approach for calculating aggregate stability: mean weight aggregate stability (MWAS) [J]. Catena, 194: 104708.
BAO SD, 2000. Soil agrochemical analysis [M]. Beijing: China Agriculture Press: 1-120. [鮑士旦, 2000. 土壤農化分析 [M]. 北京: 中國農業出版社: 1-120.]
BAVEL CHMV, 1950. Mean weight-diameter of soil aggregates as a statistical index of aggregation 1 [J]. Soil Sci Soc Am J, 14: 20-23.
BESALATPOUR AA, AYOUBI S, HAJABBASI MA, et al., 2013. Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed [J]. Catena, 111: 72-79.
BRONICK CJ, LAL R, 2005. Soil structure and management: a review [J]. Geoderma, 124(1/2): 3-22.
CAI LQ, QI P, ZHANG RZ, 2008. Effects of conservation tillage measures on soil aggregates stability and soil organic carbon in two sequence rotation system with spring wheat and field pea [J]. J Soil Water Conserv, 22(2): 141-145. [蔡立群, 齊鵬, 張仁陟, 2008. 保護性耕作對麥-豆輪作條件下土壤團聚體組成及有機碳含量的影響 [J]. 水土保持學報, 22(2): 141-145.]
COTRUFO MF, WALLENSTEIN MD, BOOT CM, et al., 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? [J]. Glob Change Biol, 19(4): 988-995.
DELELEGN YT, PURAHONG W, BLAZEVIC A, et al., 2017. Changes in land use alter soil quality and aggregate stability in the highlands of northern Ethiopia [J]. Sci Rep, 7(1): 1-12.
DEMENOIS J, CARRICONDE F, BONAVENTURE P, et al., 2018. Impact of plant root functional traits and associated mycorrhizas on the aggregate stability of a tropical Ferralsol [J]. Geoderma, 312: 6-16.
DING WF, ZHANG XC, 2016. An evaluation on using soil aggregate stability as the indicator of interrill erodibility [J]. J Mt Sci, 13(5): 831-843.
DONG LL, 2020. Hotspots and trends of soil aggregation research based on Citespace [J]. J Xianyang Norm Univ, 35(2): 48-56. [董莉麗, 2020. 基于Citespace的土壤團聚體研究熱點和趨勢分析 [J]. 咸陽師范學院學報, 35(2): 48-56.]
ELLIOTT ET, 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Sci Soc Am J, 50(3): 627-633.
FAN XL, GAO DC, ZHAO CH, et al., 2021. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool [J]. ISME J, 15(8): 2248-2263.
HUANG GQ, ZHAO QG, 2014. The history, status quo, ecological problems and countermeasures of Eucalyptus plantations in Guangxi [J]. Acta Ecol Sin, 34(18): 5142-5152. [黃國勤, 趙其國, 2014. 廣西桉樹種植的歷史、現狀、生態問題及應對策略 [J]. 生態學報, 34(18): 5142-5152.]
HUANG XM, LIU SL, WANG H, et al., 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China [J]. Soil Biol Biochem, 73: 42-48.
HUANG XM, LIU SL, YOU YM, et al., 2017.Microbial community and associated enzymes activity influence soil carbon chemical composition in Eucalyptus urophylla plantation with mixing N2-fixing species in subtropical China [J]. Plant Soil, 414(1/2): 199-212.
KELTY MJ, 2006. The role of species mixtures in plantation forestry [J]. For Ecol Manage, 233(2/3): 195-204.
LENG N, DENG YS, LIN LW, et al., 2021. Characteristics and stability of soil aggregates developed from different parent materials in the south subtropical region [J]. J Soil Water Conserv, 35(5): 80-86. [冷暖, 鄧羽松, 林立文, 等, 2021. 南亞熱帶不同母質發育土壤團聚體特征及其穩定性 [J]. 水土保持學報, 35(5): 80-86.]
LI MP, MIAO N, LIU SR, 2022. Effects of nitrogen-fixing tree species Alnus nepalensis on the degraded soils and understory restoration in the upper reaches of the Jinsha River, China [J]. Acta Ecol Sin, 42(6): 2321-2330. [李茂萍, 繆寧, 劉世榮, 2022. 固氮樹種旱冬瓜對退化林地土壤修復和林下植被重建的生態驅動效應 [J]. 生態學報, 42(6): 2321-2330.]
LI M, TAN XM, XIAO N, et al., 2022. Effects of introducing Dalbergia odorifera and Acricarpus fraxinifolius on soil phosphorus transformation and availability in rocky desertification mountainous regions [J]. Acta Ecol Sin, 42(4): 1594-1605. [李萌, 譚許脈, 肖納, 等, 2022. 引種降香黃檀和頂果木對石漠化山區土壤磷素轉化及其有效性的影響 [J]. 生態學報, 42(4): 1594-1605.]
LI ZX, YANG W, CAI CF, et al., 2013. Aggregate mechanical stability and relationship with aggregate breakdown under simulated rainfall [J]. Soil Sci, 178(7): 369-377.
LIANG C, SCHIMEL JP, JASTROW JD, 2017. The importance of anabolism in microbial control over soil carbon storage [J]. Nat Microbiol, 2(8): 1-6.
LIN YX, YE GP, KUZYAKOV Y, et al., 2019. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa [J]. Soil Biol Biochem, 134: 187-196.
LIN LW, DENG YS, WANG JY, et al., 2020. Effects of plantation on aggregate distribution and stability of lateritic red soil in south subtropical China [J]. Chin J Appl Ecol, 31(11): 3647-3656. [林立文, 鄧羽松, 王金悅, 等, 2020. 南亞熱帶人工林種植對赤紅壤團聚體分布及穩定性的影響 [J]. 應用生態學報, 31(11): 3647-3656.]
LIU YL, WANG P, WANG JK, 2023. Formation and stability mechanism of soil aggregates: progress and prospect [J]. Acta Pedol Sin, 60(3): 627-643. [劉亞龍, 王萍, 汪景寬, 2023. 土壤團聚體的形成和穩定機制:研究進展與展望 [J]. 土壤學報, 60(3): 627-643.]
LU JW, LI ZB, 2002. Advance in soil aggregates study [J]. Res Soil Water Conserv, 9(1): 81-85. [盧金偉, 李占斌, 2002. 土壤團聚體研究進展 [J]. 水土保持研究, 9(1): 81-85.]
MARRON N, EPRON D, 2019.Are mixed-tree plantations including a nitrogen-fixing species more productive than monocultures? [J]. For Ecol Manage, 441: 242-252.
MAZURAK AP, 1950. Effect of gaseous phase on water-stable synthetic aggregates [J]. Soil Sci, 69(2): 135-148.
MO XQ, XIAO N, TAN XM, et al., 2022. Effects of nitrogen-fixing tree species on soil aggregate-associated enzyme activities and ecoenzymatic stoichiometric ratios in Eucalyptus plantations [J]. Guihaia, 42(4): 569-579. [莫雪青, 肖納, 譚許脈, 等, 2022. 固氮樹種對桉樹人工林土壤團聚體酶活性及其化學計量比的影響 [J]. 廣西植物, 42(4): 569-579.]
SHAO WZ, ZHOU XG, WEN YG, et al., 2022. Effects of mixing Eucalyptus and Castanopsis hystrix on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry [J]. Guihaia, 42(4): 543-555. [邵文哲, 周曉果, 溫遠光, 等, 2022. 桉樹與紅錐混交對土壤水解酶活性及其化學計量特征的影響 [J]. 廣西植物, 42(4): 543-555.]
SHEN WJ, PENG SL, ZHOU GY, et al., 2001. Ecohydrological functions of litter in man-made Acacia mangium and Pinus elliotii plantations [J]. Acta Ecol Sin, 21(5): 846-850. [申衛軍, 彭少麟, 周國逸, 等, 2001. 馬占相思 (Acacia mangium) 與濕地松 (Pinus elliotii)人工林枯落物層的水文生態功能 [J]. 生態學報, 21(5): 846-850.]
SHI H, 2006. Using transition matrix to evaluate stability of soil aggregates [J]. Bull Soil Water Conserv, 26(3): 91-95. [石輝, 2006. 轉移矩陣法評價土壤團聚體的穩定性 [J]. 水土保持通報, 26(3): 91-95.]
SIX J, BOSSUYT H, DEGRYZE S, et al., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil Till Res, 79(1): 7-31.
SIX J, ELLIOTT ET, PAUSTIAN K, 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biol Biochem, 32(14): 2099-2103.
TANG J, ZHAO JY, QIN ZY, et al., 2021. Soil fertility evolution characteristics in main Eucalyptus producing areas of Guangxi: 1993-2018 [J]. Chin Agric Sci Bull, 37(1): 94-99. [唐健, 趙雋宇, 覃祚玉, 等, 2021. 1993—2018年廣西桉樹主產區土壤肥力演變特征分析 [J]. 中國農學通報, 37(1): 94-99.]
TONG CH, WANG H, TAN S, et al., 2022. Effects of economic fruit forest planting on the stability of red soil aggregates in the subtropical hilly area [J]. Chin J Appl Ecol, 33(4): 1012-1020. [童晨暉, 王輝, 譚帥, 等, 2022. 亞熱帶丘崗區經果林種植對紅壤團聚體穩定性的影響 [J]. 應用生態學報, 33(4): 1012-1020.]
TYLER SW, WHEATCRAFT SW, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations [J]. Soil Sci Soc Am J, 56(2): 362-369.
WANG L, WEN YG, ZHOU XG, et al., 2022. Effects of mixing Eucalyptus urophylla × E. grandis with Castanopsis hystrix on understory vegetation and soil properties [J]. Ecol Environ Sci, 31(7): 1340-1349. [王磊, 溫遠光, 周曉果, 等, 2022. 尾巨桉與紅錐混交對林下植被和土壤性質的影響 [J]. 生態環境學報, 31(7): 1340-1349.]
WANG FM, LI ZA, XIA HP, et al., 2010. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China [J]. Soil Sci Plant Nutr, 56(2): 297-306.
WANG JY, DENG YS, LI DY, et al., 2022. Soil aggregate stability and its response to overland flow in successive Eucalyptus plantations in subtropical China [J]. Sci Total Environ, 807: 151000.
WANG XY, GAO XF, LIU HB, et al., 2011. Review of analytical methods for aggregate size distribution and water-stability of soil macro-aggregates [J]. Sci Soil Water Conserv, 9(3): 106-113. [王秀穎, 高曉飛, 劉和平, 等, 2011. 土壤水穩性大團聚體測定方法綜述 [J]. 中國水土保持科學, 9(3): 106-113.]
WEI H,DENG YS, LIN LW, et al., 2022. Comparative study on the stability of soil aggregates in typical microhabitats in karst ecologically fragile areas [J]. Acta Ecol Sin, 42(7): 2751-2762. [韋慧, 鄧羽松, 林立文, 等, 2022. 喀斯特生態脆弱區典型小生境土壤團聚體穩定性比較研究 [J]. 生態學報, 42(7): 2751-2762.]
WEN YG, ZHOU XG, YU SF, et al., 2018. The predicament and countermeasures of development of global Eucalyptus plantations [J]. Guangxi Sci, 25(2): 107-116. [溫遠光, 周曉果, 喻素芳, 等, 2018. 全球桉樹人工林發展面臨的困境與對策 [J]. 廣西科學, 25(2): 107-116.]
XING W, WU HP, SHI Q, et al., 2015. Ecological stoichiometry theory: a review about applications and improvements [J]. Ecol Sci, 34(1): 190-197. [邢偉, 吳昊平, 史俏, 等, 2015. 生態化學計量學理論的應用、完善與擴展 [J]. 生態科學, 34(1): 190-197.]
XU HD, YUAN HJ, XIONG J, et al., 2020. Effects of uneven-aged Cunninghamia lanceolata and evergreen broadleaved mixed plantations on soil aggregate stability and soil organic carbon and nutrients stocks [J]. For Res, 33(3): 107-115. [徐海東, 苑海靜, 熊靜, 等, 2020. 杉闊異齡復層林對土壤團聚體穩定性和有機碳及養分儲量的影響 [J]. 林業科學研究, 33(3): 107-115.]
YANG HB, XIAO YH, XU H, et al., 2022. Distribution and stability of soil aggregates in different forest types under an urban-rural gradient [J]. For Res, 35(3): 82-92. [楊洪炳, 肖以華, 許涵, 等, 2022. 城鄉梯度下不同林分類型土壤團聚體分布及其穩定性 [J]. 林業科學研究, 35(3): 82-92.]
YANG PL, LUO YP, SHI YC, 1993. Soil fractal characteristics characterized by particle size weight distribution [1aGSjNtfwQkN62oqjKqGgwtGcpMaRqUkHlcA17Ebw4M=J]. Chin Sci Bull, 38(20): 1896-1899. [楊培嶺, 羅遠培, 石元春, 1993. 用粒徑的重量分布表征的土壤分形特征 [J]. 科學通報, 38(20): 1896-1899.]
YU J, MIAO SJ, QIAO YF, 2022. The stabilization mechanism of different types of soil aggregates [J]. Chin Agric Sci Bull, 38(14): 89-95. [余潔, 苗淑杰, 喬云發, 2022. 不同類型土壤團聚體穩定機制的研究 [J]. 中國農學通報, 38(14): 89-95.]
ZHU GY, SHANGGUAN ZP, DENG L, 2017. Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau [J]. Catena, 149: 253-260.
ZHU LX, LI LL, LIU TX, 2021. Soil aggregate stability under different land-use types in North China Plain [J]. ScienceAsia, 47(2): 228-234.
(責任編輯蔣巧媛王登惠)