







摘要: 為改善我國亞熱帶桉樹人工林土壤磷(P)供應不足的狀況,該研究利用生物質炭(BC)作為土壤改良劑,以桉樹人工林(林齡為15年)土壤為研究對象,通過室內培養試驗,分別加入不同用量 [0(CK)、2%、5%、10%和20%]的BC,重點探究不同用量BC對土壤P組分及轉化的影響及其與土壤理化性質之間的關系。結果表明:(1)與CK相比,20%的BC添加量顯著提高了土壤硝態氮(NO3--N)、全磷(TP)、微生物生物量磷(MBP)含量和pH值(P<0.05),而2%、5%和10%的BC添加量僅顯著提高了MBP和pH值(P<0.05),對其他土壤理化指標無顯著影響。(2)與CK相比,2%的BC添加量顯著提高了易利用性磷(LP)(P<0.05),5%和10%的BC添加量顯著提高了速效磷(AP)和LP(P<0.05),20%的BC添加量顯著提高了AP、LP和難利用性磷(OP)(P<0.05),但中等程度利用性磷(MP)在4種BC添加量下均無顯著變化。(3)與C、N和P轉化相關的β-葡萄糖苷酶(BG)、β-N-乙酰氨基葡萄糖苷酶(NAG)、蛋白酶(LAP)和酸性磷酸酶(ACP)活性均在10%和20%的BC添加量下顯著高于CK(P<0.05)。(4)相關分析結果表明,ln(BG)和ln(NAG+LAP)均與ln(ACP)呈顯著正相關(P<0.05);冗余分析(redundancy analysis,RDA)表明,pH、TN和TP是驅動桉樹人工林土壤P組分變化的最主要因素;結構方程模型(structural equation model,SEM)進一步表明,pH、C∶P和N∶P是驅動土壤P轉化的最關鍵因子。綜上所述,不同用量BC主要通過影響土壤理化性質提高與C、N循環相關的酶活性,并在一定程度上改善桉樹人工林土壤的P供應潛力,其中以高濃度BC添加量(20%)的效果最佳。該研究對指導我國桉樹人工林土壤養分管理及促進林業可持續發展具有重要意義。
關鍵詞: 生物質炭, 桉樹人工林, 土壤磷組分, 土壤酶活性, 亞熱帶
中圖分類號: Q948文獻標識碼: A文章編號: 1000-3142(2024)07-1257-12
Effects of biochar addition on soil phosphorus compositionand transformation in Eucalyptus plantation
YE Xiaomin1, GAO Guannü1, ZHANG Wen1, YOU Yeming1,2, HUANG Xueman1,2*
( 1. Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; 2. GuangxiYouyiguan Forest Ecosystem National Observation and Research Station, Youyiguan Forest Ecosystem Observation andResearch Station of Guangxi, Pingxiang 532600, Guangxi, China )
Abstract: In order to improve the phosphorus (P) deficiency in the soil of Eucalyptus plantations in subtropical China, we used biochar (BC) as a soil amendment to investigate the soil of Eucalyptus plantations (15 years old). Meanwhile, we added the different amounts [0 (CK), 2%, 5%, 10% and 20%] of BC through the laboratory culture experiment to evaluate the effects of different amounts of BC on P components and transformation in soil and its relationship with soil physicochemical properties. The results were as follows: (1) Compared to CK, the nitrate nitrogen (NO3--N), total phosphorus (TP), microbial biomass phosphorus (MBP) and pH values were significantly increased at 20% BC addition, respectively (P<0.05), the MBP and pH values were significantly increased at 2%, 5%, and 10% BC addition, respectively (P<0.05), while no marked difference was found in other soil physicochemical properties. (2) Compared to CK, the labile P (LP) was significantly increased at 2% of BC addition (P<0.05), the available P (AP) and LP were significantly increased at 5% and 10% of BC additions, respectively (P<0.05). Moreover, the AP, LP and occluded P (OP) were significantly increased at 20% BC addition (P<0.05), whereas the moderately available P (MP) had no significant change under the four BC additions. (3) The total activities of β-glucosidase (BG), β-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP), and acid phosphatase (ACP) involved in C, N and P transformations increased significantly at 10% and 20% BC additions than those in CK (P<0.05). (4) Correlation analysis showed that ln(BG) and ln(NAG+LAP) were positively correlated with ln(ACP), respectively (P<0.05). In addition, redundancy analysis (RDA) indicated that pH, TN and TP appeared to be the primary drivers of variations in soil P components of Eucalyptus plantations. Furthermore, structural equation model (SEM) revealed that the pH, C∶P and N∶P of soil were the most critical factors driving P transformation. In conclusion, our findings suggest that different amounts of BC improve the enzyme activities related to C, N cyclings by affecting soil physicochemical properties and improving the P supply potential of soil in Eucalyptus plantations. Notably, 20% BC addition had the optimum effect. This study provides critical theoretical guidance for gaining knowledge on soil nutrient management in Eucalyptus plantations and facilitating the sustainable development of forests in subtropical China.
Key words: biochar, Eucalyptus plantation, soil phosphorus component, soil enzyme activity, subtropics
磷(phosphorus,P)是植物生活史中必不可少的礦質營養元素之一(曹娟等,2014),參與植物體內糖、蛋白質和葉綠素等物質的合成,還以多種方式參與植物從個體發生到自然死亡所經歷的全部生理生化過程,而土壤中的P是植物獲取P的來源,其形態結構直接影響土壤P的生物有效性(李新樂等,2015)。P在土壤中的形態分為無機磷(inorganic phosphorus,Pi)和有機磷(organic phosphorus,Po)兩種(高藝倫等,2022)。Pi多以正磷酸鹽的形態存在,在我國以侵蝕性紅壤酸性土為主的南方地區,其大多與Fe、Al結合形成難以被植物吸收的磷酸鹽。Po在全球范圍的土壤P庫中儲量豐富,占總P的15%~80%,但卻需經過生物礦化轉變為溶解磷酸鹽才能被植物吸收利用(Achat et al., 2009)。由于亞熱帶地區具有多雨的氣候條件,會使土壤中的有效性P出現“淋溶”現象并隨著下滲水大量流失,導致土壤P供應不足(Zhang et al., 2021)。因此,長期以來P被認為是限制該區域人工林生態系統生產力及可持續經營的最關鍵因子之一(Crous et al., 2015),深入研究亞熱帶人工林土壤P組分變化趨勢和轉化機制有助于提高土壤P的有效性,并有益于維持生態系統的生產力和生態過程的可持續發展。
生物質炭(biochar,BC)是生物質在無氧或缺氧條件下熱解轉化的產物(劉亦陶等,2019)。研究表明,BC作為一種新材料,在人為輸入土壤生態系統后,可以有效改良土壤和提升地力(郜禮陽等,2021);BC的多孔性有利于土壤孔隙度的增加和土壤容重的降低(趙澤州等,2021),其巨大的比表面積可釋放大量電荷,有效吸附N、P等元素,促進土壤養分的固持(武玉等,2014);BC即使在施用量較低的情況下,仍具有較強的維持土壤生產力與肥力的能力(Schulz et al., 2013)。此外,BC對Ca2+、Fe3+、Al3+等陽離子的吸附作用,能降低陽離子與P素的結合,提高土壤中有效P的含量(Liu et al., 2017)。Xu 等(2014)通過評估4種生物炭施用量(0、1%、5%和10%,w/w)對土壤P的影響,發現施用BC可以改變土壤P的吸附和解吸能力,從而改變土壤P的有效性。BC添加不僅能直接增加土壤中的有效P含量,還能改變土壤理化性質和微生物群落,進而影響土壤P的吸附和礦化(Kloss et al., 2014)。Pandit 等(2018)研究發現,隨著BC的添加,土壤pH值增加,土壤礦物表面負電荷增加,對P的吸附減少,土壤P素有效性增加。此外,BC能影響微生物活性,促進P在土壤中的礦化(Li et al., 2019),其原因可能包括:(1) BC表面活性官能團能夠增強其與土壤之間的相互作用,為參與土壤養分循環過程的微生物營造適宜的棲息空間(趙澤州等,2021);(2) BC能增加土壤有機碳含量,進而提高土壤微生物活性(Demisie et al., 2014)。而土壤酶活性是評價土壤質量和土壤微生物活性的重要指標之一(Liu et al., 2017)。因此,探究不同用量BC輸入對土壤養分和土壤酶活性的影響,進而分析P組分的變化和轉化過程,這對于改進BC施用方法、增加土壤有效P含量、減少P損失、提高土壤質量并維持人工林生態系統穩定性等方面具有重要意義。
桉樹(Eucalyptus)由于具有生長快、用途多、經濟價值高和適應性廣等特點,在南方地區被大量種植,為我國林業生產和經濟建設作出了重要貢獻(王敏等,2021)。然而,桉樹人工林的廣泛種植和多代連栽極易導致土壤板結、通氣性差和肥力急劇下降等問題,嚴重影響了土壤質量和人工林的可持續經營(溫遠光等,2019)。Costa 等(2016)研究發現,有效P庫受Pi溶解和Po礦化的影響,在缺P的桉樹林地或低P肥供應的栽培條件下存在有效P缺乏現象。盡管桉樹人工林可以通過添加P肥顯著提高其增長率(Valadares et al., 2020),但過度施加P肥會造成土壤P盈余,并隨降雨或地表徑流進入河流湖泊,這樣在浪費資源的同時也會造成環境污染(吉慶凱等,2021)。目前已有施用BC改變土壤P有效性的報道(Xu et al., 2014),但有關BC對亞熱帶桉樹人工林土壤P形態轉換的影響及其調控機理仍知之甚少(Foltran et al., 2019),并且對BC添加量與土壤P轉化之間特定的相互作用研究相對缺乏,極大地限制了BC在該地區的應用與推廣。因此, 本研究以亞熱帶長期經營的桉樹人工林土壤(紅壤)作為研究對象,采用室內培養試驗,擬重點探究不同用量BC對桉樹人工林土壤P組分變化的影響,并初步闡明BC調控土壤P轉化的主要路徑及其關鍵驅動因子,為提升桉樹人工林土壤P有效性的BC施用量的選擇提供科學依據。
1材料與方法
1.1 供試材料與試驗設計
研究區位于中國廣西壯族自治區憑祥市內中國林科院熱帶林業實驗中心(106°51′—106°53′ E、22°02′—22°04′ N)哨平林場,屬于亞熱帶區,為典型的亞熱帶季風氣候,光照充足,年平均氣溫為20.5~21.7 ℃。降雨集中在每年的4—9月,年平均降雨量約為1 401 mm,雨季高溫多雨,雨熱同期。該地區的主要地貌類型為低山丘陵,土壤類型主要是由花崗巖經高溫與干濕交替條件下風化后形成的酸性紅壤。
基于碳化溫度大于600 ℃時BC中的P具有更穩定的熱化學性質(Johan et al., 2021),本試驗選擇碳化溫度為600 ℃條件下用水稻秸稈所制得的生物質炭作為試驗的添加材料,隨機采集桉樹人工林(林齡15年)的表層(0~10 cm)土壤作為供試土樣,BC和供試土壤的基本理化性質詳見表1。將采集的土壤(約30 kg)風干后過2 mm篩,裝袋備用。采用室內培養試驗,共設置5種BC添加量處理,分別是0(CK)、2%(2B)、5%(5B)、10%(10B)和20%(20B),每組處理5個重復。BC與土壤充分混勻后裝入培養瓶(容量為125 mL,具有透氣蓋)中,并經壓實接近野外林地的土壤容重,放置于恒溫(25 ℃)培養箱內進行暗培養,培養過程中適時加水,使土壤樣品保持最大持水量的40%,培養1年后測定土壤理化性質、P組分和酶活性等指標。
1.2 試驗方法
土壤容重、最大持水量等用環刀法測定(劉光菘,1996);用于測定土壤pH的土壤和水的質量比為1∶2.5;土壤樣品的總有機碳(soil organic carbon,SOC)采用重鉻酸鉀-硫酸外加熱法測定(Nelson & Sommers, 1982);土壤總氮(total nitrogen,TN)采用凱氏定氮法進行測定;銨態氮(NH4+-N)和硝態氮(NO3--N)的測定是將50 mL的CaCl2(0.01 mol·L-1)浸提液加入相當于10 g干重的鮮土后得到待測液,測定儀器是連續流動分析儀(黃雪蔓等,2014)。土壤全磷(total phosphorus,TP)采用HClO4-H2SO4消解(Vance et al., 1987),使用鉬銻抗比色法進行測定(Murphy & Riley, 1962)。
采用氯仿-熏蒸浸提法測定土壤微生物生物量磷(MBP)(Vance et al., 1987),稱取土壤樣品(5 g) 3份,第1、第2份做熏蒸和未熏蒸進行對比處理,第3份未熏蒸土壤加入250 μL KH2PO4(250 mol·mL-1),3份土壤經處理后加入40 mL NaHCO3(0.5 mol·mL-1)浸提液,采用鉬銻抗比色法進行測定(Murphy & Riley, 1962)。
采用熒光微平板法測定參與土壤C、N和P循環相關的土壤酶活性(Saiya-Cork et al., 2002)。稱取相當于1.25 g干重的鮮土,加入125 mL超純水,在4 ℃條件下,在微型攪拌機下攪拌55 s,制成均質土壤懸液,每個樣品設置8個重復,加入酶底物后在25 ℃培養箱中恒溫暗培養4 h,之后使用酶標儀(波長365~450 nm)測定。所有總的酶活性單位統一為nmol·h-1·g-1,測定的酶種類、功能及底物信息詳見表2。
采用Hedley法對土壤P進行分級(張林等,2009)。其主要特點是同時兼顧了Pi和Po兩種P組分的分級提取,將土壤中P組分分為7種,即樹脂交換態P(Resin-P)、活性態P(NaHCO3-P)、微生物細胞P(Microbial-P)、NaOH溶性P(NaOH-P)、土壤團聚體內P(超聲波分散/NaOHs-P)、磷灰石型P(HCl-P)和殘留P(Residual-P),7種P組分均采用鉬銻抗比色法測定(Demisie et al., 2014)。同時,將以上7種P組分歸納為能被植物直接吸收的速效P(available phosphorus,AP)、易利用性P(labile phosphorus,LP)、中等程度利用性P(moderately available phosphorus,MP)和難利用性P(包裹P)(occluded phosphorus,OP)四類(Yang & Post, 2011)。其中,將Resin-P歸為AP;NaHCO3-P和Microbial-P歸為LP;將NaOH-P歸為中等程度MP;將NaOHs-P、HCl-P和Residual-P歸為OP。
1.3數據處理
在統計分析軟件SPSS 25.0(SPSS Inc., Chicago, IL, USA)上,采用單因素方差分析(one-way,ANOVA)添加不同用量BC的土壤理化性質、MBP、土壤P組分和土壤酶活性的差異,采用最小顯著差異法(LSD)比較均值之間的差異程度,顯著水平全部設置為P<0.05;使用Pearson相關性分析方法對酶化學計量之間的相關性進行研究;使用主成分分析(principal component analysis,PCA)方法區分不同用量BC添加后土壤P組分的變化,并通過冗余分析(redundancy analysis,RDA)確定影響土壤P組分變化的主要因素,PCA和RDA分析均在統計軟件Canoco 5.0(Biometris-Plant Research International, Wageningen, The Netherlands)上完成;采用結構方程模型(structural equation model,SEM)構建添加不同用量BC影響ACP轉化的調控路徑,分析過程在Amos 24.0程序(SPSS Inc., Chicago, IL)上完成。在軟件Sigma Plot 12.0和Microsoft Office Visio 2007上完成所有的作圖。
2結果與分析
2.1 不同用量生物質炭對土壤理化性質的影響
不同用量BC的添加使得桉樹人工林的土壤pH、SOC、TN、NH4+-N、NO3--N、TP和MBP均發生不同程度的變化。由表3可知,與CK相比,在4種BC添加量(2%、5%、10%和20%)下土壤的pH分別顯著提高了10.1%、20.8%、24.8%和40.1%(P<0.05);在20% 添加量下NO3--N和TP分別顯著增加了51.6%和110.7%(P<0.05);MBP在4種BC添加量下也分別顯著增加了149.7%、258.7%、205.4%和350.5%(P<0.05)。與CK相比,4種比例BC添加量下的SOC和TN均無顯著變化。
2.2 不同用量生物質炭對土壤P組分的影響
與CK相比,4種BC添加量下,AP有所提高且在10%與20%添加量下達到顯著水平,分別提高了10.0%和24.9%(圖1:A);在2%、5%、10%與20%的BC添加量下,LP分別顯著提高了1.6%、5.4%、14.9%和22.4%(圖1:B),而MP均無顯著影響(圖1:C);在20% BC添加量下,OP顯著提高了42.5%(圖1:D)(P<0.05)。
2.3 不同用量生物質炭對土壤酶活性及酶化學計量比的影響
與CK相比,BG在4種BC添加量下分別顯著提高了63.8%、68.0%、80.8%和131.8%(圖2:A)(P<0.05);NAG在2%、10%和20%的BC添加量下分別顯著提高了14.1%、15.3%和30.6%(圖2:B)(P<0.05);LAP在5%、10%和20%的BC添加量下分別顯著提高了160.0%、90.3%和231.0%(圖2:C)(P<0.05);ACP在10%和20%的BC添加量下顯著提高了17.2%和44.4%(圖2:D)(P<0.05)。
由圖3可知,ln(BG)和ln(NAG+LAP)均與ln(ACP)呈現顯著線性正相關(P<0.05)。
2.4 不同用量生物質炭對土壤P組分及轉化的影響
由圖4可知,與CK相比,5%、10%和20%的BC添加量下,P組分發生不同程度的變化,被第一主軸明顯區分開,但2% BC添加量的P組分變化較小,僅被第二主軸區分開。通過RDA程序對12個主要環境因子進行排序后確定pH(F=66.6,P=0.002)、TN(F=6.1,P=0.002)和TP(F=4.1,P=0.012)是影響P組分的最關鍵因子,分別解釋了P組分變化的74.3%、5.6%和3.3%。
結構方程模型(SEM)表明,不同添加量生物質炭(biochar amounts,BA)對土壤pH、土壤養分化學計量比(C∶P和N∶P)產生顯著影響,并最終驅動了P的轉化(ACP);模型解釋了P轉化的72.4%的變異(χ2=7.530, P=0.582, CMIN/df=0.830, NFI=0.964, CFI=1.000, RMSEA<0.050)(圖5:A)。BA、pH以及土壤C∶P對ACP活性有直接的正效應,而土壤N∶P對ACP活性則有直接的負效應,各因素對P轉化的總體影響為BA>N∶P>C∶P>pH(圖5:B)。
3討論
3.1 不同用量生物質炭對土壤理化性質及P組分的影響
大部分BC通過植物生物質熱解制備得到,因此植物生長發育所需的諸多營養元素基本有所保存,其次受到濃縮效應的影響,BC的營養元素含量較高,因此可作為良好的土壤改良劑。研究發現,BC的輸入不僅能改變土壤的物理性質(如孔隙度、通氣性和含水量等)(Oguntunde et al., 2008;田丹等,2013),也能對土壤的化學性質(如SOC、TN、TP和pH值等)產生不同程度的影響(Schneider & Haderlein, 2016)。本研究中,隨著不同用量BC的添加,桉樹人工林土壤中TP含量僅在20%的添加量下效果達到顯著,可能是BC輸入促進土壤TP中P組分向易被植物吸收的AP、LP轉化,從而提高土壤中P的有效性。MBP是土壤中重要的活性磷源,能在一定程度上反映土壤供磷能力(宋凱悅等,2021)。本研究中,不同用量BC的添加均能顯著提高MBP含量,表明BC的輸入能顯著促進土壤中TP向MBP的轉化。一方面,可能是因為BC孔隙發達且比表面積較大,利于微生物的繁殖生長,微生物驅動下有機P和已礦化無機P的同化作用促進了MBP含量的增加(李渝等,2019);另一方面,微生物利用生物炭中的有機碳或其他有效營養物質進行生長,可以部分解釋所觀察到的微生物生物量的增加(Lehmann et al., 2011)。此外,不同用量BC雖然對土壤的TN沒有顯著影響,但NO3--N含量隨BC輸入量的增加而呈上升趨勢,尤其在20%的添加量下NO3--N含量達到顯著水平,這在Anderson 等(2011)的試驗中也得到了證實。原因可能是BC輸入土壤后通過釋放特定揮發性有機物質、 吸附土壤硝化抑制劑和N素物質、改變土壤理化性質等影響土壤的亞硝酸氧化作用以及氨氧化作用。
基于Hedley P分級方法中不同的P組分在土壤中對微生物與植物的可利用程度以及賦存狀態存在差異,進而結合現有的分類方法,本研究將P組分歸納為AP、LP、MP和OP 4種,其中AP、LP和MP為較易被植物吸收利用的P,可作為有效P源,OP儲存在土壤礦物或團聚體內部,為植物和微生物一般難以接觸和利用的P。大量研究發現土壤P轉化受土壤理化性質和環境條件的交互影響(劉建玲和張鳳華,2000;李利霞等,2022)。本研究中,添加不同用量BC對P組分產生不同程度的影響。冗余分析發現,P組分與土壤基本理化性質存在一定的相關性且pH是影響土壤P組分發生變化的最關鍵因素之一。這與田沐雨等(2020)的研究結論一致,可能是BC的添加可以產生積極的“石灰效應”,更高的土壤pH可以增加微生物的生物量和活性,并最終影響土壤P的轉化。P有效性的提高是BC對土壤中P形態轉化的主要表現形式,AP和LP含量會隨著BC添加量的增加而增加,其中AP在10%和20%濃度時與CK相比均達到顯著水平,LP在不同BC添加量下均顯著提高,這表明不同用量BC的輸入,對土壤P的溶解性產生影響(Gundale & Deluca, 2007), 促使閉蓄態P轉化為有效態P(才吉卓瑪等,2014)。BC提高土壤有效態P的主要原因可能包括: (1) BC中包含的可溶性P鹽殘留在輸入土壤后,成為土壤可溶性P鹽和可交換性P的直接來源(Gundale & Deluca, 2006);(2)當土壤pH值隨著BC的增加而增加時,土壤礦物表面負電荷的增加會導致P吸附的減少,并且施用BC可能會促進活性金屬氧化物組分中P的解吸,從而提高了土壤的P有效性(Hosseini et al., 2015);(3)BC的輸入可以為土壤微生物提供能源物質(如C源),從而促進土壤微生物對土壤P的降解和固持作用,最終提高可利用性P的含量(黃敏等,2003)。另外,本研究發現不同用量BC添加后,NaHCO3-P、NaOH-P和HCl-P的含量均有所增加,與Xu 等(2014,2016)發現的添加BC后對土壤P組分無影響且在酸性土壤中施用BC會略微降低NaOH-P的結論不同。這可能與土壤施肥狀況、pH值、不同BC添加量及其熱解溫度有關(陳斐杰等,2022)。
3.2 不同用量生物質炭對土壤酶活性及P轉化的影響
影響土壤P轉化的原因有很多,許多科學家已經對土壤風化程度、不同土壤類型、不同施肥與耕作方式等生物與非生物因素對土壤P的轉化開展了大量研究(Guo & Yost, 1998;施瑤等,2014)。土壤微生物是自然界中進行能量轉化和物質循環的主要貢獻者,其生長代謝活動能夠驅動土壤P周轉進而改善土壤肥力(張四海等,2014),是影響P轉化的最重要因素之一。BC能夠為參與土壤P轉化的微生物營造合適的生存空間,它的輸入可以通過改變微生物生物量、微生物群落結構和活性來影響土壤P轉化(Warnock et al., 2007)。由微生物分泌產生的酶是土壤生態系統物質循環的關鍵(Zornoza et al., 2006)。本研究中,大部分與土壤C、N和P循環相關的水解酶活性在BC添加后均有不同程度的提高,表明BC的輸入對土壤酶活性起到促進作用(Paz-Ferreiro et al., 2014)。一方面,可能是BC的添加可以增加土壤Zn、Mn和Cu等微量元素的含量,而這些微量元素往往與土壤酶結構和活性表達具有密切的相關性(李曉等,2014);另一方面,BC能通過靜電作用以及疏水性吸引等方式使微生物在土壤中被吸附固定(Bailey et al., 2011),從而引發土壤微生物生物量和群落結構的改變,有利于提高土壤酶活性(You et al., 2014)。土壤酸性磷酸酶(ACP)活性的高低直接影響土壤有機P分解轉化及其生物有效性。本研究中,添加較低量(2%和5%)BC后土壤中的ACP活性有所降低,表明輸入較低量BC抑制土壤P的水解酶活性。究其原因,一方面,BC與土壤結合增加了酶的穩定性進而阻礙了其與底物的接觸;另一方面,BC制備過程中具有的醛類和酚類等物質都可能對其吸附的酶產生毒害作用,因此BC對ACP產生一定的負面影響(楊凱等,2021)。ln(BG)和ln(NAG+LAP)均與ln(ACP)呈顯著正相關,表明BC的輸入提高了土壤C、N水解酶的活性(Nasto et al., 2014),促進了C、N轉化。為維持微生物營養元素的養分平衡,土壤微生物將分泌更多的ACP來獲取土壤中的有效 P從而滿足自身對P的需求(謝歡等,2020)。土壤中C∶P可以作為微生物礦化土壤有機物釋放P潛力的一種指標(劉進等,2022),本研究中,隨著不同用量BC的添加,土壤C∶P對ACP有顯著的正效應。原因可能是添加BC后,土壤C∶P增加,導致土壤P限制,并刺激土壤微生物分泌P水解酶,從而促進土壤P的轉化(You et al., 2020)。N∶P可以作為確定土壤養分限制的閾值(馮燕輝等,2020)。本研究中,土壤N∶P對ACP有顯著的負效應。由于BC中自身N素含量不多且會隨著培養時間的增加而以氣態形式揮發(N2O、NH3),因此隨著BC添加量的增加,土壤N∶P會有所下降,此時土壤受N限制嚴重,微生物會大量分泌N水解酶以維持養分平衡,由此提高N的有效性來通過促進微生物的繁殖等途徑對土壤ACP活性產生影響(劉進等,2022)。SEM結果表明,不同用量BC的添加對土壤理化性質產生不同程度的影響,進而提高與C、N循環相關的酶活性,最終促進土壤P的轉化(ACP活性)(王濤等,2020)。然而,目前人們對BC自身中P的釋放特征及其輸入后在土壤中的長期緩釋機制尚不清楚,仍需我們展開更加長期、系統的田間實驗進行論證,為BC在我國南方退化人工林土壤修復中的應用與推廣提供科學依據。
4結論
在本研究中,添加4種不同用量的BC均能顯著提高桉樹人工林土壤的NO3--N、MBP和pH值;土壤AP和LP只在10%和20%的BC添加量下顯著提高,而pH、TN和TP可能是改變桉樹人工林土壤P組分的最主要因素;此外,BC主要通過影響土壤理化性質進而提高與C、N循環相關的酶活性,并在一定程度上提高桉樹人工林土壤的P轉化,其中以高濃度BC添加量(20%)的效果最佳,而pH、C∶P和N∶P是驅動土壤P轉化的最關鍵因子。綜上所述,BC在改善我國亞熱帶桉樹人工林土壤P供應方面具有一定的應用潛力。
參考文獻:
ACHAT DL, BAKKER MR, AUGUSTO L, et al., 2009. Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods [J]. Biogeochemistry, 92(3): 183-200.
ANDERSON CR, CONDRON LM, CLOUGH TJ, et al., 2011. Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus [J]. Pedobiologia, 54(5/6): 309-320.
BAILEY VL, FANSLER SJ, SMITH JL, et al., 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization [J]. Soil Biol Biochem, 43(2): 296-301.
CAIJIZHUOMA, ZHAI LM, XI B, et al., 2014. Effect of boichar on Olsen-P and CaCl2-P in different types of soil [J]. Chin J Soil Sci, 45(1): 163-168. [才吉卓瑪, 翟麗梅, 習斌, 等, 2014. 生物炭對不同類型土壤中Olsen-P和CaCl2-P的影響 [J]. 土壤通報, 45(1): 163-168.]
CAO J, YAN WD, XIANG WH, et al., 2014. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province [J]. Acta Ecol Sin, 34(22): 6519-6527. [曹娟, 閆文德, 項文化, 等, 2014. 湖南會同不同年齡杉木人工林土壤磷素特征 [J]. 生態學報, 34(22): 6519-6527.]
CHEN WJ, XIA HJ, LIU DF, et al., 2022. Characteristics of biochar and its effects and mechanism on soil properties [J]. J Environ Eng Technol, 12(1): 161-172. [陳斐杰, 夏會娟, 劉福德, 等, 2022. 生物質炭特性及其對土壤性質的影響與作用機制 [J]. 環境工程技術學報, 12(1): 161-172.]
COSTA MG, GAMA-RODRIGUES AC, GONCALVES JLM, et al., 2016. Labile and non-labile fractions of phosphorus and its transformations in soil under Eucalyptus plantations, Brazil [J]. Forests, 7(1): 15.
CROUS KY, OSVALDSSON A, ELLSWORTH DS, 2015. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth [J]. Plant Soil, 391: 293-305.
DEMISIE W, LIU Z, ZHANG M, 2014. Effect of biochar on carbon fractions and enzyme activity of red soil [J]. Catena, 121: 214-221.
FENG YH, LIANG WJ, WEI X, et al., 2020. Analysis of soil nutrient characteristics of Larix principis-rupprechtii forests with different altitude gradients in Guandi Mountain [J]. J W China For Sci, 49(4): 68-73. [馮燕輝, 梁文俊, 魏曦, 等, 2020. 關帝山不同海拔梯度華北落葉松林土壤養分特征分析 [J]. 西部林業科學, 49(4): 68-73.]
FOLTRAN EC, ROCHA JHT, BAZANI JH, et al., 2019. Phosphorus pool responses under different P inorganic fertilizers for a Eucalyptus plantation in a loamy Oxisol [J]. Forest Ecol Manage, 435: 170-179.
GAO LY, LIN WP, ZHANG FJ, et al., 2021. Research progress of biochar in improving soil acidifiQPlQSNOC6ZfPJkldz014ww==cation [J]. Guangdong Agric Sci, 48(1): 35-44. [郜禮陽, 林威鵬, 張風姬, 等, 2021. 生物炭對酸性土壤改良的研究進展 [J]. 廣東農業科學, 48(1): 35-44.]
GAO YL, FANG F, TANG ZC, et al., 2022. Distribution characteristics of soil phosphorus forms and phosphatase activity at different altitudes in the soil of water-level-fluctuation zone in Pengxi River, Three Gorges Reservoir [J]. Chin J Environ Sci, 43(10): 4630-4638. [高藝倫, 方芳, 唐子超, 等, 2022. 三峽庫區澎溪河不同高程消落帶土壤磷形態及磷酸酶活性分布特征 [J]. 環境科學, 43(10): 4630-4638.
GUNDALE MJ, DELUCA TH, 2006. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal [J]. For Ecol Manag, 231(1/2/3): 86-93.
GUNDALE MJ, DELUCA TH, 2007. Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem [J]. Biol Fert Soils, 43(3): 303-311.
GUO F, YOST RS, 1998. Partitioning soil phosphorus into three discrete pools of differing availability [J]. Soil Sci, 163(10): 822-833.
HOSSEINI BS, XU CY, XU Z, et al., 2015. Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5 years after poultry litter and green waste biochar amendment in a macadamia orchard [J]. Environ Sci Poll Res, 22(5): 3803-3809.
HUANG M, WU JS, HUANG QY, et al., 2003. Process in research on microbiological action of soil phosphorus [J]. Ecol Environ ,12(3): 366-370. [黃敏, 吳金水, 黃巧云, 等, 2003. 土壤磷素微生物作用的研究進展 [J]. 生態環境, 12(3): 366-370.]
HUANG XM, LIU SY, YOU YM, 2014. Effects of N - fixing tree species on soil microbial biomass and community structure of the second rotation Eucalyptus plantations [J]. For Res, 27(5): 612-620. [黃雪蔓, 劉世榮, 尤業明, 2014. 固氮樹種對第二代桉樹人工林土壤微生物生物量和結構的影響 [J]. 林業科學研究, 27(5): 612-620.]
JI QK, WANG D, YANG WB, et al., 2021. Effects of long-term phosphorus application on crop yield, phosphorus absorption, and soil phosphorus accumulation in maize-wheat rotation system [J]. Chin J Appl Ecol, 32(7): 2469-2476. [吉慶凱, 王棟, 楊文寶, 等, 2021. 長期施磷對玉米-小麥輪作系統作物產量和磷素吸收及土壤磷積累的影響 [J]. 應用生態學報, 32(7): 2469-2476.]
JOHAN PD, AHMED OH, OMAR L, et al., 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash [J]. Agronomy, 11(10): 2010.
KLOSS S, ZEHETNER F, WIMMER B, et al., 2014. Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions [J]. J Plant Nutr Soil Sci, 177(1): 3-15.
LEHMANN J, RILLIG MC, THIES J, et al., 2011. Biochar effects on soil biota — a review [J]. Soil Biol Biochem, 43: 1812-1836.
LI F, LIANG X, NIYUNGEKO C, et al., 2019. Effects of biochar amendments on soil phosphorus transformation in agricultural soils [J]. Adv Agron, 158: 131-172.
LI X, ZHANG JW, LI LQ, et al., 2014. Effects of biochar amendment on maize growth and soil properties in Huang-Huai-Hai Plain [J]. Soils, 46(2): 269-274. [李曉, 張吉旺, 李戀卿, 等, 2014. 施用生物質炭對黃淮海地區玉米生長和土壤性質的影響 [J]. 土壤, 46(2): 269-274.]
LI XL, HOU XY, MU HB, et al., 2015. P fertilization effects on the accumulation, transformation and availability of soil phosphorus [J]. Acta Pratac Sin, 24(8): 218-224. [李新樂, 侯向陽, 穆懷彬, 等, 2015. 連續6年施磷肥對土壤磷素積累、形態轉化及有效性的影響 [J]. 草業學報, 24(8): 218-224.]
LI LX, WU GZ, YU ZM, et al., 2022. Experimental study on influencing factors affecting phosphorus availability and total phosphorus leaching in farmland soil in Dagu River Basin [J]. J Soil Water Conserv, 36(2): 337-343. [李利霞, 武桂芝, 于宗民, 等, 2022. 大沽河流域農田土壤磷有效性及全磷淋失影響因素試驗 [J]. 水土保持學報, 36(2): 337-343.]
LI Y, LIU YL, BAI JY, et al., 2019. Responses of soil microbial biomass C and P to different long-term fertilization treatments in the yellow paddy soil [J]. Chin J Appl Ecol, 30(4): 1327-1334. [李渝, 劉彥伶, 白怡婧, 等, 2019. 黃壤稻田土壤微生物生物量碳磷對長期不同施肥的響應 [J]. 應用生態學報, 30(4): 1327-1334.]
LIU GS, 1996. Soil physical and chemical analysis and profile description [M]. Beijing: China Agriculture Press: 24-265. [劉光菘, 1996. 土壤理化分析與剖面描述 [M]. 北京: 中國農業出版社: 24-265.]
LIU J, LI J, LONG J, et al., 2022. Altitude dependence of soil ecological stoichiometry and enzyme activities in a karst region of Southwest China [J]. J For Environ, 42(2): 113-122. [劉進, 李娟, 龍健, 等, 2022. 西南喀斯特區土壤生態化學計量與酶活性的海拔特征 [J]. 森林與環境學報, 42(2): 113-122.]
LIU JL, ZHANG FH, 2000.The progress of phosphorus transformation in soil and its influencing factors [J]. J Hebei Agric Univ, 23(3): 36-45. [劉建玲, 張鳳華, 2000. 土壤磷素化學行為及影響因素研究進展 [J]. 河北農業大學學報, 23(3): 36-45.]
LIU S, MENG J, JIANG L, et al., 2017. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types [J]. Appl Soil Ecol, 116: 12-22.
LIU YT, WEI J, LI J, 2019. Progress in hydrothermal carbonization of waste biomass and application of biochar in wastewater treatment [J]. Chem Bioeng, 36(1): 1-10. [劉亦陶, 魏佳, 李軍, 2019. 廢棄生物質水熱炭化技術及其產物在廢水處理中的應用進展 [J]. 化學與生物工程, 36(1): 1-10.]
MURPHY J, RILEY JP, 1962. A modified single solution method for the determination of phosphate in natural waters [J]. Anal Chim Acta, 27: 31-36.
NASTO MK, ALVAREZ-CLARE S, LEKBERG Y, et al., 2014. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests [J]. Ecol Lett, 17(10): 1282-1289.
NELSON DW, SOMMERS LE, 1982. Total carbon, organic carbon, and organic matter [M]//PAGE AL, MILLER RH, KEENAY DR. Methods of soil analysis. Madison: American Society of Agronomy: 539-579.
OGUNTUNDE PG, ABIODUN BJ, AJAYI AE, et al., 2008. Effects of charcoal production on soil physical properties in Ghana [J]. J Plant Nutr Soil Sc, 171(4): 591-596.
PANDIT NR, MULDER J, HALE SE, et al., 2018. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil [J]. Sci Total Environ, 625:1380-1389.
PAZ-FERREIRO J, FU S, MENDEZ A, et al., 2014. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities [J]. J Soils Sediments, 14(3): 483-494.
SAIYA-CORK KR, SINSABAUGH RL, ZAK DR, 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 34(9): 1309-1315.
SCHNEIDER F, HADERLEIN SB, 2016. Potential effects of biochar on the availability of phosphorus-mechanistic insights [J]. Geoderma, 277: 83-90.
SCHULZ H, DUNST G, GLASER B, 2013. Positive effects of composted biochar on plant growth and soil fertility [J]. Agron Sustain Dev, 33(4): 817-827.
SHI Y, WANG ZQ, ZHANG XY, et al., 2014. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia [J]. Acta Ecol Sin, 34(17): 4943-4949. [施瑤, 王忠強, 張心昱, 等, 2014. 氮磷添加對內蒙古溫帶典型草原土壤微生物群落結構的影響 [J]. 生態學報, 34(17): 4943-4949.]
SONG KY, MA YP, LI YX, et al., 2021. Effects of biochar application on soil phosphorus fractions of cunninghamia lanceolata seedlings [J]. Soils, 53(6): 1192-1199. [宋凱悅, 馬亞培, 李宇軒, 等, 2021. 生物質炭施用對杉木幼苗土壤磷組分的影響 [J]. 土壤, 53(6): 1192-1199.]
TIAN D, QU ZY, LI B, et al., 2013. Influence of biochar on sandy soil hydraulic characteristics parameters and moisture holding properties [J]. J Irrig Drain, 32(3): 135-137. [田丹, 屈忠義, 李波, 等, 2013. 生物炭對砂土水力特征參數及持水特性影響試驗研究 [J]. 灌溉排水學報, 32(3): 135-137.]
TIAN MY, YU CJ, WANG JK, et al., 2028b2d8158ec0ea916eb8de8cb9ab60ba536dc1f89df3b454a58603a24617b9d460. Effect of nitrogen additions on soil pH,phosphorus contents and phosphatase activities in grassland [J]. Chin J Appl Ecol, 31(9): 2985-2992. [田沐雨, 于春甲, 汪景寬, 等, 2020. 氮添加對草地生態系統土壤pH、磷含量和磷酸酶活性的影響 [J]. 應用生態學報, 31(9): 2985-2992.]
VALADARES SV, NEVES JCL, LEITE HG, et al., 2020. Predicting phosphorus use efficiency and allocation in Eucalypt plantations [J]. For Ecol Manage, 460: 117859.
VANCE ED, BROOKES PC, JENKINSON DS, 1987. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 19(6): 703-707.
WANG M, ZHOU HY, YU FY, et al., 2021. Dynamic changes of undergrowth species diversity and biomass of Eucalyptus robusta plantations at different ages [J]. Bull Bot Res, 41(4): 496-505. [王敏, 周潤惠, 余飛燕, 等, 2021. 不同林齡桉樹人工林林下物種多樣性和生物量的動態變化 [J]. 植物研究, 41(4): 496-505.]
WANG T, WAN XH, WANG L, et al., 2020. Effects of broadleaved tree plantation on soil phosphorus fractions and availability in different soil layers in a logged Cunninghamia lanceolata woodland [J]. Chin J Appl Ecol, 31(4): 1088-1096. [王濤, 萬曉華, 王磊, 等, 2020. 杉木采伐跡地營造闊葉樹對不同層次土壤磷組分和有效性的影響 [J]. 應用生態學報, 31(4): 1088-1096.]
WARNOCK DD, LEHMANN J, KUYFER TW, et al., 2007. Mycorrhizal responses to biochar in soil-concepts and mechanisms [J]. Plant Soil, 300(1): 9-20.
WEN YG, ZHOU XG, ZHU HG, et al., 2019. Theoretical exploration and practices of ecological management in Eucalyptus plantations [J]. Guangxi Sci, 26(2): 159-175. [溫遠光, 周曉果, 朱宏光, 等, 2019. 桉樹生態營林的理論探索與實踐 [J]. 廣西科學, 26(2): 159-175.]
WU Y, XU G, L YC, et al., 2014. Effects of biochar amendent on soil physical and chemical properties:current status and knowledge gaps [J]. Adv Earth Sci, 29(1): 68-79. [武玉, 徐剛, 呂迎春, 等, 2014. 生物炭對土壤理化性質影響的研究進展 [J]. 地球科學進展, 29(1): 68-79.]
XIE H, ZHANG QF, ZENG QX, et al., 2020. Nitrogen application drives the transformation of soil phosphorus fractions in Cunninghamia lanceolata plantation by changing microbial biomass phosphorus [J]. Chin J Ecol, 39(12): 3934-3942. [謝歡, 張秋芳, 曾泉鑫, 等, 2020. 施氮通過改變微生物生物量磷驅動杉木人工林土壤磷組分轉化 [J]. 生態學雜志, 39(12): 3934-3942.]
XU G, SUN JN, SHAO HB, et al., 2014. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity [J]. Ecol Eng, 62: 54-60.
XU G, ZHANG Y, SUN J, et al., 2016. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil [J]. Sci Total Envir, 568: 910-915.
YANG K, WANG YY, DING AZ, 2021. Stability of biochar-remediated contaminated soil from a lead mine site [J]. J Agro-Environ Sci, 40(12): 2715-2722. [楊凱, 王營營, 丁愛中, 2021. 生物炭對鉛礦區污染土壤修復效果的穩定性研究 [J]. 農業環境科學學報, 40(12): 2715-2722.]
YANG X, POST WM, 2011. Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method [J]. Biogeosciences, 8(10): 2907-2916.
YOU Y, WANG J, HUANG X, et al., 2014. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover [J]. Ecol Evol, 4(5): 633-647.
YOU Y, XU H, WU X, et al., 2020. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status [J]. For Ecol Manage, 477: 118491.
ZHANG L, WU N, WU Y, et al., 2009. Soil phosphorus form and fractionation scheme:A review [J]. Chin J Appl Ecol,20(7): 1775-1782. [張林, 吳寧, 吳彥, 等, 2009. 土壤磷素形態及其分級方法研究進展 [J]. 應用生態學報, 20(7): 1775-1782.]
ZHANG SH, HUANG J, LUO RZ, et al., 2014. Effect of adding different amounts of wheat straw and phosphorus on soil microorganism community [J]. Chin J Appl Ecol, 25(3): 797-802. [張四海, 黃健, 駱爭榮, 等, 2014. 添加秸稈和磷素對土壤微生物群落的影響 [J]. 應用生態學報, 25(3): 797-802.]
ZHANG W, ZHANG Y, AN Y, et al., 2021. Phosphorus fractionation related to environmental risks resulting from intensive vegetable cropping and fertilization in a subtropical region [J]. Environ Pollut, 269: 116098.
ZHAO ZZ, WANG XL, LI HB, et al., 2021. Slow-release property and soil remediation mechanism of biochar-based fertilizers [J]. J Plant Nutr Fert, 27(5): 886-897. [趙澤州, 王曉玲, 李鴻博, 等, 2021. 生物質炭基肥緩釋性能及對土壤改良的研究進展 [J]. 植物營養與肥料學報, 27(5): 886-897.]
ZORNOZA R, GUERRERO C, SOLERA MJ, et al., 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions [J]. Soil Biol Biochem, 38(8): 2125-2134.
(責任編輯李莉王登惠)