

1. 如圖1,已知矩形ABCD,AD = [3],點E是射線AB上一動點,點F,G在直線CD上,點E運動過程中始終滿足EF = EG,∠FEG = 120°,射線FE與直線CB交于點P,延長EG到Q使GQ = FP,連接PQ交直線CD于點M,當GM = 1時,CG = .
2. 如圖2,在平面直角坐標系中,四邊形OABC的頂點坐標分別為O(0,0),A(0,3),B(4,3),C(4,0). 動點Q從點O出發,以每秒5個單位長度的速度沿射線OC方向運動;動點P從點A同時出發,以每秒2個單位長度的速度沿射線AB方向運動. 設運動的時間為t秒,點O關于直線PQ的對稱點為M,當點M落到直線BC上時,t = .
3. 如圖3,已知矩形ABCD中,AB = 6,BC = 5,點E是邊CD上一動點,連接EA,將線段EA繞點E沿逆時針方向旋轉90°至EF,點A的對應點是點F,當△FBC是直角三角形時,S△ADF = .
答案:1. 2或4. 分兩種情況.
(1)當點E在線段AB上時,如圖4,過點P作PH [?] EG,交直線CD于點H,易證FP = PH,△PHM ≌ △QGM,GM = HM = 1,由題易求FG = 6,FH = 8,∴CH = 4,∴CG = 4 - 2 = 2. (2)當點E在線段AB的延長線上時,如圖5,過點P作PH [?] EG,交直線CD于點H,易證FP = PH,△PHM ≌ △QGM,GM = HM = 1,由題易求FG = 6,FH = 4,∴CH = 2,∴CG = 2 + 2 = 4.
2. 0.5或2.
延長QP交y軸于點D,作矩形DOCN,則△DAP∽△DOQ,所以[DADO] = [APOQ] = [25],所以D(0,5),N(4,5),所以DN = 4. (1)當點Q在線段OC上時,如圖6,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 2. 在Rt△QCM中,由勾股定理得QM = 2.5,則OQ = 2.5,所以t = [2.55] = 0.5. (2)當點Q在線段OC的延長線上時,如圖7,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 8. 在Rt△QCM中,由勾股定理得QM = 10,則OQ = 10,所以t = [105] = 2.
3. [252]或25或[1358-5418]或[1358+5418].
(1)當∠FCB = 90°時,此時點F落在CD上,點E與點D重合,圖略. 由旋轉性質可知AE = EF = AD = 5,所以S△ADF = [252].
(2)當∠FBC = 90°時,此時點F落在直線AB上,如圖8,過點E作EG [⊥] [AF]于點G. 由旋轉性質可知,AE = EF,∠AEF = 90°,AG = FG,則AF = 2EG = 10,所以S△ADF = 25.
(3)當∠BFC = 90°時,過點 F 作 FP [⊥] DC,交DC延長線于點P,交AB延長線于點 Q,如圖9,則FQ [⊥] AB. 設CP = x,根據題意可知△ADE ≌△EPF,則AD = EP = 5,所以CE = 5 - x,DE = PF = x + 1,BQ = CP = x,FQ = 4 - x,根據題意可知△CPF∽△FQB,則[x4-x] = [x+1x],解得[x1=34-414],[x2=34+414],所以S△ADF = [1358] - [5418]或[1358] + [5418].
(作者單位:沈陽市南昌初級中學)