
摘要""植物在生長過程中經(jīng)常受到真菌、細菌、病毒和線蟲等生物脅迫。轉(zhuǎn)錄因子是一類能夠與目的基因特異結(jié)合并進行轉(zhuǎn)錄調(diào)控的蛋白質(zhì),在植物響應生物脅迫過程中具有重要作用。在線蟲與植物互作過程中,植物的轉(zhuǎn)錄因子通過調(diào)控其靶標基因的表達對線蟲侵入作出響應。本文對根結(jié)線蟲和孢囊線蟲的發(fā)生和危害、植物轉(zhuǎn)錄因子的結(jié)構(gòu)和功能以及其在線蟲與寄主互作中的功能進行綜述,并對響應線蟲侵染的植物轉(zhuǎn)錄因子的鑒定及前沿研究進行探討,以期為深入開展線蟲與寄主植物互作機制提供參考。
關鍵詞
植物寄生線蟲;"植物轉(zhuǎn)錄因子;"功能分析;"線蟲與寄主植物互作
中圖分類號:
S"43245
文獻標識碼:"A
DOI:"10.16688/j.zwbh.2024312
Advances"in"the"function"of"plant"transcription"factors"in"nematodehost"interactions
YU"Jingwen2#,"ZHOU"Xiangping1#,"YU"Qing2,"ZHAO"Jintian2,"YU"Xiyue2,"WU"Wencui2,"LIU"Yaqin2,GUO"Lijuan3,"TONG"Yunzheng3,"ZHANG"Gaiping3,"HUANG"Ling3*,"HUANG"Wenkun2*
(1."Yongzhou"Company"of"Hunan"Tobacco"Company,"Yongzhou"425000,"China;"2."Institute"of"Plant"
Protection,"Chinese"Academy"of"Agricultural"Sciences,"State"Key"Laboratory"for"Biology"of"Plant"
Diseases"and"Insect"Pests,"Beijing"100193,"China;"3."Yuzhou"Plant"Protectionnbsp;and"Quarantine"
Station,"Henan"Province,"Xuchang"461670,"China)
Abstract
Plants"are"commonly"injured"by"biotic"stresses,"such"as"infections"from"fungi,"bacteria,"viruses,"and"nematodes"during"the"growing"season."Plant"transcription"factors"are"proteins"that"bind"to"DNA"and"regulate"gene"expression,"playing"a"crucial"role"in"the"transcriptional"response"to"biotic"stress."During"nematodehost"interactions,"plant"transcription"factors"respond"to"nematode"infestation"by"regulating"the"expression"of"their"target"genes."This"review"discusses"the"occurrence"and"damage"caused"by"rootknot"nematodes"and"cyst"nematodes,"the"structure"and"function"of"plant"transcription"factors,"and"their"functions"in"nematodehost"interactions."It"also"covers"methods"for"exploring"plant"transcription"factors"responding"to"nematode"infection"and"recent"achievements"in"this"field."The"review"provides"a"reference"for"further"research"into"the"interaction"mechanisms"between"nematodes"and"host"plants.
Key"words
plantparasitic"nematodes;"plant"transcription"factors;"functional"analysis;"nematodehost"interaction
植物寄生線蟲(plantparasitic"nematodes)是重要的植物病原物之一,迄今已鑒定的植物寄生線蟲超過4"100種,每年給世界各地的農(nóng)業(yè)生產(chǎn)造成高達1"570億美元的經(jīng)濟損失[1]。此外,線蟲侵染植物后能加重其他病原物的侵染。根結(jié)線蟲和孢囊線蟲是兩類危害最為嚴重的植物內(nèi)寄生線蟲[2]。與根結(jié)線蟲相比,孢囊線蟲的寄主范圍較小,寄主專化性較強[3]。近年來,根結(jié)線蟲和孢囊線蟲與寄主植物互作、繁殖方式以及取食細胞的形成等機制研究已逐漸明確[45]。
轉(zhuǎn)錄因子(transcription"factor,"TF)是一類通常含有DNA"識別和結(jié)合結(jié)構(gòu)域(DNA"binding"domains,"DBD或BD)和轉(zhuǎn)錄調(diào)控結(jié)構(gòu)域(transcription"regulation"domains,"TRD),且能夠特異性結(jié)合靶基因DNA序列的蛋白[6]。轉(zhuǎn)錄因子可直接或間接地與靶基因啟動子中的特定區(qū)域(含有順式作用元件、增強子或沉默子等的區(qū)域)結(jié)合,參與對靶基因的轉(zhuǎn)錄激活或轉(zhuǎn)錄抑制調(diào)控[7]。在植物的生長發(fā)育過程中常常受到多種生物和非生物脅迫,已有研究表明WRKY、MYB、AP2/ERF/AP2、bHLH、bZIP和NAC等家族的轉(zhuǎn)錄因子在植物應對脅迫反應中具有重要的調(diào)節(jié)作用[8]。近年來,植物轉(zhuǎn)錄因子在線蟲與寄主互作中的功能已成為研究熱點,本文對其相關研究進展進行綜述和分析,并對熱點問題進行展望。
1"重要植物寄生線蟲
根結(jié)線蟲和孢囊線蟲是農(nóng)業(yè)生產(chǎn)中最重要的兩類植物寄生線蟲,挖掘和分析根結(jié)線蟲和孢囊線蟲與寄主互作中的植物轉(zhuǎn)錄因子功能,對于今后更好地利用植物轉(zhuǎn)錄因子的調(diào)控作用防治植物寄生線蟲具有重要意義。
1.1"根結(jié)線蟲
根結(jié)線蟲廣泛分布于世界各地,造成全球農(nóng)作物減產(chǎn)。據(jù)統(tǒng)計,根結(jié)線蟲有效種有近100種,寄主范圍包括114科3"000多種植物,其中南方根結(jié)線蟲Meloidogyne"incognita、爪哇根結(jié)線蟲M.javanica、花生根結(jié)線蟲M.arenaria、象耳豆根結(jié)線蟲M.enterolobii、北方根結(jié)線蟲M.hapla和擬禾本科根結(jié)線蟲M.graminicola是危害我國作物的6種主要根結(jié)線蟲[1,9]。在適宜的環(huán)境條件下,大多數(shù)根結(jié)線蟲完成生活史大約需要4周。根結(jié)線蟲2齡幼蟲在植物根系中定殖后誘導形成巨細胞,從中獲取營養(yǎng)物質(zhì)來完成自身的生長發(fā)育[5]。根結(jié)線蟲侵染植物根系后導致須根和側(cè)根增多,根部腫大畸形且根系短小,同時植株地上部呈現(xiàn)長勢衰弱,葉片黃化萎蔫,結(jié)實率或坐果率低等[10]。近年來,隨著分子生物學研究的深入,有關植物轉(zhuǎn)錄因子與根結(jié)線蟲互作的研究報道越來越多。已有的研究發(fā)現(xiàn),MYB(vmyb"avian"myeloblastosis"viral"oncogene"homolog)、E2F(E2"promoter"binding"factor)和Trihelix等轉(zhuǎn)錄因子通過調(diào)節(jié)激素代謝或信號轉(zhuǎn)導以及次生代謝,參與南方根結(jié)線蟲與寄主植物的互作,而WRKY轉(zhuǎn)錄因子同樣通過激素信號途徑參與了爪哇根結(jié)線蟲與番茄的互作[1113]。
1.2"孢囊線蟲
孢囊線蟲是一類在世界廣泛分布,嚴重危害多種重要作物的植物寄生線蟲,據(jù)統(tǒng)計,有超過6個屬100多種孢囊線蟲是溫帶、亞熱帶和熱帶植物的病原物,其中危害最大是球孢囊線蟲屬Globodera和孢囊線蟲屬Heterodera,包括馬鈴薯金線蟲G.rostochiensis和白線蟲G.pallida、大豆孢囊線蟲H.glycines、甜菜孢囊線蟲H.schachtii以及禾谷孢囊線蟲H.avenae和菲利普孢囊線蟲H.filipjevi等[14]。孢囊線蟲完成生活史通常需約30"d,大多數(shù)孢囊線蟲種類1年可完成1~2代。與根結(jié)線蟲不同,孢囊線蟲2齡幼蟲侵入植物根系后誘導形成合胞體,并從中吸取營養(yǎng)物質(zhì)完成生長發(fā)育[15]。孢囊線蟲侵染植物根系后導致根系不發(fā)達,側(cè)根少,須根多且能見到白色雌蟲大量附著;植株地上部表現(xiàn)矮化,長勢弱,葉片褪綠,后期分蘗減少,結(jié)實率低等[1619]。近年來,隨著組學技術的發(fā)展,有關植物轉(zhuǎn)錄因子與孢囊線蟲的互作研究越來越多。如通過轉(zhuǎn)錄組測序發(fā)現(xiàn)AP2/ERF(APETALA2/ethyleneresponsive"factor)、bZIP(basic"leucine"zipper)和GLK(golden2like)等轉(zhuǎn)錄因子可能在大豆響應大豆孢囊線蟲侵染的過程中發(fā)揮重要作用;而bHLH(basic"helixloophelix)、TCP(teosinte"branched1/cycloidea/proliferating"cell"factor)、WRKY和MYB等轉(zhuǎn)錄因子通過激發(fā)植物防御反應相關通路參與甜菜孢囊線蟲與擬南芥的互作[2025]。
2"植物轉(zhuǎn)錄因子的結(jié)構(gòu)和功能
轉(zhuǎn)錄因子是一種能特異性結(jié)合DNA基序的蛋白,通常含有2個功能結(jié)構(gòu)域,分別參與DNA結(jié)合和轉(zhuǎn)錄激活或抑制基因的表達過程[26]。轉(zhuǎn)錄因子按其結(jié)構(gòu)和功能主要分為:MYB轉(zhuǎn)錄因子、bHLH轉(zhuǎn)錄因子、AP2/ERF轉(zhuǎn)錄因子、WRKY轉(zhuǎn)錄因子、NAC轉(zhuǎn)錄因子和bZIP轉(zhuǎn)錄因子六大類[27]。
2.1"MYB轉(zhuǎn)錄因子
MYB轉(zhuǎn)錄因子是真核生物體內(nèi)最大的轉(zhuǎn)錄因子家族之一。MYB轉(zhuǎn)錄因子N端含有一段約51~52個氨基酸的MYB結(jié)構(gòu)域,C端結(jié)構(gòu)域的差異性導致其在功能上具有多樣性[2829]。MYB結(jié)構(gòu)域內(nèi)部為重復序列,是由3個α螺旋形成的三維結(jié)構(gòu),其中包括螺旋轉(zhuǎn)角螺旋(helixturnhelix,"HTH)結(jié)構(gòu),該結(jié)構(gòu)的形成依賴于第2和第3個α螺旋以及不完全重復序列中均勻分布的3個色氨酸(Trp)[30]。根據(jù)MYB結(jié)構(gòu)域中R重復序列的數(shù)量可分為4類:1RMYB、R2R3MYB、3RMYB和4RMYB,其中R2R3MYB"屬于MYB轉(zhuǎn)錄因子中最大的一類[31](圖1a)。在感受到外界環(huán)境信號被激活后,MYB可單獨或和其他蛋白互作后再與下游靶基因啟動子區(qū)域的順式作用元件MYBCORE和ACbox結(jié)合,參與調(diào)控下游脅迫應答相關基因的表達,調(diào)節(jié)植物對逆境脅迫的耐受性[32]。MYB還可參與植物生長發(fā)育全過程(根系發(fā)育、細胞發(fā)育、花器官分化和發(fā)育、種子發(fā)育等)以及響應脫落酸(abscisic"acid,"ABA)、油菜素內(nèi)酯(brassinolide,"BR)、茉莉酸(jasmonic"acid,"JA)和活性氧(reactive"oxygen"species,"ROS)等激素和次生代謝物的合成與代謝等過程的調(diào)控[3337]。
2.2"bHLH轉(zhuǎn)錄因子
bHLH是植物中第二大轉(zhuǎn)錄因子家族,含有堿性DNA結(jié)合域和約60個氨基酸組成的HLH區(qū)域,這兩部分共同構(gòu)成bHLH結(jié)構(gòu)域[3841]。其中,堿性DNA結(jié)合域可與靶基因啟動子區(qū)中的Ebox順式作用元件特異結(jié)合,而HLH區(qū)域會因疏水氨基酸相互作用形成2個同源或異源HLH蛋白二聚體,參與調(diào)控靶標基因的表達[4243](圖1b)。已有研究表明,許多植物生長和發(fā)育過程(種子萌發(fā)、側(cè)根生長、花器官的形成等)以及代謝途徑(光形態(tài)發(fā)生、光信號轉(zhuǎn)導和二次代謝)都受bHLH轉(zhuǎn)錄因子調(diào)控[4447]。bHLH轉(zhuǎn)錄因子能夠提高植物對非生物脅迫的耐受性。研究發(fā)現(xiàn),脫落酸、茉莉酸途徑的信號轉(zhuǎn)導以及活性氧的清除與bHLH誘導的植物抗旱性相關[48]。同時,bHLH轉(zhuǎn)錄因子還可以參與植物對鹽脅迫和低溫脅迫的耐受性。此外,bHLH轉(zhuǎn)錄因子也參與黃酮類、萜類、生物堿類、酚酸類等植物次生代謝產(chǎn)物的生物合成過程[4952]。
2.3"AP2/ERF轉(zhuǎn)錄因子
AP2/ERF又稱AP2/EREBP,是植物中特有的轉(zhuǎn)錄因子,含有1個或2個由YRG元件和RAYD元件構(gòu)成的AP2/ERF結(jié)構(gòu)域[53]。其中,YRG元件中包含保守的YRG氨基酸基序,在AP2/ERF轉(zhuǎn)錄因子識別靶標基因各類順式作用元件的過程中發(fā)揮重要作用。在介導蛋白質(zhì)相互作用過程中,RAYD元件通常起到關鍵作用[54]。根據(jù)AP2/ERF結(jié)構(gòu)域的數(shù)量及結(jié)合序列可將其分為5個亞家族:AP2"(APETALA2)、ERF(ethylene"responsive"element"binding"factor)、DREB/CBF(dehydration"responsive"element/Crepeat)、RAV(related"to"AB13/VP)"和Soloist(圖1c)。已有研究表明AP2/ERF轉(zhuǎn)錄因子參與調(diào)控植物根系器官的生長發(fā)育[55]。此外,該類轉(zhuǎn)錄因子在生物合成中同樣發(fā)揮著重要作用,其調(diào)控丹參的丹參酮生物合成過程成為近幾年的研究熱點[5657]。AP2/ERF轉(zhuǎn)錄因子與植物激素介導的信號級聯(lián)通路和逆境脅迫響應關系密切。研究表明,AP2/ERF轉(zhuǎn)錄因子參與赤霉素、細胞分裂素和油菜素內(nèi)酯介導的生長發(fā)育和脅迫應答[58]。同時,該轉(zhuǎn)錄因子在調(diào)控植物響應澇漬脅迫過程中也發(fā)揮重要作用[5960]。
2.4"WRKY轉(zhuǎn)錄因子
WRKY轉(zhuǎn)錄因子是一種植物多功能調(diào)節(jié)因子,含有由七肽保守序列WRKYGOK和保守的C2H2(CX45CX2223HX1H)型或C2HC(CX7CX23HX1C)型的鋅指結(jié)構(gòu)組成的WRKY結(jié)構(gòu)域[61]。除此之外,激酶結(jié)構(gòu)域(kinase"domains,KD)、核定位信號(nuclear"localization"signals,NLS)、脯氨酸富集區(qū)(proline"rich"region,PRR)和谷氨酸富集區(qū)(glutamine"rich"region,GRR)等是WRKY類轉(zhuǎn)錄因子潛在的保守結(jié)構(gòu)域[62]。WRKY"轉(zhuǎn)錄因子按照結(jié)構(gòu)域數(shù)量和鋅指結(jié)構(gòu)特征可以劃分為以下三類:第一類含有2個WRKY結(jié)構(gòu)域;第二類和第三類都含有1個WRKY結(jié)構(gòu)域,其中,第二類的鋅指結(jié)構(gòu)為C2H2型,而第三類的鋅指結(jié)構(gòu)是C2HC型[63](圖1d)。研究發(fā)現(xiàn),WRKY類轉(zhuǎn)錄因子家族參與植物響應不同生物脅迫以及激素的信號轉(zhuǎn)導途徑[64]。WRKY轉(zhuǎn)錄因子也參與葉片衰老、生物合成途徑的調(diào)節(jié)和激素信號轉(zhuǎn)導等各種非生物脅迫的調(diào)控,同時對酚類、萜烯類和生物堿類等植物次生代謝物合成起到至關重要的作用[65]。
2.5"NAC轉(zhuǎn)錄因子
NAC(NAM、ATAF1/2、CUC2)是植物中一種特異性的轉(zhuǎn)錄因子家族,通常由DNA結(jié)合(DBD)相關的NAC結(jié)構(gòu)域和變化的轉(zhuǎn)錄激活域(transcriptional"activation"region,"TAR)組成[66](圖1e)。該轉(zhuǎn)錄因子的亞結(jié)構(gòu)域中含有與DNA結(jié)合相關的核定位信號。NAC轉(zhuǎn)錄因子的C端具有多樣性,存在一些簡單氨基酸的重復排列,而這種排列在NAC同一亞家族中保守是植物轉(zhuǎn)錄激活結(jié)構(gòu)域的典型特征[6769]。此外,某些特殊的NAC蛋白其C端存在跨膜區(qū)被稱為NTL"(NTM1like)蛋白,需要從細胞膜上釋放再轉(zhuǎn)運到細胞核中才能發(fā)揮調(diào)控功能[7071]。研究表明,NAC轉(zhuǎn)錄因子在植物響應干旱、低溫等非生物脅迫中發(fā)揮著重要作用[72]。NAC轉(zhuǎn)錄因子還參與植物體內(nèi)激素和各種生理反應的調(diào)控[73]。同時,受外界環(huán)境和植物不同發(fā)育期的影響,NAC轉(zhuǎn)錄因子的表達具有組織特異性,使其能夠與靶標基因結(jié)合調(diào)控植物在生物和非生物脅迫中的應激反應[74]。
2.6"bZIP轉(zhuǎn)錄因子
bZIP轉(zhuǎn)錄因子是存在于真核生物中的一類多基因家族。該轉(zhuǎn)錄因子是由結(jié)合DNA的堿性氨基酸區(qū)域(basic"region)和1個亮氨酸拉鏈(leucine"zipper)區(qū)域兩部分構(gòu)成[75]。其中,堿性區(qū)域有16~20個堿性氨基酸殘基(如賴氨酸、精氨酸),位于bZIP結(jié)構(gòu)域的N端,且含有核定位序列及DNA識別結(jié)構(gòu)域,能特異性結(jié)合DNA中的ACGT序列[76]。然而,位于bZIP結(jié)構(gòu)域C端的亮氨酸拉鏈區(qū)保守度較低,由1個或多個七肽重復區(qū)域構(gòu)成1個α螺旋[77]。在不同環(huán)境條件下,bZIP單體可以形成同源或異源二聚體來行使功能(圖1f)。bZIP轉(zhuǎn)錄因子亮氨酸拉鏈區(qū)的二聚體纏繞在一起形成“Y”型結(jié)構(gòu),以此與靶基因啟動子區(qū)域結(jié)合,調(diào)控靶基因的轉(zhuǎn)錄,從而影響植物生長發(fā)育[78]。在植物中,bZIP轉(zhuǎn)錄因子參與病原物防御、種子成熟和花發(fā)育等生物調(diào)節(jié)過程[79]。同時,研究發(fā)現(xiàn),bZIP類轉(zhuǎn)錄因子對植物的抗病性、抗寒性、抗旱性和耐鹽性等均具有重要的調(diào)控作用[80]。
3"植物轉(zhuǎn)錄因子在線蟲與寄主互作中的功能
3.1"植物轉(zhuǎn)錄因子在根結(jié)線蟲與寄主互作中的功能
轉(zhuǎn)錄因子能直接調(diào)控植物激素水平和次生代謝物合成,以此調(diào)控寄主對根結(jié)線蟲的抗性。Nakagami等[11]研究表明,在南方根結(jié)線蟲M.incognita侵染擬南芥過程中,非典型轉(zhuǎn)錄因子DPE2Flike"1(DEL1)參與調(diào)控水楊酸積累和根結(jié)中的木質(zhì)素合成,在植物生長和抵御南方根結(jié)線蟲侵染中發(fā)揮著重要作用。魏瀟[81]通過分析MYB轉(zhuǎn)錄因子在紅根甘肅桃抗南方根結(jié)線蟲中的功能時發(fā)現(xiàn),PkMYB8、PkMYB9和PkMYB12通過調(diào)控苯丙烷代謝途徑增加紅根甘肅桃根部花色素苷和其他類黃酮物質(zhì)的含量,從而抵御根結(jié)線蟲侵染;此外,另一個MYB轉(zhuǎn)錄因子PkMYB7可通過信號轉(zhuǎn)導途徑來調(diào)控防衛(wèi)基因的表達,從而增強對南方根結(jié)線蟲的抗性。植物轉(zhuǎn)錄因子還可以通過與線蟲效應蛋白互作促進根結(jié)線蟲的寄生,例如,Mi2G02是南方根結(jié)線蟲效應蛋白,而擬南芥轉(zhuǎn)錄因子GT3a與Mi2G02在細胞核中互作并抑制Mi2G02降解,調(diào)控下游靶標基因表達從而幫助線蟲與寄主植物建立寄生關系[12]。研究發(fā)現(xiàn),番茄的SlWRKY45轉(zhuǎn)錄因子在爪哇根結(jié)線蟲M.javanica侵染5"d后表達顯著提高,對取食位點的組織學分析表明SlWRKY45在巨細胞中高表達;SlWRKY45受到特定的植物激素高度誘導,包括細胞分裂素、生長素和防御信號分子水楊酸等,表明其通過有利于根結(jié)線蟲巨細胞發(fā)育的激素信號途徑來促進線蟲的侵染[82]。
3.2"植物轉(zhuǎn)錄因子在孢囊線蟲與寄主互作中的功能
轉(zhuǎn)錄因子可以根據(jù)自身結(jié)構(gòu)變化參與植物對線蟲的抗性。Jin等[20]研究發(fā)現(xiàn),擬南芥bHLH轉(zhuǎn)錄因子家族bHLH25和bHLH27有利于甜菜孢囊線蟲的寄生。bHLH25和bHLH27在擬南芥中可以形成二聚體,通過影響根和芽的形態(tài)來促進線蟲寄生,而bHLH25和bHLH27基因同時突變時擬南芥對甜菜孢囊線蟲的抗性增強。合胞體是孢囊線蟲完成生長發(fā)育的重要場所,對甜菜孢囊線蟲侵染后擬南芥根部進行轉(zhuǎn)錄組測序分析,發(fā)現(xiàn)擬南芥中多個WRKY轉(zhuǎn)錄因子下調(diào)表達;對WRKY6、WRKY11、WRKY17和WRKY33基因進行功能分析發(fā)現(xiàn),WRKY轉(zhuǎn)錄因子通過干擾植物的防御反應來促進線蟲的發(fā)育[83]。同樣的,Ali等[84]研究發(fā)現(xiàn),過表達乙烯應答轉(zhuǎn)錄因子RAP26增加了根部胼胝質(zhì)的沉積,促進了植物防御相關基因表達,從而對甜菜孢囊線蟲的抗性增強。Willig等[21]研究表明,轉(zhuǎn)錄因子TCP9可以調(diào)節(jié)擬南芥根系結(jié)構(gòu)可塑性,對擬南芥TCP9基因敲除突變體進行轉(zhuǎn)錄組測序分析發(fā)現(xiàn),TCP9基因通過調(diào)控活性氧穩(wěn)態(tài)和氧化應激反應酶的活性增強擬南芥對甜菜孢囊線蟲的抗性。植物激素在調(diào)控基因表達和合胞體形成中起重要作用。Wisniewska等[13]研究發(fā)現(xiàn),脫落酸處理可誘導AtMYB59基因轉(zhuǎn)錄,過表達AtMYB59增強了擬南芥對甜菜孢囊線蟲的抗性,而沉默AtMYB59增加了擬南芥對甜菜孢囊線蟲的感病性。
在大豆與大豆孢囊線蟲的互作中,轉(zhuǎn)錄因子同樣發(fā)揮著重要的功能。喻倩倩[22]研究發(fā)現(xiàn),大豆中C/S1bZIP轉(zhuǎn)錄因子GmbZIP44及其絲氨酸位點參與了其對大豆孢囊線蟲抗性的調(diào)控過程。SNF1相關蛋白激酶"SnRK1能夠與GmbZIP44互作,通過調(diào)
控植物低能量脅迫響應信號通路參與對大豆孢囊線蟲的抗性,GmbZIP44過表達大豆對大豆孢囊線蟲抗性增強,而GmbZIP44磷酸化位點的失活突變體則表現(xiàn)出對大豆孢囊線蟲感病。姜海鵬等[24]通過對大豆孢囊線蟲侵染后的抗性大豆品種‘L10’根部進
行轉(zhuǎn)錄組測序發(fā)現(xiàn)18個與大豆孢囊線蟲病相關的差異表達bZIP轉(zhuǎn)錄因子,生物信息學分析表明,這些轉(zhuǎn)錄因子的理化性質(zhì)存在較大差異,但不同bZIP轉(zhuǎn)錄因子的三級結(jié)構(gòu)具有相似性,表明其可能參與對大豆孢囊線蟲的抗性。AP2/EREBP轉(zhuǎn)錄因子家族同樣在大豆孢囊線蟲與大豆互作中發(fā)揮重要作用,韓英鵬等[23]通過對大豆孢囊線蟲侵染的抗性大豆品種‘L10’根部進行轉(zhuǎn)錄組測序,并對篩選到的與大豆孢囊線蟲病抗性相關的AP2/EREBP轉(zhuǎn)錄因子進行生物信息學分析,發(fā)現(xiàn)14個與抗性相關的AP2/EREBP轉(zhuǎn)錄因子與大豆孢囊線蟲生理小種抗性相關。生物信息學分析同時表明,與大豆孢囊線蟲病相關的AP2/EREBP"轉(zhuǎn)錄因子在遺傳進化過程中高度保守,其結(jié)構(gòu)和功能可能具有相似性。MYB類轉(zhuǎn)錄因子中的GARP轉(zhuǎn)錄因子超家族中8個G2like轉(zhuǎn)錄因子也可能參與對大豆孢囊線蟲的抗性,生物信息學分析發(fā)現(xiàn),GlGLK3含有與大豆生長發(fā)育及逆境脅迫密切相關的順式作用元件,GlGLK1、GlGLK2、GlGLK5和GlGLK7與擬南芥AtGLK1和AtGLK2親緣關系最近,然而G2like轉(zhuǎn)錄因子在大豆抗大豆孢囊線蟲中的具體功能需進一步驗證[25]。
4"展望
近年來,植物轉(zhuǎn)錄因子在病原物與寄主互作中的功能已成為研究熱點。病原物侵染植物后,會觸發(fā)病原相關分子模式(pathogenassociated"molecular"patterns,"PAMPs)激發(fā)的免疫反應(PAMPtriggered"immunity,"PTI)和病原菌效應蛋白(effector)激發(fā)的免疫反應(effectortriggered"immunity,"ETI)[85]。而轉(zhuǎn)錄因子可以通過結(jié)合植物免疫相關的抗病基因或感病基因的啟動子區(qū)域參與調(diào)控相關基因的表達,從而響應病原菌的侵染。任永娟等[86]對植物WRKY轉(zhuǎn)錄因子在真菌、細菌和病毒中的功能進行了系統(tǒng)論述,總結(jié)出WRKY"轉(zhuǎn)錄因子在植物對不同生物脅迫的防御反應中既有正向調(diào)控作用也有負向調(diào)控作用。水稻MYB類轉(zhuǎn)錄因子也可以通過調(diào)節(jié)激素水平和相關信號通路響應病原菌的侵染[87]。然而,有關水稻與根結(jié)線蟲或孢囊線蟲互作相關的轉(zhuǎn)錄因子報道較少。Hada"等[88]利用全基因組關聯(lián)分析鑒定了17個與根結(jié)指數(shù)、卵塊數(shù)和繁殖指數(shù)等表型性狀相關的SNP位點,這些位點含有NBSLRR、Cf2/Cf5"抗性蛋白、MYB、bZIP、ARF、SCARECROW以及WRKY等轉(zhuǎn)錄因子候選基因位點。利用轉(zhuǎn)錄組測序發(fā)現(xiàn),甜菜孢囊線蟲或大豆孢囊線蟲侵染寄主后,WRKY轉(zhuǎn)錄因子、bZIP轉(zhuǎn)錄因子和AP2/EREBP轉(zhuǎn)錄因子發(fā)生不同程度的差異表達[25]。這些研究將為植物轉(zhuǎn)錄因子在水稻與線蟲互作過程中的功能提供重要參考價值。
轉(zhuǎn)錄因子在抗病信號途徑中處于樞紐地位,一個轉(zhuǎn)錄因子往往可以調(diào)控下游多個與同類性狀有關的基因的表達。與傳統(tǒng)的導入或改良單個基因來提高作物對病原菌的抗性相比,通過挖掘和改造1個關鍵的轉(zhuǎn)錄因子來提高作物的抗病性更加有效[89]。然而,目前對轉(zhuǎn)錄因子在寄主與線蟲互作中的具體機制尚不清晰,可以從以下3個方面開展相關研究[90]:1)在轉(zhuǎn)錄因子結(jié)構(gòu)域及其功能相結(jié)合基礎上,對不同家族成員進行系統(tǒng)分類,以便更快地了解已知轉(zhuǎn)錄因子,同時預測未知轉(zhuǎn)錄因子。2)進一步挖掘轉(zhuǎn)錄因子調(diào)控的上下游網(wǎng)絡,探究轉(zhuǎn)錄因子調(diào)控線蟲與寄主互作過程的分子機制,明確多個轉(zhuǎn)錄因子與其他基因的相互作用。3)與抗病育種相結(jié)合,通過田間生物學試驗,驗證轉(zhuǎn)錄因子在調(diào)控作物抗病性中的功能,使其更好地為生產(chǎn)實踐服務。
綜上,對轉(zhuǎn)錄因子的深入研究將有助于充分了解線蟲侵染寄主植物后的分子機制。挖掘抗感品種中響應線蟲侵染的轉(zhuǎn)錄因子,明確轉(zhuǎn)錄因子上下游各組分及之間的關系,從而找到理想的轉(zhuǎn)錄因子相關資源,將為培育抗線蟲的植物品種、研究線蟲分子防治策略提供有力的技術支撐。
參考文獻
[1]"XIANG"N,"LAWRENCE"K"S,"KLOEPPERnbsp;J"W,"et"al."Biological"control"of"Meloidogyne"incognita"by"sporeforming"plant"growthpromoting"rhizobacteria"on"cotton"[J]."Plant"Disease,"2017,"101(5):"774784.
[2]"JONES"J"T,"HAEGEMAN"A,"DANCHIN"E"G"J,"et"al."Top"10"plantparasitic"nematodes"in"molecular"plant"pathology"[J]."Molecular"Plant"Pathology,"2013,"14(9):"946961.
[3]"KYNDT"T,"VIEIRA"P,"GHEYSEN"G,"et"al."Nematode"feeding"sites:"unique"organs"in"plant"roots"[J]."Planta,"2013,"238(5):"807818.
[4]"GUPTA"R,"MFARREJ"M"F"B,"ELNOUR"R"O,"et"al,"Defence"response"of"host"plants"for"cyst"nematode:"A"review"on"parasitism"and"defence"[J]."Journal"of"King"Saud"University"Science,"2023."35(7):"5487.
[5]"RUTTER"W"B,"FRANCO"J,"GLEASON"C."Rooting"out"the"mechanisms"of"rootknot"nematodeplant"interactions"[J]."Annual"Review"of"Phytopathology,"2022,"60(5):"4376.
[6]"INUKAI"S,"KOCK"K"H,"BULYK"M"L."Transcription"factorDNA"binding:"beyond"binding"site"motifs"[J]."Current"Opinion"in"Genetics"amp;"Development,"2017,"43:"110119.
[7]"金慧,"欒雨時."轉(zhuǎn)錄因子在植物抗病基因工程中的研究進展[J]."中國生物工程雜志,"2010,"30(10):"9499.
[8]"YANAGISAWA"S."Transcription"factors"in"plants:"Physiological"functions"and"regulation"of"expression"[J]."Journal"of"Plant"Research,"1998,"111:"363371.
[9]"SZITENBERG"A,"SALAZARJARAMILLO"L,"BLOK"V"C,"et"al."Comparative"genomics"of"apomictic"rootknot"nematodes:"Hybridization,"ploidy,"and"dynamic"genome"change"[J]."Genome"Biology"and"Evolution,"2017,"9(10):"28442861.
[10]NURUL"H"A"A"R,"MOHAMMAD"M"K,"NASHRIYAH"M."Occurrence"and"control"of"root"knot"nematode"in"crops:"a"review"[J]."Australian"Journal"of"Crop"Science,"2016,"10(12):"16491654.
[11]NAKAGAMI"S,"SAEKI"K,"TODA"K,"et"al."The"atypical"E2F"transcription"factor"DEL1"modulates"growthdefense"tradeoffs"of"host"plants"during"rootknot"nematode"infection"[J/OL]."Scientific"Reports,"2020,"10(1):8836."DOI:"101038/s41598020657333.
[12]ZHAO"Jianlong,"HUANG"Kaiwei,"LIU"Rui,"et"al."The"rootknot"nematode"effector"Mi2G02"hijacks"a"host"plant"trihelix"transcription"factor"to"promote"nematode"parasitism"[J]."Plant"Communications,"2024,"5(2):2638.
[13]WISNIEWSKA"A,"WOJSZKO"K,"ROZANSKA"E,"et"al."Arabidopsis"thaliana"Myb59"gene"is"involved"in"the"response"to"Heterodera"schachtii"infestation,"and"its"overexpression"disturbs"regular"development"of"nematodeinduced"syncytia"[J]."International"Journal"of"Molecular"Sciences,"2021,"22(12):"441463.
[14]LILLEY"C"J,"ATKINSON"H"J,"URWIN"P"E."Molecular"aspects"of"cyst"nematodes"[J]."Molecular"Plant"Pathology,"2005,"6(6):"577588.
[15]SOBCZAK"M,"GOLINOWSKI"W."Cyst"nematodes"and"syncytia"[M]∥JONES"J,"GHEYSEN"GFENOLL"C."Genomics"and"molecular"genetics"of"plantnematode"interactions."New"York:"Springer,2011:"6182.
[16]WANG"Jie,"NIBLACK"T"L,"TREMAIN"J"A,"et"al."Soybean"cyst"nematode"reduces"soybean"yield"without"causing"obvious"aboveground"symptoms"[J]."Plant"Disease,"2003,"87(6):"623628.
[17]WU"Haiyan,"HE"Qiong,"LIU"Jing,"et"al."Occurrence"and"development"of"the"cereal"cyst"nematode"(Heterodera"avenae)"in"Shandong,"China"[J]."Plant"Disease,"2014,"98(12):"16541660.
[18]BITTNER"V."Harmful"factors"in"sugar"beet""animal"pests:"beet"cystnematode"(Heterodera"schachtii"Schmidt)"[J]."Listy"Cukrovarnicke"a"Reparske,"2013,"129(7/8):"234235.
[19]BROWN"E"B,"SYKES"G"B."Assessment"of"the"losses"caused"to"potatoes"by"the"potato"cyst"nematodes,"Globodera"rostochiensis"and"G."pallida"[J]."Annals"of"Applied"Biology,"1983,"103(2):"271276.
[20]JIN"J,"HEWEZI"T,"BAUM"T"J."The"Arabidopsis"bHLH25"and"bHLH27"transcription"factors"contribute"to"susceptibility"to"the"cyst"nematode"Heterodera"schachtii"[J]."Plant"Journal,"2011,"65(2):"319328.
[21]WILLIG"J"J,"GUARNERI"N,"VAN"STEENBRUGGE"J"J"M,"et"al."The"Arabidopsis"transcription"factor"TCP9"modulates"root"architectural"plasticity,"reactive"oxygen"speciesmediated"processes,"and"tolerance"to"cyst"nematode"infections"[J]."Plant"Journal,"2022,"112(4):"10701083.
[22]喻倩倩."GmbZIP44轉(zhuǎn)錄因子在大豆與孢囊線蟲互作中的機制研究[D]."武漢:"華中農(nóng)業(yè)大學,"2022.
[23]韓英鵬,"卜凡珊,"田利崢,"等."大豆胞囊線蟲病抗性相關AP2/EREBP轉(zhuǎn)錄因子生物信息學分析[J]."東北農(nóng)業(yè)大學學報,"2020,"51(8):"18.
[24]姜海鵬,"田力崢,"卜凡珊,"等."大豆胞囊線蟲病抗性相關bZIP轉(zhuǎn)錄因子的生物信息學分析[J]."大豆科學,"2020,"39(5):"703711.
[25]韓英鵬,"李一,"吳桐,"等."大豆胞囊線蟲相關G2like轉(zhuǎn)錄因子生物信息學分析[J]."東北農(nóng)業(yè)大學學報,"2022,"53(3):"19.
[26]COLQUHOUN"T"A,"CLARK"D"G."Unraveling"the"regulation"of"floral"fragrance"biosynthesis"[J]."Plant"Signaling"amp;"Behavior,"2011,"6(3):"378381.
[27]RAMYA"M,"KWON"O"K,"AN"H"R,"et"al."Floral"scent:"Regulation"and"role"of"MYB"transcription"factors"[J]."Phytochemistry"Letters,"2017,"19:"114120.
[28]RIECHMANN"J"L,"HEARD"J,"MARTIN"G,"et"al."Arabidopsis"transcription"factors:"Genomewide"comparative"analysis"among"eukaryotes"[J]."Science,"2000,"290(5499):"21052110.
[29]LIPSICK"J"S."One"billion"years"of"Myb"[J]."Oncogene,"1996,"13(2):"223235.
[30]TOMBULOGLU"H,"KEKEC"G,"SAKCALI"M"S,"et"al."Transcriptomewide"identificationnbsp;of"R2R3MYB"transcription"factors"in"barley"with"their"boron"responsive"expression"analysis"[J]."Molecular"Genetics"and"Genomics,"2013,"288(3/4):"141155.
[31]DU"Hai,"ZHANG"Li,"LIU"Lei,"et"al."Biochemical"and"molecular"characterization"of"plant"MYB"transcription"factor"family"[J]."Biochemistry"(Moscow),"2009,"74(1):"111.
[32]LI"Jinlu,"HAN"Guoliang,"SUN"Cuifeng,"et"al."Research"advances"of"MYB"transcription"factors"in"plant"stress"resistance"and"breeding"[J]."Plant"Signaling"amp;"Behavior,"2019,"14(8):"6179.
[33]LI"Dekuan,"LI"Ying,"ZHANG"Liang,"et"al."Arabidopsis"ABA"receptor"RCAR1/PYL9"interacts"with"an"R2R3type"MYB"transcription"factor,"AtMYB44"[J]."International"Journal"of"Molecular"Sciences,"2014,"15(5):"84738490.
[34]SONG"Susheng,"QI"Tiancong,"HUANG"Huang,"et"al."The"jasmonateZIM"domain"proteins"interact"with"the"R2R3MYB"transcription"factors"MYB21"and"MYB24"to"affect"jasmonateregulated"stamen"development"in"Arabidopsis"[J]."Plant"Cell,"2011,"23(3):"10001013.
[35]CHENG"Hui,"SONG"Susheng,"XIAO"Langtao,"et"al."Gibberellin"acts"through"jasmonate"to"control"the"expression"of"MYB21,"MYB24,"and"MYB57"to"promote"stamen"filament"growth"in"Arabidopsis"[J/OL]."PLoS"Genetics,"2009,"5(3):"e1000440."DOI:"101371/journal.pgen1000440.
[36]XU"Xiaofeng,"WANG"Bo,"FENG"Yifeng,"et"al."Auxin"response"factor17"directly"regulates"MYB108"for"anther"dehiscence1"open"[J]."Plant"Physiology,"2019,"181(2):"645655.
[37]YANG"Caiyun,"SONG"Jie,"FERGUSONnbsp;A"C,"et"al."Transcription"factor"MYB26"is"key"to"spatial"specificity"in"anther"secondary"thickening"formation"[J]."Plant"Physiology,"2017,"175(1):"333350.
[38]FELLER"A,"MACHEMER"K,"BRAUN"E"L,"et"al."Evolutionary"and"comparative"analysis"of"MYB"and"bHLH"plant"transcription"factors"[J]."Plant"Journal,"2011,"66(1):"94116.
[39]LI"Fenmei,"LIU"Wuyi."Genomewide"identification,"classification,"and"functional"analysis"of"the"basic"helixloophelix"transcription"factors"in"the"cattle,"Bos"Taurus"[J]."Mammalian"Genome,"2017,"28(5/6):"176197.
[40]PIRES"N,"DOLAN"L."Origin"and"diversification"of"basichelixloophelix"proteins"in"plants"[J]."Molecular"Biology"and"Evolution,"2010,"27(4):"862874.
[41]FILIZ"V,"ATANSEVER"R."Dissecting"a"coexpression"network"of"basic"helixloophelix"(bHLH)"genes"from"phosphate"(Pi)starved"soybean"(Glycine"max)"[J]."Plant"Gene,"2017,"9(2):"1925.
[42]QIAN"Yuchen,"ZHANG"Tongyao,"YU"Yan,"et"al."Regulatory"mechanisms"of"bHLH"transcription"factors"in"plant"adaptive"responses"to"various"abiotic"stresses"[J/OL]."Frontiers"in"Plant"Science,"2021,"12(4):"677611."DOI:"103389/fpls2021677611.
[43]JONES"S."An"overview"of"the"basic"helixloophelix"proteins"[J]."Genome"Biology,"2004,"5(6):"111132.
[44]ROIGVILLANOVA"I,"BOUTORRENT"J,"GALSTYAN"A,"et"al."Interaction"of"shade"avoidance"and"auxin"responses:"a"role"for"two"novel"atypical"bHLH"proteins"[J]."EMBO"Journal,"2007,"26(22):"47564767.
[45]FRIEDRICHSEN"D"M,"NEMHAUSER"J,"MURAMITSU"T,"et"al."Three"redundant"brassinosteroid"early"response"genes"encode"putative"bHLH"transcription"factors"required"for"normal"growth"[J]."Genetics,"2002,"162(3):"14451456.
[46]OHASHIITO"K,"BERGMANN"D"C."Regulation"of"the"Arabidopsis"root"vascular"initial"population"by"lonesome"highway"[J]."Development,"2007,"134(16):"29592968.
[47]KOMATSU"M,"MAEKAWA"M,"SHIMAMOTO"K,"et"al."The"LAX1"and"frizzy"panicle"2"genes"determine"the"inflorescence"architecture"of"rice"by"controlling"rachisbranch"and"spikelet"development"[J]."Developmental"Biology,"2001,"231(2):"364373.
[48]TAMAOKI"M,"FREEMAN"J"L,"PILONSMITS"E"A"H."Cooperative"ethylene"and"jasmonic"acid"signaling"regulates"selenite"resistance"in"Arabidopsis"[J]."Plant"Physiology,"2008,"146(3):"12191230.
[49]ZHANG"Fan,"GONZALEZ"A,"ZHAO"Mingzhen,"et"al."A"network"of"redundant"bHLH"proteins"functions"in"all"TTG1dependent"pathways"of"Arabidopsis"[J]."Development,"2003,"130(20):"48594869.
[50]ZHANG"Hong,"SHIBUYA"M,"YOKOTA"S,"et"al."Oxidosqualene"cyclases"from"cell"suspension"cultures"of"Betula"platyphylla"var."japonica:"Molecular"evolution"of"oxidosqualene"cyclases"in"higher"plants"[J]."Biological"amp;"Pharmaceutical"Bulletin,"2003,"26(5):"642650.
[51]HAYASHI"H,"HUANG"Pengyu,"TAKADA"S,"et"al."Differential"expression"of"three"oxidosqualene"cyclase"mRNAs"in"Glycyrrhiza"glabra"[J].nbsp;Biological"amp;"Pharmaceutical"Bulletin,"2004,"27(7):"10861092.
[52]ANJUM"S"A,"WANG"Liange,"FAROOQ"M,"et"al."Methyl"jasmonateinduced"alteration"in"lipid"peroxidation,"antioxidative"defence"system"and"yield"in"soybean"under"drought"[J]."Journal"of"Agronomy"and"Crop"Science,"2011,"197(4):"296301.
[53]LIU"Qiang,"ZHANG"Guiyou,"CHEN"Shouyi."Structure"and"regulatory"function"of"plant"transcription"factors"[J]."Chinese"Science"Bulletin,"2001,"46(4):"271278.
[54]OKAMURO"J"K,"CASTER"B,"VILLARROEL"R,"et"al."The"AP2"domain"of"APETALA2"defines"a"large"new"family"of"DNA"binding"proteins"in"Arabidopsis"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"1997,"94(13):"70767081.
[55]SAKUMA"Y,"LIU"Qiang,"DUBOUZET"J"G,"et"al."DNAbinding"specificity"of"the"ERF/AP2"domain"of"Arabidopsis"DREBs,"transcription"factors"involved"in"dehydration"and"coldinducible"gene"expression"[J]."Biochemical"and"Biophysical"Research"Communications,"2002,"290(3):"9981009.
[56]JI"Aijia,"LUO"Hongmei,"XU"Zhichao,"et"al."Genomewide"identification"of"the"AP2/ERF"gene"family"involved"in"active"constituent"biosynthesis"in"Salvia"miltiorrhiza"[J/OL]."Plant"Genome,"2016,"9(2)."DOI:"103835/plantgenome2015080077.
[57]SUN"Meihong,"SHI"Min,"WANG"Yao,"et"al."The"biosynthesis"of"phenolic"acids"is"positively"regulated"by"the"JAresponsive"transcription"factor"ERF115"in"Salvia"miltiorrhiza"[J]."Journal"of"Experimental"Botany,"2019,"70(1):"243254.
[58]XIE"Zhouli,"NOLAN"T"M,"JIANG"Hao,"et"al."AP2/ERF"transcription"factor"regulatory"networks"in"hormone"and"abiotic"stress"responses"in"Arabidopsis"[J/OL]."Frontiers"in"Plant"Science,"2019,"10(4):"228."DOI:"103389/fpls201900228.
[59]KENDRICK"M"D,"CHANG"C."Ethylene"signaling:"new"levels"of"complexity"and"regulation"[J]."Current"Opinion"in"Plant"Biology,"2008,"11(5):"479485.
[60]STEPANOVA"A"N,"ALONSO"J"M."Ethylene"signaling"and"response:"where"different"regulatory"modules"meet"[J]."Current"Opinion"in"Plant"Biology,"2009,"12(5):"548555.
[61]EULGEM"T,"RUSHTON"P"J,"ROBATZEK"S,"et"al."The"WRKY"superfamily"of"plant"transcription"factors"[J]."Trends"in"Plant"Science,"2000,"5(5):"199206.
[62]CHEN"Ligang,"SONG"Yu,"LI"Shujia,"etnbsp;al."The"role"of"WRKY"transcription"factors"in"plant"abiotic"stresses"[J]."Biochimica"et"Biophysica"ActaGene"Regulatory"Mechanisms,"2012,"1819(2):"120128.
[63]ZHANG"Yuanji,"WANG"Liangjia."The"WRKY"transcription"factor"superfamily:"its"origin"in"eukaryotes"and"expansion"in"plants"[J/OL]."BMC"Evolutionary"Biology,"2005,"5:"1."DOI:"101186/1471214851.
[64]CIOLKOWSKI"I,"WANKE"D,"BIRKENBIHL"R"P,"et"al."Studies"on"DNAbinding"selectivity"of"WRKY"transcription"factors"lend"structural"clues"into"WRKYdomain"function"[J]."Plant"Molecular"Biology,"2008,"68(1/2):"8192.
[65]孫淑豪,"余迪求."WRKY"轉(zhuǎn)錄因子家族調(diào)控植物逆境脅迫響應[J]."生物技術通報,"2016,"32(10):"6676.
[66]OOKA"H,"SATOH"K,"DOI"K,"et"al."Comprehensive"analysis"of"NAC"family"genes"in"Oryza"sativa"and"Arabidopsis"thaliana"[J]."DNA"Research,"2003,"10(6):"239247.
[67]REN"Tao,"QU"Feng,"MORRIS"T"J."HRT"gene"function"requires"interaction"between"a"NAC"protein"and"viral"capsid"protein"to"confer"resistance"to"turnip"crinkle"virus"[J]."Plant"Cell,"2000,"12(10):"19171925.
[68]XIE"Qi,"FRUGIS"G,"COLGAN"D,"et"al."Arabidopsis"NAC1"transduces"auxin"signal"downstream"of"TIR1"to"promote"lateral"root"development"[J]."Genes"amp;"Development,"2000,"14(23):"30243036.
[69]DUVAL"M,"HSIEH"T"F,"KIM"S"Y,"et"al."Molecular"characterization"of"AtNAM:"a"member"of"the"Arabidopsis"NAC"domain"superfamily"[J]."Plant"Molecular"Biology,"2002,"50(2):"237248.
[70]KIM"Y"S,"KIM"S"G,"PARK"J"E,"et"al."A"membranebound"NAC"transcription"factor"regulates"cell"division"in"Arabidopsis"[J]."Plant"Cell,"2006,"18(11):"31323144.
[71]CHEN"Yani,"SLABAUGH"E,"BRANDIZZI"F."Membranetethered"transcription"factors"in"Arabidopsis"thaliana:"novel"regulators"in"stress"response"and"development"[J]."Current"Opinion"in"Plant"Biology,"2008,"11(6):"695701.
[72]孫利軍,"李大勇,"張慧娟,"等."NAC轉(zhuǎn)錄因子在植物抗病和抗非生物脅迫反應中的作用[J]."遺傳,"2012,"34(8):"9931002.
[73]張丹,"馬玉花."NAC"轉(zhuǎn)錄因子在植物響應非生物脅迫中的作用[J]."生物技術通報,"2019,"35(12):"144151.
[74]李小蘭,"胡玉鑫,"楊星,"等."非生物脅迫相關NAC轉(zhuǎn)錄因子的結(jié)構(gòu)及功能[J]."植物生理學報,"2013,"49(10):"10091017.
[75]LI"Ping,"ZHENG"Tangchun,"LI"Lulu,"et"al."Genomewide"investigation"of"the"bZIP"transcription"factor"gene"family"in"Prunus"mume:"Classification,"evolution,"expression"profile"and"lowtemperature"stress"responses"[J]."Horticultural"Plant"Journal,"2022,"8(2):"230242.
[76]LEE"S"C,"CHOI"H"W,"HWANG"I"S,"et"al."Functional"roles"of"the"pepper"pathogeninduced"bZIP"transcription"factor,"CAbZIP1,"in"enhanced"resistance"to"pathogen"infection"and"environmental"stresses"[J]."Planta,"2006,"224(5):"12091225.
[77]KANG"Shigen,"PRICE"J,"LIN"Peichi,"et"al."The"Arabidopsis"bZIP1"transcription"factor"is"involved"in"sugar"signaling,"protein"networking,"and"DNA"binding"[J]."Molecular"Plant,"2010,"3(2):"361373.
[78]SONG"Yanhong,"LUO"Guangbin,"SHEN"Lisha,"et"al."TubZIP28,"a"novel"bZIP"family"transcription"factor"from"Triticum"urartu,"and"TabZIP28,"its"homologue"from"Triticum"aestivum,"enhance"starch"synthesis"in"wheat"[J]."New"Phytologist,"2020,"226(5):"13841398.
[79]AMORIM"L"L"B,"DOS"SANTOS"R"D,"NETO"J"P"B,"et"al."Transcription"factors"involved"in"plant"resistance"to"pathogens"[J]."Current"Protein"amp;"Peptide"Science,"2017,"18(4):"335351.
[80]MARONE"D,"MASTRANGELO"A"M,"BORRELLI"G"M,"et"al."Specialized"metabolites:"Physiological"and"biochemical"role"in"stress"resistance,"strategies"to"improve"their"accumulation,"and"new"applications"in"crop"breeding"and"management"[J]."Plant"Physiology"and"Biochemistry,"2022,"172(2):"4855.
[81]魏瀟."紅根甘肅桃(Prunus"kansuensis"L.)抗根結(jié)線蟲相關MYB轉(zhuǎn)錄因子基因的克隆與定位[D]."北京:"中國農(nóng)業(yè)科學院,"2010.
[82]CHINNAPANDI"B,"BUCKI"P,"MIYARA"S"B."SlWRKY45,"nematoderesponsive"tomato"WRKY"gene,"enhances"susceptibility"to"the"root"knot"nematode;"M.javanica"infection"[J]."Plant"Signaling"amp;"Behavior,"2017,"12(12):"4956.
[83]ALI"M"A,"WIECZOREK"K,"KREIL"D"P,"et"al."The"beet"cyst"nematode"Heterodera"schachtii"modulates"the"expression"of"WRKY"transcription"factors"in"syncytia"to"favour"its"development"in"Arabidopsis"roots"[J/OL]."PLoS"ONE,"2014,"9(7):"e102360."DOI:"101371/journal.pone0102360.
[84]ALI"M"A,"ABBAS"A,"KREIL"D"P,"et"al."Overexpression"of"the"transcription"factor"RAP26"leads"to"enhanced"callose"deposition"in"syncytia"and"enhanced"resistance"against"the"beet"cyst"nematode"Heterodera"schachtii"in"Arabidopsis"roots"[J/OL]."BMC"Plant"Biology,"2013,"13:"47."DOI:"101186/147122291347.
[85]YUAN"Minhang,"NGOU"B"P"M,"DING"Pingtao,"et"al."PTIETI"crosstalk:"an"integrative"view"of"plant"immunity"[J]."Current"Opinion"in"Plant"Biology,"2021,"62(5):"4564.
[86]任永娟,"王東姣,"蘇亞春,"等."植物"WRKY"轉(zhuǎn)錄因子:"結(jié)構(gòu),"分類,"進化和功能[J]."農(nóng)業(yè)生物技術學報,"2021,"29(1):"105124.
[87]金鋒,"丁蓮鑫,"駱駿,"等."水稻MYB轉(zhuǎn)錄因子的研究進展[J]."植物遺傳資源學報,"2023,"24(4):"917926.
[88]HADA"A,"DUTTA"T"K,"SINGH"N,"et"al."A"genomewide"association"study"in"Indian"wild"rice"accessions"for"resistance"to"the"rootknot"nematode"Meloidogyne"graminicola"[J/OL]."PLoS"ONE,"2020,"15(9):"e0239085."DOI:"101371/journal.pone0239085.
[89]CHATTOPADHYAY"A,"PUROHIT"J,"TIWARI"K"K,"et"al."Targeting"transcription"factors"for"plant"disease"resistance"[J]."Current"Science,"2019,"117(10):"15981607.
[90]VAILLEAU"F,"DANIEL"X,"TRONCHET"M,"et"al."A"R2R3MYB"gene,"AtMYB30,"acts"as"a"positive"regulator"of"the"hypersensitive"cell"death"program"in"plants"in"response"to"pathogen"attack"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2002,"99(15):"1017910184.
(責任編輯:楊明麗)