[摘要]"脊髓損傷(spinal"cord"injury,SCI)是一種嚴重的神經系統疾病。缺氧誘導因子(hypoxia-inducible"factor,HIF)-1α作為HIF家族主要成員之一,其在缺氧條件下可調節細胞的增殖、代謝和存活。研究表明,HIF-1α在SCI中發揮重要作用。HIF-1α可減輕損傷部位的炎癥反應,促進損傷部位的修復和再生。HIF-1α還可調節神經元的存活和軸突再生,有助于神經功能的恢復。此外,HIF-1α的表達水平及活性的調節可有效改善SCI的治療效果。因此,HIF-1α作為重要的調控因子,可為SCI的治療提供新的治療靶點和研究思路。本文對HIF-1α在SCI中的研究現狀進行綜述,總結HIF-1α介導SCI的作用機制,并展望其發展趨勢。
[關鍵詞]"脊髓損傷;缺氧誘導因子-1α;炎癥反應;缺血缺氧;血管生成;細胞凋亡
[中圖分類號]"R744""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.23.029
脊髓損傷(spinal"cord"injury,SCI)是一種嚴重的神經系統疾病,每年有多達50萬人患SCI,無論損傷發生在脊髓的哪個部位,SCI都可能導致損傷節段以下機體功能的永久性喪失或衰退[1]。SCI分為創傷性損傷和非創傷性損傷2種類型。創傷性SCI通常是由急性脊柱骨折或脫位等因素引起的,患者通常會出現各種難以恢復的運動、感覺和括約肌功能障礙;最常見的非創傷性SCI是一種進行性退行性疾病,如椎間盤突出和黃韌帶增生等引起的脊髓慢性機械壓迫[2]。
1""概述
SCI的初始階段主要涉及軸突和細胞膜的破裂、髓鞘碎片、水腫和炎癥反應;隨后,增殖和激活的小膠質細胞和星形膠質細胞開始分泌一系列因子,以應對急性損傷引發的反應,促進傷口愈合,形成瘢痕和空洞[3]。創傷性SCI會破壞脊髓的結構和功能,導致神經元和軸突喪失及髓鞘破裂,此外還會引起炎癥反應和細胞凋亡;非創傷性SCI所引起的慢性機械壓迫會導致脊髓的血液供應不足和缺氧,進而引發炎癥反應和細胞凋亡[4]。
SCI發生后,損傷區域內的微環境會發生顯著改變,缺血缺氧便是顯著變化之一。在這種狀態下,脊髓微環境的穩態平衡受到破壞,這對于維持脊髓的正常功能構成巨大挑戰[5]。缺氧誘導因子(hypoxia-inducible"factor,HIF)-1α在應對缺氧環境、維持細胞生存方面起重要作用,其在炎癥、氧化、細胞死亡和腫瘤發生等過程中廣泛表達[6-10]。在SCI過程中,HIF-1α的激活如何影響炎癥反應、細胞凋亡、血管生成和神經保護等過程,進而影響SCI的修復和再生是當前研究的關鍵問題之一。
2""HIF-1α在SCI中的作用
2.1""炎癥因素
炎癥反應在SCI的病理過程中起至關重要的作用。炎癥反應的失控可導致細胞損傷的加劇,使SCI患者的病情進一步惡化。Ni等[11]揭示zeste同源物2增強子(enhancer"of"zeste"homology"2,EZH2)、微RNA(microRNA,miRNA)-146a-5p和HIF-1α在炎癥和糖酵解過程中的作用,使用脂多糖誘導小膠質細胞的炎癥反應,并構建SCI動物模型發現,EZH2可通過介導miR-146a-5p/HIF-1α緩解急性SCI大鼠的炎癥和糖酵解過程。Li等[12]降低SCI大鼠模型體內HIF-1α水平,發現腫瘤壞死因子-α(tumor"necrosis"factor-α,TNF-α)、白細胞介素(interleukin,IL)-1β、IL-6和IL-18的水平降低;同時體外模型中發現,HIF-1α的滅活可降低circ"0001723的促炎作用,且沉默NOD樣受體熱蛋白結構域相關蛋白3(NOD-like"receptor"thermal"protein"domain"associated"protein"3,NLRP3)可促進自噬而抑制circ"0001723的促炎作用,表明HIF-1α通過circ"0001723介導miR-380-3p/"NLRP3降低SCI中的炎癥反應。Xu等[13]研究發現,CD73可抑制NLRP3炎癥小體復合物的激活,并降低孔形成蛋白GSDMD的成熟,這可在一定程度上降低小膠質細胞的細胞焦亡;而SCI發生后,HIF-1α的累積可促使CD73過表達,CD73表達的增加又會促進HIF-1α的表達,從而形成正反饋調節。Ma等[14]將光生物調節連續4周作用于脊髓鉗夾雄性小鼠,并構建巨噬細胞炎癥和光生物調節干預體外模型,結果發現光生物調節可作用于Notch1-HIF-1α/核因子κB信號通路,抑制巨噬細胞神經毒性因子和炎癥因子的釋放,從而使小鼠發生SCI后運動功能得以更好地恢復。SCI發生后過度的炎癥反應可能會加劇細胞損傷,從而加劇SCI。因此,抑制過度炎癥反應是當前SCI治療的必經之路。HIF-1α可能成為SCI發生后抑制炎癥反應的潛在靶點之一。
2.2""氧化/缺氧因素
HIF-1α在氧化反應和缺氧環境中發揮重要作用。研究表明,抑制脯氨酰4-羥化酶可減少HIF-1α的表達,增加組織對缺氧環境的耐受性并改善疾病預后[15]。Wu等[16]研究一種新型脯氨酰羥化酶抑制劑FG-4592,其可提高神經元PC-12細胞的存活率,激活HIF-1α阻斷劑YC-1,下調HIF-1α的表達,從而促進SCI小鼠模型神經功能的恢復。David等[17]激活HIF-1α的轉錄途徑,施萬細胞中VP16-HIF-1α逆轉錄病毒的表達使得HIF-1α的表達增加5.9倍,施萬細胞的生存率提高34.3%。Fan等[18]探討經缺氧預處理的神經干細胞移植對SCI的影響,研究認為HIF-1α的下游基因趨化因子受體4及其配體基質細胞衍生因子1被認為是干細胞移植的關鍵因素。Chen等[19]研究證實,HIF-11血管內皮生長因子(vascular"endothelial"growth"factor,VEGF)激活劑ML228可增強HIF-1α/VEGF信號通路的活性,進而改善局部缺氧缺血環境,促進神經功能的恢復。Zhou等[20]研究認為,高壓氧可促進VEGF的表達,抑制HIF-1α的表達,這可能與SCI修復保護呈負相關。SCI發生后,微環境缺氧加劇,勢必會影響到氧化反應,促進HIF-1α的表達,降低缺氧及氧化反應所引起的負面結果,從而促進SCI患者神經功能的恢復,改善其預后。
2.3""血管生成因素
血管在支持神經系統的微環境中具有重要作用,內源性血管生成是SCI修復的基礎條件。Huang等[21]研究M2型巨噬細胞來源的外泌體在SCI中的促進血管生成作用,發現促血管生成因子HIF-1α和VEGF的表達隨著M2型巨噬細胞外泌體的增加而上調,表明M2型巨噬細胞外泌體通過激活HIF-1α/VEGF信號通路促進SCI發生后神經功能恢復和血管生成。Tao等[22]通過大鼠實驗發現,SCI發生后大鼠miR-195的水平顯著降低,但B細胞淋巴瘤2(B-cell"lymphoma"2,Bcl2)、VEGF和HIF-1α的表達增加。Tang等[23]在SCI大鼠腹腔內注射去鐵胺1~2周后,發現去鐵胺可促進HIF-1α、VEGF的表達,從而促進血管新生。Shen等[24]研究認為,瞬時受體電位通道5可抑制HIF-1α的表達,并促進血管生成相關蛋白的表達,從而減少炎癥反應的發生。因為HIF-1α特殊的靶點作用,通常在調節HIF-1α表達的同時,也會影響VGEF及其血管生成蛋白的表達。
2.4""細胞凋亡因素
神經元細胞凋亡是造成脊髓不可逆損傷的主要原因之一。SCI患者血脊髓屏障的完整性和微循環機制尚不清楚。Wu等[25]研究褪黑素對SCI小鼠模型血脊髓屏障的影響,結果表明褪黑素可抑制SCI小鼠基質金屬蛋白酶-3/水通道蛋白4/HIF-1α/"VEGF/"VEGF受體2的表達,保護緊密連接蛋白、內皮細胞和周細胞,減少細胞凋亡數量,從而促進血脊髓屏障的修復。Luo等[26]實驗發現,在氧化應激條件下,HIF-1α在缺氧預處理骨髓間充質干細胞的存活中起關鍵作用,沉默HIF-1α可促進骨髓間充質干細胞的凋亡,而HIF-1α誘導劑FG-4592可減少骨髓間充質干細胞的凋亡。HIF-1α是參與線粒體細胞死亡的靶點。Li等[27]研究發現,脯氨酰羥化酶抑制劑DMOG可促進HIF-1α的表達,介導HIF-1α/Bcl2相互作用蛋白3信號通路,抑制凋亡蛋白的表達,促進神經存活,還可通過調節微管的穩定性促進軸突再生。Wang等[28]研究證實,HIF-1α/miR-204/"Bcl-2信號通路誘導缺氧神經元細胞死亡。SCI后抑制細胞凋亡可減輕繼發性SCI,從而促進SCI后神經功能的恢復和重建。
2.5""其他因素
Han等[29]研究成年大鼠SCI后即刻注射攜帶HIF-1α的重組腺病毒并觀察其治療機制,認為攜帶HIF-1α的重組腺病毒可將骨髓間充質干細胞動員到損傷區域,并提高神經營養因子-3和腦源性神經營養因子的表達水平,從而改善SCI大鼠神經功能的恢復。Wang等[30]研究發現,缺氧預處理的骨髓間充質干細胞可上調脊髓組織中HIF-1α的表達水平,從而對SCI細胞起保護作用。
Xiong等[31]實驗發現,丙酮酸直接通過腹膜復蘇作用于脯氨酰羥化酶2及其下游HIF-1α/Bcl2相互作用蛋白3信號通路,激活自噬,對脊髓缺血再灌注損傷具有一定的保護作用。而Wei等[32]認為,HIF對SCI后脯氨酰羥化酶的抑制并不能促進運動恢復。α-觸核蛋白是一種突觸前蛋白,其可從損傷神經元中釋放并激活小膠質細胞。Qiao等[33]在大鼠中分離原代小膠質細胞,檢測HIF-1α"mRNA和蛋白的表達水平,結果發現α-突觸核蛋白以劑量大小刺激HIF-1α在小膠質細胞中積累,此外過表達的HIF-1α與c-Src可共同促進小膠質細胞中小窩蛋白-1的表達和磷酸化,從而引起小膠質細胞遷移。
Fan等[34]認為,增強大鼠SCI后神經營養因子的分泌可促進大鼠神經功能的恢復,這是SCI治療的可行之策。Yuan等[35]將周細胞外泌體移植到SCI小鼠體內,外泌體可提高內皮細胞調節血流的能力,保護血脊髓屏障,減輕水腫,降低HIF-1α等的表達水平,從而發揮治療作用。Wang等[36]使用成年大鼠SCI模型調查引起水通道蛋白1和水通道蛋白4表達上調的機制,發現2-甲氧基雌二醇可抑制SCI后HIF-1α、VEGF、水通道蛋白41和水通道蛋白4表達的上調,故而推斷HIF-1α抑制劑是治療SCI水腫的潛在藥物。
3""未來與展望
目前,SCI的治療主要依靠癥狀和影像學檢查結果評估SCI的嚴重程度和脊髓形態,但這些方法僅能反映損傷已經發生的情況。未來,臨床診治SCI的方法將更加多元化和精確化,將更加注重早期干預和預測。脊髓內微環境紊亂將成為未來研究的重點之一。HIF-1α在SCI中發揮重要作用,其參與調控炎癥反應、氧化代謝、血管生成、細胞凋亡和組織再生等修復過程。因此,HIF-1α可能成為未來SCI早期診斷和治療評估的重要指標。在國內外學者的共同努力下,HIF-1α在治療SCI方面的研究已取得重要進展。這些研究不僅闡明了SCI的相關機制,還指出了新的治療路徑。然而,仍需對HIF-1α進行更深入、更全面的研究,以進一步探索其在SCI中的作用機制和潛在治療效果。這將為SCI的治療提供新的思路和方法,為解決這一全球性難題做出重要貢獻。
未來SCI的相關研究應集中于以下幾個方面:①進一步研究HIF-1α在SCI中的調控機制,包括其與其他分子的相互作用和信號通路的調節。②探索HIF-1α在早期診斷和治療評估中的應用潛力,開發新的檢測方法和指標,以提高SCI的診斷準確性和治療效果。③研究HIF-1α作為治療靶點的可行性和安全性,研發新的藥物和治療策略,以實現對SCI的精準治療。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] HOLMES"D."Spinal-cord"injury:"Spurring"regrowth[J]."Nature,"2017,"552(7684):"S49.
[2] DAVID"G,"MOHAMMADI"S,"MARTIN"A"R,"et"al."Traumatic"and"nontraumatic"spinal"cord"injury:"Pathological"insights"from"neuroimaging[J]."Nat"Rev"Neurol,"2019,"15(12):"718–731.
[3] HUTSON"T"H,"DI"GIOVANNI"S."The"translational"landscape"in"spinal"cord"injury:"Focus"on"neuroplasticity"and"regeneration[J]."Nat"Rev"Neurol,"2019,"15(12):"732–745.
[4] FOUAD"K,"POPOVICH"P"G,"KOPP"M"A,"et"al."The"neuroanatomical-functional"paradox"in"spinal"cord"injury[J]."Nat"Rev"Neurol,"2021,"17(1):"53–62.
[5] XU"Y,"ZHU"Z"H,"XU"X,"et"al."Neuron-derived"exosomes"promote"the"recovery"of"spinal"cord"injury"by"modulating"nerve"cells"in"the"cellular"microenvironment"of"the"lesion"area[J]."Mol"Neurobiol,"2023,"60(8):"4502–4516.
[6] KIM"J"W,"JEON"N,"SHIN"D"E,"et"al."Regeneration"in"spinal"disease:"Therapeutic"role"of"hypoxia-inducible"factor-1"alpha"in"regeneration"of"degenerative"intervertebral"disc[J]."Int"J"Mol"Sci,"2021,"22(10):"5281.
[7] TESSEMA"B,"SACK"U,"SEREBROVSKA"Z,"et"al."Effects"of"hyperoxia"on"aging"biomarkers:"A"systematic"review[J]."Front"Aging,"2021,"2:"783144.
[8] TANG"Y"Y,"WANG"D"C,"WANG"Y"Q,"et"al."Emerging"role"of"hypoxia-inducible"factor-1α"in"inflammatory"autoimmune"diseases:"A"comprehensive"review[J]."Front"Immunol,"2022,"13:"1073971.
[9] CHEN"W,"WU"P,"YU"F,"et"al."HIF-1α"regulates"bone"homeostasis"and"angiogenesis,"participating"in"the"occurrence"of"bone"metabolic"diseases[J]."Cells,"2022,"11(22):"3552.
[10] TANAKA"N,"SAKAMOTO"T."Mint3"as"a"potential"target"for"cooling"down"HIF-1α-mediated"inflammation"and"cancer"aggressiveness[J]."Biomedicines,"2023,"11(2):"549.
[11] NI"S,"YANG"B,"XIA"L,"et"al."EZH2"mediates"miR-146a-5p/HIF-1α"to"alleviate"inflammation"and"glycolysis"after"acute"spinal"cord"injury[J]."Mediators"Inflamm,"2021,"2021:"5591582.
[12] LI"X,"LOU"X,"XU"S,"et"al."Hypoxia"inducible"factor-1"(HIF-1α)"reduced"inflammation"in"spinal"cord"injury"via"miR-380-3p/"NLRP3"by"circ"0001723[J]."Biol"Res,"2020,"53(1):"35.
[13] XU"S,"WANG"J,"ZHONG"J,"et"al."CD73"alleviates"GSDMD-mediated"microglia"pyroptosis"in"spinal"cord"injury"through"PI3K/AKT/Foxo1"signaling[J].nbsp;Clin"Transl"Med,"2021,"11(1):"e269.
[14] MA"Y,"LI"P,"JU"C,"et"al."Photobiomodulation"attenuates"neurotoxic"polarization"of"macrophages"by"inhibiting"the"Notch1-HIF-1α/NF-κB"signalling"pathway"in"mice"with"spinal"cord"injury[J]."Front"Immunol,"2022,"13:"816952.
[15] BAO"W,"QIN"P,"NEEDLE"S,"et"al."Chronic"inhibition"of"hypoxia-inducible"factor"prolyl"4-hydroxylase"improves"ventricular"performance,"remodeling,"and"vascularity"after"myocardial"infarction"in"the"rat[J]."J"Cardiovasc"Pharmacol,"2010,"56(2):"147–155.
[16] WU"K,"ZHOU"K,"WANG"Y,"et"al."Stabilization"of"HIF-1α"by"FG-4592"promotes"functional"recovery"and"neural"protection"in"experimental"spinal"cord"injury[J]."Brain"Res,"2016,"1632:"19–26.
[17] DAVID"B"T,"CURTIN"J"J,"GOLDBERG"D"C,"et"al."Hypoxia-inducible"factor"1α"(HIF-1α)"counteracts"the"acute"death"of"cells"transplanted"into"the"injured"spinal"cord[J]."eNeuro,"2020,"7(3):"ENEURO.0092–19.2019.
[18] FAN"X,"WEI"H,"DU"J,"et"al."Hypoxic"preconditioning"neural"stem"cell"transplantation"promotes"spinal"cord"injury"in"rats"by"affecting"transmembrane"immunoglobulin"domain-containing[J]."Hum"Exp"Toxicol,"2022,"41:"9603271211066587.
[19] CHEN"H,"LI"J,"LIANG"S,"et"al."Effect"of"hypoxia-inducible"factor-1/vascular"endothelial"growth"factor"signaling"pathway"on"spinal"cord"injury"in"rats[J]."Exp"Ther"Med,"2017,"13(3):"861–866.
[20] ZHOU"Y,"LIU"X"H,"QU"S"D,"et"al."Hyperbaric"oxygen"intervention"on"expression"of"hypoxia-inducible"factor-1α"and"vascular"endothelial"growth"factor"in"spinal"cord"injury"models"in"rats[J]."Chin"Med"J"(Engl),"2013,"126(20):"3897–3903.
[21] HUANG"J"H,"HE"H,"CHEN"Y"N,"et"al."Exosomes"derived"from"M2"macrophages"improve"angiogenesis"and"functional"recovery"after"spinal"cord"injury"through"HIF-1α/VEGF"axis[J]."Brain"Sci,"2022,"12(10):"1322.
[22] TAO"B,"SHI"K."Decreased"miR-195"expression"protects"rats"from"spinal"cord"injury"primarily"by"targeting"HIF-1α[J]."Ann"Clin"Lab"Sci,"2016,"46(1):"49–53.
[23] TANG"G,"CHEN"Y,"CHEN"J,"et"al."Deferoxamine"ameliorates"compressed"spinal"cord"injury"by"promoting"neovascularization"in"rats[J]."J"Mol"Neurosci,"2020,"70(9):"1437–1444.
[24] SHEN"N,"WANG"L,"WU"Y,"et"al."Adeno-associated"virus"packaged"TRPC5"gene"therapy"alleviated"spinal"cord"ischemic"reperfusion"injury"in"rats[J]."Neuroreport,"2020,"31(1):"29–36.
[25] WU"Q,"JING"Y,"YUAN"X,"et"al."Melatonin"treatment"protects"against"acute"spinal"cord"injury-induced"disruption"of"blood"spinal"cord"barrier"in"mice[J]."J"Mol"Neurosci,"2014,"54(4):"714–722.
[26] LUO"Z,"WU"F,"XUEnbsp;E,"et"al."Hypoxia"preconditioning"promotes"bone"marrow"mesenchymal"stem"cells"survival"by"inducing"HIF-1α"in"injured"neuronal"cells"derived"exosomes"culture"system[J]."Cell"Death"Dis,"2019,"10(2):"134.
[27] LI"Y,"HAN"W,"WU"Y,"et"al."Stabilization"of"hypoxia"inducible"factor-1α"by"dimethyloxalylglycine"promotes"recovery"from"acute"spinal"cord"injury"by"inhibiting"neural"apoptosis"and"enhancing"axon"regeneration[J]."J"Neurotrauma,"2019,"36(24):"3394–3409.
[28] WANG"X,"LI"J,"WU"D,"et"al."Hypoxia"promotes"apoptosis"of"neuronal"cells"through"hypoxia-inducible"factor-1α-microRNA-204-B-cell"lymphoma-2"pathway[J]."Exp"Biol"Med"(Maywood),"2016,"241(2):"177–183.
[29] HAN"X,"CHEN"Y,"LIU"Y,"et"al."HIF-1α"promotes"bone"marrow"stromal"cell"migration"to"the"injury"site"and"enhances"functional"recovery"after"spinal"cord"injury"in"rats[J]."J"Gene"Med,"2018,"20(12):"e3062.
[30] WANG"Z,"FANG"B,"TAN"Z,"et"al."Hypoxic"preconditioning"increases"the"protective"effect"of"bone"marrow"mesenchymal"stem"cells"on"spinal"cord"ischemia/reperfusion"injury[J]."Mol"Med"Rep,"2016,"13(3):"1953–1960.
[31] XIONG"Y,"XIA"Y,"DENG"J,"et"al."Direct"peritoneal"resuscitation"with"pyruvate"protects"the"spinal"cord"and"induces"autophagy"via"regulating"PHD2"in"a"rat"model"of"spinal"cord"ischemia-reperfusion"injury[J]."Oxid"Med"Cell"Longev,"2020,"2020:"4909103.
[32] WEI"G"Z,"SARASWAT"OHRI"S,"KHATTAR"N"K,"et"al."Hypoxia-inducible"factornbsp;prolyl"hydroxylase"domain"(PHD)"inhibition"after"contusive"spinal"cord"injury"does"not"improve"locomotor"recovery[J]."PLoS"One,"2021,"16(4):"e0249591.
[33] QIAO"H,"HE"X,"ZHANG"Q,"et"al."Α-synuclein"induces"microglial"cell"migration"through"stimulating"HIF-1α"accumulation[J]."J"Neurosci"Res,"2017,"95(9):"1809–1817.
[34] FAN"W"L,"LIU"P,"WANG"G,"et"al."Transplantation"of"hypoxic"preconditioned"neural"stem"cells"benefits"functional"recovery"via"enhancing"neurotrophic"secretion"after"spinal"cord"injury"in"rats[J]."J"Cell"Biochem,"2018,"119(6):"4339–4351.
[35] YUAN"X,"WU"Q,"WANG"P,"et"al."Exosomes"derived"from"pericytes"improve"microcirculation"and"protect"blood-spinal"cord"barrier"after"spinal"cord"injury"in"mice[J]."Front"Neurosci,"2019,"13:"319.
[36] WANG"Y"F,"FAN"Z"K,"CAO"Y,"et"al."2-methoxyestradiol"inhibits"the"up-regulation"of"AQP4"and"AQP1"expression"after"spinal"cord"injury[J]."Brain"Res,"2011,"1370:"220–226.
(收稿日期:2024–03–07)
(修回日期:2024–05–30)