



摘要:微藻營養豐富,目前市售產品主要以高溫干燥處理后的微藻粉制得,然而干燥過程會導致活性成分大量流失,營養價值大打折扣,因此,基于新鮮微藻開發的鮮食產品極具市場價值。在鮮食微藻保藏過程中,防腐且保留藻細胞活性是面臨的首要問題。天然抑菌劑因為綠色安全已經被應用于水產品、肉制品、奶制品等食品中,具有良好的防腐保鮮效果。文章分析了幾種天然抑菌劑的抑菌機制及其應用現狀,并分析了將其應用于鮮食微藻的可行性。
關鍵詞:鮮食微藻;天然抑菌劑;微藻防腐;保鮮
中圖分類號:TS202.3""""" 文獻標志碼:A"""" 文章編號:1000-9973(2024)11-0195-05
Feasibility Analysis of Application of Natural Antimicrobial Agents in
Fresh-Eating Microalgae
LIU Ya-nan1, ZHOU Zhen-zhen2*, ZHANG Jun-jie1, CONG Wei2, DUAN Rui1
(1.School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005,
China; 2.Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)
Abstract: Microalgae is rich in nutrients. At present, commercially available products are mainly made from microalgae powder after high-temperature drying treatment. However, the drying process can lead to a significant loss of active components, greatly reducing its nutritional value. Therefore, fresh-eating products developed based on fresh microalgae are of great market value. During the preservation of fresh-eating microalgae, anti-corrosion and retaining algal cell activity is the primary issue. Natural antimicrobial agents have been applied in aquatic products, meat products, dairy products and other foods due to their green and safe nature, and have good anti-corrosion and preservation effects. In this paper, the antimicrobial mechanism and the application status of several natural antimicrobial agents are analyzed, and the feasibility of applying them to fresh-eating microalgae is analyzed.
Key words: fresh-eating microalgae; natural antimicrobial agent; anti-corrosion of microalgae; preservation
收稿日期:2024-05-28
基金項目:國家重點研發計劃(2022YFD1300703)
作者簡介:劉亞楠(1999—),女,碩士,研究方向:農(水)產品貯藏與保鮮。
*通信作者:周真真(1991—),女,助理研究員,博士,研究方向:微藻產品加工與應用。
微藻胞內營養豐富,作為可食用資源已有幾百年的歷史[1]。螺旋藻中蛋白質含量高達60%~70%,含有全部必需氨基酸,且與人體所需的比例極為接近[2],蛋白核小球藻中蛋白質含量高達60%,多糖含量約為25%,可用作優質的營養補充劑。
為了便于保存和運輸,目前市場上的微藻多為干燥狀態,主要通過噴霧干燥的方式將采收的微藻泥脫水。高溫能快速達到干燥的效果且去除雜菌,但會導致胞內的熱敏性成分損失高達70%[3-6]。為了較完整地保留微藻的營養成分,開發鮮食微藻產品逐漸引起人們的關注。
鮮食微藻是將采收后的濕藻泥不經干燥直接制成可食用形態。濕藻很難常溫儲存,一方面,藻細胞代謝會消耗胞內營養;另一方面,濕藻由于營養全面會不斷富集環境中的細菌和霉菌,導致藻泥腐敗。冷凍保存雖然可以解決上述問題,但解凍后細胞破碎,胞內物質溶出,難以制成鮮藻產品。因此,在適宜的存儲溫度下添加抑菌劑有望解決微藻的存儲保鮮問題。
1 微藻制品中微生物污染的來源及種類
1.1 微生物污染的來源
微藻的微生物污染主要來源于培養過程和采收過程。微藻的規模化培養主要采用開放式和半開放式,無法避免環境中的浮游植物、細菌和原生動物等的污染,且微藻能通過光合作用產生胞外多糖和蛋白質等有機質,進而富集環境中的微生物,導致污染嚴重[7],微藻的采收主要采用自然沉降法、離心法和過濾法等。自然沉降法是濃縮藻液在自然環境中依靠重力將上清液與藻細胞分離[8],此過程中的微生物污染類似培養過程;離心法是將藻液高速旋轉達到分離效果,配合過濾洗滌,去除一部分微生物,但該過程可能會受到空氣中微生物的污染[9];過濾法是將藻液通過帶孔的膜進行分離,培養液通過膜而藻細胞被截留[10],根據藻細胞和污染物的尺寸選擇膜孔徑,從而除去部分污染物,但無法保證完全無菌。此外,鮮藻產品加工過程中由于加工者的操作不當可能會發生交叉污染,如金黃色葡萄球菌(Staphylococcus aureus)等致病菌的污染[11],通過嚴格要求加工者規范操作,保障生產車間的衛生安全,可以降低此類污染發生的概率。
1.2 微生物的種類
不同藻種培養過程中污染的微生物種類不同。研究表明,螺旋藻培養液中的污染主要來源于細菌和原生動物,主要細菌為變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)等,原生動物種類主要是褶皺臂尾輪蟲(Brachionus plicatilis)和異葉足變形蟲(Euplaesiobystra hypersalinica)[12]。蛋白核小球藻培養液中污染的細菌主要有寄生細菌吸血弧菌(Vampirovibrio chlorellavorus)[13]、假單胞菌屬(Pseudomonas)[14]、梭狀芽孢桿菌(Clostridium)[15]、非硫紫色細菌(Rhodopseudomonas sp.)[16];且容易被其他藍藻污染,如銅綠微囊藻(Microcystis aeruginosa)產的微囊藻毒素(microcystin)對人體有毒[17],不能食用;此外,還有原生動物如纖毛蟲等的污染,但可過濾去除[7]。
濕藻存儲時,除了自身攜帶的伴生菌外,還會受到環境中其他腐敗菌的污染。在一項連續兩年對新鮮和干燥的可食用海藻Alariaes culenta和Saccharina latissimi進行微生物存在評估的研究中,發現鮮藻儲存時主要的腐敗菌為假單胞菌屬(Pseudomonas)、芽孢桿菌屬(Bacillus)、葡萄球菌屬(Staphylococcus)和微球菌屬(Micrococcus),并且檢測出了酵母菌屬(Saccharomyces)[18]。因此,采用抑菌劑控制濕藻中的微生物對于延長其保藏期具有重要的意義。
2 天然抑菌劑的抑菌機制和在食品中的應用
在選擇生鮮產品時,消費者對天然、綠色、健康、無污染、有“清潔標簽”的食品越來越感興趣[19]。從植物、動物或微生物中提取的天然抗菌劑具有綠色天然、安全無毒和廣譜抗菌的特性,正在成為食品保鮮的首選[20]。
2.1 ε-聚賴氨酸的抑菌機制及應用
ε-聚賴氨酸(ε-PL)是L-賴氨酸的-α-羧基與-ε-氨基通過酰胺鍵連接而成的天然強效抑菌物質,由白色鏈霉菌(Streptomyces albus)發酵產生[21-22]。ε-PL帶正電荷,可以與細胞膜上帶負電荷的磷脂分子頭部以靜電作用相結合[23],破壞細胞膜的完整性,使菌體自溶死亡,還可能進入細胞質與遺傳物質作用影響其正常功能[24]。ε-PL是一種廣譜抑菌劑,對多種細菌、酵母菌和真菌有抑制作用[25-27]。
ε-PL作為符合GB 2760—2014的食品添加成分,目前已有廣泛的應用。ε-PL能有效地抑制冷鮮鳙魚片中假單胞菌(Pseudomonas)和希瓦氏菌(Shewanella)的繁殖[28]。噴灑1 000 mg/L的ε-PL可將贛南臍橙的保鮮期延長至180 d,壞果率僅為38.89%[29]。此外,還可與其他抗菌物質復配制成更高效的抑菌劑。Hu等[30]將ε-PL和大豆蛋白復配制成靜電復合物并應用于柑橘的保鮮,僅需2.5 mg/L ε-PL即可抑制大腸桿菌(Escherichia coli)、金黃色葡萄球菌(S. aureus)的活性。尹卓凡[31]研究表明,與單獨使用ε-PL相比,香芹酚/ε-PL納米乳液的抗菌活性更高,對金黃色葡萄球菌(S. aureus)、腸出血性大腸桿菌(Enterohemorrhagic E.coli)和黑曲霉(Aspergillus niger)有明顯的抑制作用,對芒果的保鮮效果良好。綜上,單獨或復配使用ε-PL可以有效提高生鮮食品的防腐保鮮效果。
2.2 溶菌酶的抑菌機制及應用
溶菌酶是一種能水解細菌黏多糖的堿性酶,主要從動物乳汁和禽類蛋白中提取。其肽鏈中Glu-35和Asp-52所構成的活性中心可以水解細菌細胞壁中N-乙酰氨基葡萄糖(NAG)和N-乙酰氨基胞壁酸(NAM)殘基構成的β-(1,4)-糖苷鍵,使不溶性的黏多糖骨架結構斷裂,進而導致細胞破裂[32-33]。
研究表明,濃度為0.4%的溶菌酶可抑制霉菌和酵母菌的生長,可用于高品質酸奶的生產[33]。溶菌酶在果蔬和水產品等保鮮中的應用研究也有許多報道。Xu等[35]將獼猴桃在0.08%溶菌酶中浸泡2 min儲存20 d后,腐爛發生率降低60%。三文魚保鮮存儲時,在新鮮三文魚的表面涂抹濃度為0.1%~0.7%的溶菌酶可抑制菌落總數的增長[36]。從溶菌酶與陰離子防御肽(GMAP2)的研究中發現,與抗革蘭氏陽性菌活性水平相比,溶菌酶對革蘭氏陰性菌的作用較弱,而與GMAP2聯用可以協同對抗革蘭氏陰性菌[37]。因此,溶菌酶需要與其他防腐劑聯用以提高在食品中的抗菌效果。將溶菌酶與殼聚糖聯用于草莓的保鮮中發現,活性比游離溶菌酶增強了256%,金黃色葡萄球菌(S. aureus)和單核細胞增生李斯特氏菌(Listeria monocytogenes)的抑菌圈增加1 mm左右[38]。溶菌酶和納米纖維素聯用可顯著增強抗細菌和真菌的活性[39],與植酸聯用時可將草魚片的保質期延長2 d[40]。
2.3 納他霉素的抑菌機制及應用
納他霉素是由納他鏈霉菌(Streptomyces natalensis)產生的一種天然多烯大環內酯類生物殺菌劑,對人體毒性較低,被美國食品藥品監督管理局(FDA)認定為“普遍認為安全(GRAS)”的物質[41]。目前已在40多個國家被批準作為食品添加劑。納他霉素通過與霉菌(酵母菌)等真菌細胞膜上的甾醇,尤其是麥角甾醇,結合形成復合物,改變細胞膜的通透性,從而殺死細胞[42],對細胞膜上無甾醇的細菌和病毒無效。
納他霉素通常用于食品的表面處理,通過噴灑或浸泡即可有效地抑制霉菌和酵母菌。使用500 mg/L納他霉素可將酸腐病發生率降低近30%[44]。含70%納他霉素的薄膜可有效降低奶酪表面黑曲霉的生長速度[45]。納他霉素濃度高于2.23 mg/L時可以顯著抑制導致藍莓腐敗的鏈格孢霉菌(Alternaria)的分生孢子萌發和生長,從而延長藍莓的保藏期。食品保鮮不僅要抑制真菌,而且需抑制細菌。因此,將納他霉素與細菌抑菌劑如ε-PL和溶菌酶等聯合使用,可以擴展抑菌范圍,從而增強防腐保鮮效果。例如Wu等[46]將納他霉素與ε-PL復配后應用于番茄炒蛋中可有效抑制假單胞菌(Pseudomonas)、不動桿菌(Acinetobacter)、鐮刀菌(Fusarium)和曲霉(Aspergillus)等典型的腐敗/病原微生物。
2.4 乳酸鏈球菌素的抑菌機制及應用
乳酸鏈球菌素由34個氨基酸殘基組成,是乳酸菌產生的一種天然抗菌肽[47]。抑菌機理基于細菌膜水平產生雙重作用機制:一方面,帶正電的乳酸鏈球菌素與帶負電的細菌細胞膜表面通過靜電相互作用,形成一定孔徑的通道,細胞質內小分子和離子通過孔道流失,導致細胞溶解死亡。另一方面,乳鏈菌肽的N末端與位于細菌細胞質膜上的肽聚糖前體脂質Ⅱ相互作用,使乳鏈菌肽的C末端穿過細菌細胞質膜,抑制肽聚糖合成[48]。
僅添加12 mg/L的乳酸鏈球菌素即可抑制干酪中的蠟狀芽孢桿菌(Bacillus cereus)和金黃色葡萄球菌(S. aureus)[49]。應用于火腿表面時,乳酸鏈球菌素可使金黃色葡萄球菌(S. aureus)和單核細胞增生李斯特氏菌(Listeria monocytogenes)分別減少約5.53,5.62 log10 CFU/cm2[50]。乳酸鏈球菌素能有效地抑制革蘭氏陽性菌和芽孢的生長和繁殖,而對革蘭氏陰性菌、霉菌和酵母菌的抑制作用不明顯。根據此特性可以與納他霉素和溶菌酶等生物防腐劑配制成更廣譜的抑菌劑制品。趙長青等[51]將0.50 g/kg乳酸鏈球菌素與0.50 g/kg溶菌酶復配后用于豬肉干的儲存,在3個月的貯藏期內未檢測出霉菌和金黃色葡萄球菌。也有研究表明,2.5%乳酸鏈球菌素和50%植酸具有協同作用,可有效減少冷藏牛肉中革蘭氏陽性菌如大腸桿菌的數量[52]。
3 天然抑菌劑在鮮食微藻中應用的潛力
3.1 鮮食螺旋藻
螺旋藻是螺旋狀多細胞藍藻,為原核生物,沒有細胞膜,細胞壁主要由粗蛋白和纖維素組成[53]。篩選鮮食螺旋藻抑菌劑時,要求抑菌劑不能破壞螺旋藻的細胞活性,根據上述生物防腐劑的抑菌機制,ε-PL能抑制鮮食螺旋藻中的雜菌,且不破壞螺旋藻細胞活性,因此有望成為鮮食螺旋藻的抑菌劑。
溶菌酶殺菌的作用位點與螺旋藻細胞壁的結構不一致,因此也不影響螺旋藻活性。螺旋藻泥存儲過程中污染的酵母和霉菌使用適宜濃度的納他霉素即可有效地清除。此外,溶菌酶和乳酸鏈球菌素在理論上也不會影響螺旋藻活性,可與ε-PL和納他霉素聯用,提高抑菌效率。
3.2 鮮食小球藻
蛋白核小球藻屬于真核細胞,具有細胞膜結構,細胞膜的陰離子可能與ε-PL反應導致藻細胞裂解死亡,因此ε-PL不適用于小球藻。
納他霉素屬于內酯類抗生素,會迫使小球藻細胞脂質過氧化程度加劇,影響小球藻細胞中葉綠素合成、DNA復制與修復相關基因的表達[54]。因此,納他霉素不適合作為蛋白核小球藻的抑菌劑。
溶菌酶主要作用于細胞壁的肽聚糖,而蛋白核小球藻的細胞壁成分主要為幾丁質,因此不會抑制蛋白核小球藻的生長,可以應用于蛋白核小球藻的鮮食產品中。但由于其抑菌范圍有限,必須配合使用其他廣譜性的抑菌劑,例如脫氫乙酸鈉等,才能達到食品抑菌效果。已有研究表明,脫氫乙酸鈉可以降低培養過程中對無菌性的要求,且促進微藻生長[55]。
雖然目前天然抑菌劑在微藻產品中應用的研究還比較少,但隨著研究的深入,天然抑菌劑將在鮮食微藻產品的開發中發揮重要的作用。
參考文獻:
[1]VILLAR-COS S, GUZMN SNCHEZ J L, ACIN G, et al. Research trends and current requirements and challenges in the industrial production of Spirulina as a food source[J].Trends in Food Science amp; Technology,2024,143(2):104280.
[2]TAVAKOLI S, HONG H, WANG K, et al. Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties[J].Algal Research,2021,60:102493.
[3]LARROSA A P Q, COMITRE A A, VAZ L B, et al. Influence of air temperature on physical characteristics and bioactive compounds in vacuum drying of Arthrospira spirulina[J].Journal of Food Process Engineering,2017,40(2):12359.
[4]COSTA B R, ROCHA S F, RODRIGUES M C K, et al. Physicochemical characteristics of the Spirulina sp. dried in heat pump and conventional tray dryers[J].International Journal of Food Science amp; Technology,2016,50(12):2614-2620.
[5]PAPADAKI S, KYRIAKOPOULOU K, STRAMARKOU M, et al. Environmental assessment of industrially applied drying technologies for the treatment of Spirulina platensis[J].Journal of Environmental Science, Toxicology and Food Technology,2017,11(1):41-46.
[6]FBIO F N, MARIANA D, GIUSTINO T. Drying and Quality of Microalgal Powders for Human Alimentation[M]//MILADA V. Microalgae—From Physiology to Application,Rijeka:Intech Open,2019:4.
[7]WANG H, ZHANG W, CHEN L, et al. The contamination and control of biological pollutants in mass cultivation of microalgae[J].Bioresource Technology,2013,128:745-750.
[8]YIN Z H, ZHU L D, LI S X, et al. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions[J].Bioresource Technology,2020,301(6):122804.
[9]LIU Z Y, HAO N H, HOU Y Y, et al. Technologies for harvesting the microalgae for industrial applications:current trends and perspectives[J].Bioresource Technology,2023,387(14):129631.
[10]UDAYAN A, SIROHI R, SREEKUMAR N, et al. Mass cultivation and harvesting of microalgal biomass: current trends and future perspectives[J].Bioresource Technology,2022,344(15):126406.
[11]AIYEGORO O A. Microbial Contamination of Processed meat[M]//DIKEMAN M. Encyclopedia of Meat Sciences (Third Edition), Oxford: Elsevier,2024:484-490.
[12]YUAN D N, YAO M M, WANG L, et al. Effect of recycling the culture medium on biodiversity and population dynamics of bio-contaminants in Spirulina platensis mass culture systems[J].Algal Research,2019,44:101718.
[13]HIRAYAMA A, SUEYOSHI M N, NAKANO T, et al. Development of large-scale microalgae production in the Middle East[J].Bioresource Technology,2022,343(4):126036.
[14]ZHOU W L, QIAO X T, SUN J F, et al. Ecological effect of Z-QS01 strain on Chlorella vulgaris and its response to UV-B radiation stress[J].Procedia Environmental Sciences,2011,11(6):741-748.
[15]MU R M, FAN Z Q, PEI H Y, et al. Isolation and algae-lysing characteristics of the algicidal bacterium B5[J].Journal of Environmental Sciences,2007,19(11):1336-1340.
[16]HAN D X, BI Y H, HU Z Y. Industrial Production of Microalgal Cell-Mass and Secondary Products-Species of High Potential: Nostoc[M]//Handbook of Microalgal Culture: Biotechnology and Applied Phycology,Oxford:Wiley-Blackwell,2004:304-311.
[17]LIN S Q, PAN J L, LI Z H, et al. Characterization of an algicidal bacterium Brevundimonas J4 and chemical defense of Synechococcus sp. BN60 against bacterium J4[J].Harmful Algae,2014,37:1-7.
[18]LYTOU A E, SCHOINA E, LIU Y, et al. Quality and safety assessment of edible seaweeds Alaria esculenta and Saccharina latissima cultivated in Scotland[J].Foods,2021,10(9):2210.
[19]GRANT A Q, PARVEEN S. All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging[J].Journal of Food Protection,2017,80(4):540-544.
[20]CHEN Y, MIAO W H, LI X X, et al. The structure, properties, synthesis method and antimicrobial mechanism of ε-polylysine with the preservative effects for aquatic products[J].Trends in Food Science amp; Technology,2023,139:104131.
[21]ZHANG Y Z, ZHAO C Q, ZHAO X X, et al. Application of ε-polylysine in extending the storage period of pork jerky[J].Food Science amp; Nutrition,2021,9(6):3250-3257.
[22]莊孝東,白森萌,李博彥,等.ε-聚賴氨酸微生物生產及其應用研究進展[J].中國抗生素雜志,2023,48(10):1081-1095.
[23]常森林.ε-聚賴氨酸的發酵生產、提取純化及修飾改性的研究[D].北京:中國科學院大學,2022.
[24]WEI M L, GE Y H, LI C Y, et al. Antifungal activity of epsilon-poly-L-lysine on Trichothecium roseum in vitro and its mechanisms[J].Physiological and Molecular Plant Pathology,2018,103:23-27.
[25]LIU K W, ZHOU X J, FU M R. Inhibiting effects of epsilon-polylysine (ε-PL) on Pencillium digitatum and its involved mechanism[J].Postharvest Biology amp; Technology,2017,123:94-101.
[26]ZHANG L M, LI R C, DONG F, et al. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine[J].Food Chemistry,2015,166:107-114.
[27]CHANG S S, LU W Y, PARK S H, et al. Control of foodborne pathogens on ready-to-eat roast beef slurry by ε-polylysine[J].International Journal of Food Microbiology,2010,141(3):236-241.
[28]LIU X C, LI D P, LI K F, et al. Monitoring bacterial communities in ε-polylysine-treated bighead carp (Aristichthys nobilis) fillets using culture-dependent and culture-independent techniques[J].Food Microbiology,2018,76:257-266.
[29]陳秋映,楊美艷,高向陽,等.ε-聚賴氨酸對贛南臍橙保鮮效果的研究[J].食品工業,2021,42(12):143-147.
[30]HU Q Y, JIN Y Y, XIAO Y W, et al. ε-Polylysine and soybean protein isolate form nanoscale to microscale electrostatic complexes in solution: properties, interactions and as antimicrobial edible coatings on citrus[J].International Journal of Biological Macromolecules,2023,253(1):126616.
[31]尹卓凡.香芹酚/ε-聚賴氨酸抗菌納米乳液的制備及其在芒果保鮮中的應用[D].長春:吉林大學,2023.
[32]曹濤,劉同軍,王艷君.微生物溶菌酶的研究及應用[J].中國調味品,2011,36(3):23-26,32.
[33]AWAD D A B, EL-HADARY A, OSMAN A, et al. Yogurt fortified with enzyme-modified egg white lysozyme impact on sensory, physicochemical, and microbiological properties and potential for functional product development[J].Journal of Agriculture and Food Research,2023,14(4):100670.
[34]王武,王碧,白瑜,等.改造溶菌酶抑菌活性研究進展[J].中國畜牧獸醫,2023,50(3):942-951.
[35]XU F X, LIU S Y, LIU Y F, et al. Effectiveness of lysozyme coatings and 1-MCP treatments on storage and preservation of kiwifruit[J].Food Chemistry,2019,288:201-207.
[36]WANG Z X, HU S F, GAO Y P, et al. Effect of collagen-lysozyme coating on fresh-salmon fillets preservation[J].LWT-Food Science and Technology,2017,75:59-64.
[37]ZDYBICKA-BARABAS A, MAK P, KLYS A, et al. Synergistic action of Galleria mellonella anionic peptide 2 and lysozyme against Gram-negative bacteria[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2012,1818(11):2623-2635.
[38]NIU X D, ZHU L, XI L J, et al. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation[J].Food Control,2020,108(6):106829.
[39]JEBALI A, HEKMATIMOGHADDAM S, BEHZADI A, et al. Antimicrobial activity of nanocellulose conjugated with allicin and lysozyme[J].Cellulose,2013,20:2897-2907.
[40]SUN X H, HONG H, JIA S L, et al. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 ℃[J].Food Microbiology,2020,86(9):103313.
[41]ZHANG C L, GONG H S, LIU Y L. Effects of postharvest coating using chitosan combined with natamycin on physicochemical and microbial properties of sweet cherry during cold storage[J].International Journal of Biological Macromolecules,2022,214:1-9.
[42]SAITO S, WANG F, XIAO C L. Natamycin as a postharvest treatment to control gray mold on stored blueberry fruit caused by multi-fungicide resistant Botrytis cinerea[J].Postharvest Biology and Technology,2022,187:111862.
[43]WANG X H, SONG X J, ZHANG D J, et al. Preparation and characterization of natamycin-incorporated agar film and its application on preservation of strawberries[J].Food Packaging and Shelf Life,2022,32:100863.
[44]FERNNDEZ G, SBRES M, LADO J, et al. Postharvest sour rot control in lemon fruit by natamycin and an Allium extract[J].International Journal of Food Microbiology,2022,368:109605.
[45]FANG M H, WANG J L, FANG S, et al. Fabrication of carboxymethyl chitosan films for cheese packaging containing gliadin-carboxymethyl chitosan nanoparticles co-encapsulating natamycin and theaflavins[J].International Journal of Biological Macromolecules,2023,246:125685.
[46]WU W F, LI Y R, ZHU X Y, et al. Antimicrobial activity enabled by chitosan-ε-polylysine-natamycin and its effect on microbial diversity of tomato scrambled egg paste[J].Food Chemistry:X,2023,19:100872.
[47]UCAR Y, OZOGUL Y, DURMU M, et al.The effects of nisin on the growth of foodborne pathogens and biogenic amine formation: in vivo and in vitro studies[J].Food Bioscience,2021(2):101266.
[48]WU M J, MA Y, DOU X, et al.A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use[J].Food Research International,2023,164(1):112363.
[49]SEN C, RAY P R, HOSSAIN S, et al. Influence of nisin on water activity, textural and other quality attributes of paneer (Indian cottage cheese) during storage[J].Food and Humanity,2023,1(3):1134-1144.
[50]PATTANAYAIYING R, H-KITTIKUN A, CUTTER C N. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat muscle foods[J].International Journal of Food Microbiology,2015,207:77-82.
[51]趙長青,張益卓,代錦蘋,等.天然復配防腐劑對三種口味豬肉干貯藏品質的影響[J].中國調味品,2023,48(12):7-15.
[52]ZHAO G, KEMPEN P J, ZHENG T, et al.Synergistic bactericidal effect of nisin and phytic acid against Escherichia coli O157:H7[J].Food Control,2023,144(10):109324.
[53]張立彬,甄二英,李振永.螺旋藻的營養價值及培養[J].飼料研究,2006(1):31-32.
[54]李吉平.蛋白核小球藻對典型大環內酯類抗生素脅迫的響應及機制[D].南京:南京林業大學,2023.
[55]王兆偉,彭小偉.一種微藻培養基及應用:中國,CN114621874B[P].2022-06-14.