摘 要 正常狀態下,人體與腸道微生物群互利共生。腸道微生物群已被證實與多種疾病相關,而肝臟作為腸道的比鄰器官,無論是在解剖學上還是在功能上都與腸道密切相關。罹患肝病時,腸道微生物群組成發生顯著變化,且該變化還會進一步促進肝病進展。本文介紹不同肝病狀態下腸道菌群及其代謝物的變化和這種變化對肝病進展的影響,以幫助同人深入認識腸道菌群變化與肝病發生發展之間的關聯,進而共同探索基于腸道微生態的肝病預防和治療新策略。
關鍵詞 腸道菌群 藥物性肝損傷 自身免疫性肝病 代謝相關脂肪性肝病 肝硬化 肝癌
中圖分類號:R333.3; R575 文獻標志碼:A 文章編號:1006-1533(2024)19-0003-04
引用本文 張會祿, 潘亦達, 陳堅. 腸道菌群及其代謝與肝臟疾病[J]. 上海醫藥, 2024, 45(19): 3-6; 11.
Relationship between gut microbiota and its metabolites and liver diseases
ZHANG Huilu, PAN Yida, CHEN Jian
(Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT The human body and the gut microbiota are mutually beneficial and symbiotic under normal conditions. The gut microbiota has been proven to be associated with various diseases, and the liver, as a neighboring organ, is closely related to the gut both anatomically and functionally. Numerous studies have shown that the composition of gut microbiota undergoes significant changes when suffering from liver disease and the changes can significantly affect the development of liver diseases. This review summarizes the changes in gut microbiota and its metabolites under different liver disease states and their impact on the occurrence and development of liver disease to help colleagues deeply understand the relationship between the changes in gut microbiota and the development of liver disease, and then jointly explore new strategies for the prevention and treatment of liver disease based on gut microbiota.
KEY WORDS gut microbiota; drug-induced liver injury; autoimmune liver disease; metabolic-related fatty liver disease; cirrhosis; liver cancer
腸道微生物群與人體共存,在人體健康和罹患疾病方面起著重要作用。腸道微生物群從人出生時開始獲得,然后其微生物群構成逐漸向成人微生物群靠攏。人生命早期是腸道微生物群發育的關鍵時期,微生物群構成對人體的健康會產生長期影響[1]。人體腸道微生物群由細菌、真菌、病毒、寄生蟲和古生菌等組成[2],其中細菌所占比例較其他微生物高2~3個數量級。不同消化道區域的含菌量不同,以結腸含有的細菌數量最多。目前,對于腸道微生物群的研究主要集中在細菌方面。腸道內穩定的菌群可以提供人體很多益處,如產生機體必需的營養物質,維護腸道黏膜的完整性,促進免疫系統成熟等,并能通過腸道神經系統影響大腦功能[3]。年齡、飲食、地理環境、藥物、疾病等因素均可改變腸道菌群的組成及其代謝物[4-5],進而影響人體健康。
已有研究證實,腸道菌群的變化與炎癥性腸病、心血管疾病、糖尿病、阿爾茨海默病、風濕免疫性疾病和腫瘤等各個系統的疾病有關[6-8]。肝臟作為第一個接觸來自腸道血液的器官,其無論是在解剖學上還是在功能上都通過門靜脈與腸道密切相關。因此,肝臟疾病與腸道菌群有著千絲萬縷的聯系。正常情況下,腸道黏膜屏障會像“防火墻”一樣阻止細菌進入血液循環,故腸道細菌不能進入肝臟。然而,在某些細菌的作用下,這種屏障可被破壞,如發生沙門菌感染時。此外,一些特定的細菌,如大腸埃希菌C17,能調節腸道黏膜的通透性并促進肝臟中白細胞的募集,進而誘發局部炎癥反應并促進肝臟疾病進展[9]。肝臟和腸道存在著密切的關聯,如肝臟將膽汁及其代謝物通過膽管運輸到腸道,而腸道菌群可再次代謝膽汁酸并影響膽管中初級和次級膽汁酸的比例[10]。
腸道菌群的組成和結構極其復雜。腸道中除細菌外還有細菌的代謝物,這些代謝物可依來源分為3類,即細菌代謝食物產生的代謝物、細菌修飾宿主代謝物產生的代謝物和完全由細菌合成的代謝物。腸道菌群與其代謝物協同作用,共同影響著肝臟。本文概要介紹腸道菌群及其代謝物與不同肝臟疾病,包括藥物性肝損傷(drug-induced liver injury, DILI)、非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)、自身免疫性肝病(autoimmune liver disease, ALD)、肝硬化和肝癌之間關聯的最新研究進展,為進一步研究腸道菌群及其代謝物與肝臟疾病的關聯提供參考。
1 腸道菌群與DILI
與DILI相關的藥物不僅有化學藥物,也有中藥、草藥、膳食補充劑和保健品等。DILI是美國急性肝衰竭的最常見病因。口服藥物都會經過腸道,而腸道細菌可能通過酶促反應來改變藥物的療效和安全性。例如,細菌的β-葡萄糖醛酸酶可將肝臟產生的代謝物他克林-N-葡萄糖苷酸催化游離為他克林,后者會被重吸收入肝臟,由此增強他克林的肝毒性[11]。藥物還能直接改變腸道微環境,從而間接地將機體其他部位的細菌轉移到腸道。例如,質子泵抑制劑就可通過降低胃內酸度,使口腔細菌經胃轉移至腸道[12]。
腸道細菌在DILI過程中具有兩面性。有研究發現通過抗生素提前耗竭腸道細菌可加重雷公藤內酯誘導的肝毒性[13],而抗病毒藥溴夫定會被腸道細菌代謝為有肝毒性的溴乙烯基尿嘧啶[14]。在不同藥物導致的肝損傷中,腸道菌群的變化并不完全相同,但一般都存在多樣性降低、有益菌減少和致病菌增加的現象[15]。
腸道菌群組成和結構的變化會影響菌群代謝物的生成。例如,抗菌藥莫西沙星會通過抑制毛螺菌科而減少菌群產生包括丁酸在內的短鏈脂肪酸數量,由此導致腸黏膜機械和免疫屏障受損,最終影響肝功能[16]。在抗結核藥物所致肝損傷中,腸道中革蘭陰性菌數量明顯增多,導致血清內毒素水平增高,內毒素進入肝臟后激活庫普弗細胞上的Toll樣受體4,引發促炎級聯反應,最終導致肝損傷[17]。
2 腸道菌群與NAFLD
NAFLD(近期已被更名為代謝相關脂肪性肝病)是指肝細胞內脂質的異常堆積,隨著疾病進展,可由單純性脂肪肝逐漸發展為脂肪性肝炎、肝硬化甚至肝細胞癌。NAFLD的發病機制與脂質積累、氧化應激和炎癥反應密切相關,其常見于胰島素抵抗和肥胖患者。越來越多的證據表明,腸道菌群失衡引起的代謝紊亂在NAFLD的發生發展中起著重要作用[18]。健康個體與肥胖的NAFLD患者腸道中的擬桿菌門和厚壁菌門數量有顯著差異。糖尿病患者腸道中厚壁菌與擬桿菌數量的比值也顯著增高。NAFLD合并肝硬化患者的腸道菌群常呈致病菌增加、有益菌減少的特征[19]。
有研究發現,腸道菌群的變化會影響甜菜堿、L-苯丙氨酸、酪胺和硫胺素等細菌代謝物的生成[20]。甜菜堿是甘氨酸的三甲基衍生物,其作為肝細胞中的甲基供體參與肝臟代謝,在肝臟保護中起著重要作用。腸道菌群可通過減少硫胺素和吡哆醇生成,同時增加L-苯丙氨酸和酪胺生成來促進NAFLD進展[21]。此外,在NAFLD患者中還發現他們的血清脂多糖水平增高[22]。脂多糖可激活巨噬細胞并使之釋放腫瘤壞死因子-α、白介素-1β和白介素-6等促炎因子,促進NAFLD向脂肪性肝炎進展。研究還發現,細菌合成的代謝物脂多糖還能下調轉化生長因子-β假受體BAMBI的表達,增強肝星狀細胞對轉化生長因子-β的敏感性,誘發并促進肝纖維化[23]。
3 腸道菌群與ALD
ALD是一組因免疫功能紊亂而引起的特殊類型慢性肝臟疾病,具體包括自身免疫性肝炎(autoimmune hepatitis, AIH)、原發性膽汁性膽管炎(primary biliary cholangitis, PBC)和原發性硬化性膽管炎(primary sclerosing cholangitis, PSC)。除環境和遺傳因素外,腸道菌群失衡也與ALD密切相關。
有研究發現,AIH患者的腸道菌群向更耐缺氧方向轉變:專性厭氧菌如糞球菌屬、顫螺菌屬和瘤胃球菌科等減少,兼性厭氧菌如鏈球菌、克雷伯菌和乳桿菌等增加[24]。這會導致具有調節T細胞作用的短鏈脂肪酸生成減少,而短鏈脂肪酸可以通過增加調節性T輔助細胞來減弱淋巴細胞介導的炎癥反應[25]。此外,多項研究顯示,雙歧桿菌在AIH患者腸道中特異性減少,且雙歧桿菌的缺乏與AIH活動度增高和疾病無法緩解相關[26]。
Tang等[27]的研究發現,PBC患者腸道菌群中的克雷伯菌、乳桿菌、梭菌、假單胞菌、嗜血桿菌、鏈球菌、韋榮球菌屬和腸桿菌科均增加,顫螺菌屬、糞桿菌、蘇氏菌和擬桿菌均減少。另有研究顯示,PBC患者糞便中的次級膽汁酸水平與克雷伯菌和韋榮球菌屬數量呈負相關,而與健康個體的富集菌(如糞桿菌、顫螺菌屬)數量呈正相關[28]。
與炎癥性腸病患者和健康個體相比,PSC患者腸道菌群的特征性表現為菌群多樣性增加,且埃希菌屬、腸球菌屬、梭桿菌屬、乳桿菌屬、細孔菌屬、藍藻屬、巴氏菌屬、毛螺菌屬和巨球型菌屬所占比例均顯著增高[29]。同時,研究還發現,腸球菌屬過多與PSC患者血清堿性磷酸酶水平增高有關,這表明腸道菌群變化可能是PSC的一個致病因素[29]。
4 腸道菌群與肝硬化
肝硬化是慢性肝臟疾病的終末期表現,其常見病因包括病毒性肝炎、酒精性肝病、非酒精性肝病和其他代謝性/自身免疫性肝病。肝硬化的早期病理改變是肝纖維化。研究發現,在敲除促纖維化因子NOX4和RhoA的肝纖維化小鼠中,原本紊亂的腸道菌群表現出有一定程度的改善[30],這表明肝纖維化小鼠的腸道菌群失衡與促纖維化因子有關。Trebicka等[31]的研究發現,與肝硬化患者相比,健康個體腸道中的毛螺菌屬和瘤胃菌屬豐度均顯著增高,而腸桿菌屬、梭桿菌屬、產堿菌屬、乳桿菌屬和明串珠菌屬的豐度均顯著降低。Chen等[32]的研究發現,肝硬化患者糞便中的致病菌鏈球菌屬豐度顯著增高、有益菌毛螺菌屬豐度顯著降低,這與患者Child-Turcotte-Pugh評分較高有關,提示疾病預后較差。此外,Bajaj等[33]的研究發現,肝硬化患者的結腸黏膜菌群與糞便菌群之間存在著顯著差異,且肝性腦病患者中同樣存在著此差異。疾病穩定的肝硬化患者糞便菌群組成相對穩定,其糞便菌群組成具有用作肝硬化疾病活動性生物標志物的潛能。
5 腸道菌群與肝癌
肝細胞癌是最常見的惡性腫瘤之一,其發生與多種危險因素相關,其中乙型肝炎病毒感染和黃曲霉毒素B1污染是中國和印度等發展中國家或地區肝細胞癌發生的主要危險因素[34]。在發達國家或地區,丙型肝炎病毒感染和NAFLD引起的肝硬化是肝細胞癌發生的主要原因。
對健康個體、肝硬化患者和肝細胞癌患者的腸道菌群譜分析發現,他們的腸道菌群多樣性依次持續降低,尤以肝細胞癌患者最為顯著[35]。肝癌的發生通常會經過肝硬化階段,但有些肝癌患者無此階段。一項研究發現,肥胖誘導的肝癌小鼠腸道中的一種革蘭陽性菌菌體成分脂磷壁酸能易位至肝臟,由此上調肝星狀細胞中衰老相關分泌表型和環氧合酶-2的水平[36]。衰老相關分泌表型的上調可導致肝臟中各種炎癥和腫瘤促進因子的表達,從而促進化學致癌物誘導的小鼠肝癌的發生。腸道菌群失衡和腸道黏膜屏障功能減弱都會通過促進炎癥反應信號通路的激活而顯著促進肝硬化和肝癌的發生發展,而補充益生菌制劑可以抑制肝硬化向肝癌進展[37]。此外,腸道菌群的代謝物膽汁酸能夠調節肝竇內皮細胞上趨化因子CXCL16的水平,從而控制肝CXCR6+自然殺傷T細胞的累積,最終影響肝癌細胞的生長[38]。腸道微生態干預可能對肝硬化和肝癌的防治具有重要作用。
6 展望
通過了解腸道菌群如何影響肝臟疾病,可以更全面地認識肝臟疾病的發生發展機制并開發新的治療策略。通過補充益生菌、益生元,以及使用抗生素、糞菌移植等手段,有望重塑腸道微生態,使失衡的腸道菌群恢復到健康狀態,從而發揮肝臟疾病防治作用。益生菌為活的有益菌,口服益生菌可直接增加腸道內有益菌的數量。益生元通常是指不會被人消化吸收的膳食纖維,其主要用于喂養有益菌,從而調節腸道菌群。抗生素可通過減少潛在致病菌來改善腸道微環境。糞菌移植通過將健康供體的腸道菌群移植至某些疾病患者腸道內來調節患者的腸道菌群組成,這已逐漸成為一種新的治療方式[39]。總之,通過運用合理的腸道菌群干預措施并結合特定的藥物治療,有望從根本上改善上述各類肝臟疾病的預后。
參考文獻
[1] Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences [J]. Cell, 2014, 158(4): 705-721.
[2] Weiner A, Turjeman S, Koren O. Gut microbes and host behavior: the forgotten members of the gut-microbiome [J]. Neuropharmacology, 2023, 227: 109453.
[3] Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease [J]. Immunol Rev, 2017, 279(1): 70-89.
[4] Takagi T, Naito Y, Inoue R, et al. Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects [J]. J Gastroenterol, 2019, 54(1): 53-63.
[5] Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome [J]. Gut, 2020, 69(8): 1510-1519.
[6] Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease [J]. Circ Res, 2020, 127(4): 553-570.
[7] Komaroff AL. The microbiome and risk for obesity and diabetes [J]. JAMA, 2017, 317(4): 355-356.
[8] Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota[J]. Sci China Life Sci, 2016, 59(10): 1006-1023.
[9] Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver [J]. Cancer Cell, 2021, 39(5): 708-724.e711.
[10] Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states [J]. Appl Microbiol Biotechnol, 2017, 101(1): 47-64.
[11] Yip LY, Aw CC, Lee SH, et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat [J]. Hepatology, 2018, 67(1): 282-295.
[12] Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome [J]. Gut, 2016, 65(5): 740-748.
[13] Huang JF, Zhao Q, Dai MY, et al. Gut microbiota protects from triptolide-induced hepatotoxicity: key role of propionate and its downstream signalling events [J]. Pharmacol Res, 2020, 155: 104752.
[14] Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity [J]. Science, 2019, 363(6427): eaat9931.
[15] Chen T, Li R, Chen P. Gut microbiota and chemical-induced acute liver injury [J]. Front Physiol, 2021, 12: 688780.
[16] Sun Y, Cong L, Yang S, et al. Moxifloxacin induced liver injury by causing Lachnospiraceae deficiency and interfering with butyric acid production through gut-liver axis [J]. Dis Markers, 2022, 2022: 9302733.
[17] Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy [J]. J Hepatol, 2020, 72(3): 558-577.
[18] Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases [J]. Metabolism, 2021, 117: 154712.
[19] Loomba R, Seguritan V, Li W, et al. Gut microbiomebased metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease[J]. Cell Metab, 2017, 25(5): 1054-1062.e5. Erratum in: Cell Metab, 2019, 30(3): 607.
[20] Koistinen VM, K?rkk?inen O, Borewicz K, et al. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation [J]. Microbiome, 2019, 7(1): 103.
[21] Gu C, Zhou Z, Yu Z, et al. The microbiota and it’s correlation with metabolites in the gut of mice with nonalcoholic fatty liver disease [J]. Front Cell Infect Microbiol, 2022, 12: 870785. Erratum in: Front Cell Infect Microbiol, 2022, 12: 972118.
[22] Ceccarelli S, Panera N, Mina M, et al. LPS-induced TNF-αfactor mediates pro-inflammatory and pro-fibrogenic pattern in non-alcoholic fatty liver disease [J]. Oncotarget, 2015, 6(39): 41434-41452.
[23] Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis [J]. Nat Med, 2007, 13(11): 1324-1332.
[24] Wei Y, Li Y, Yan L, et al. Alterations of gut microbiome in autoimmune hepatitis [J]. Gut, 2020, 69(3): 569-577.
[25] Mizuno M, Noto D, Kaga N, et al. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models[J]. PLoS One, 2017, 12(2): e0173032.
[26] Liwinski T, Casar C, Ruehlemann MC, et al. A diseasespecific decline of the relative abundance of Bifidobacterium in patients with autoimmune hepatitis [J]. Aliment Pharmacol Ther, 2020, 51(12): 1417-1428.
[27] Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy [J]. Gut, 2018, 67(3): 534-541.
[28] Chen W, Wei Y, Xiong A, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis [J]. Clin Rev Allergy Immunol, 2020, 58(1): 25-38.
[29] Ali AH, Carey EJ, Lindor KD. The microbiome and primary sclerosing cholangitis [J]. Semin Liver Dis, 2016, 36(4): 340-348.
[30] Wan S, Nie Y, Zhang Y, et al. Gut microbial dysbiosis is associated with profibrotic factors in liver fibrosis mice [J]. Front Cell Infect Microbiol, 2020, 10: 18.
[31] Trebicka J, Macnaughtan J, Schnabl B, et al. The microbiota in cirrhosis and its role in hepatic decompensation [J]. J Hepatol, 2021, 75(Suppl 1): S67-S81.
[32] Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis [J]. Hepatology, 2011, 54(2): 562-572.
[33] Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation [J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(6): G675-G685.
[34] Huang DQ, Singal AG, Kono Y, et al. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer [J]. Cell Metab, 2022, 34(7): 969-977.e2.
[35] Zhang L, Wu YN, Chen T, et al. Relationship between intestinal microbial dysbiosis and primary liver cancer [J]. Hepatobiliary Pancreat Dis Int, 2019, 18(2): 149-157.
[36] Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity [J]. Cancer Discov, 2017, 7(5): 522-538.
[37] Zhang HL, Yu LX, Yang W, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats [J]. J Hepatol, 2012, 57(4): 803-812.
[38] Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells [J]. Science, 2018, 360(6391): eaan5931.
[39] Cheng YW, Alhaffar D, Saha S, et al. Fecal microbiota transplantation is safe and effective in patients with Clostridioides difficile infection and cirrhosis [J]. Clin Gastroenterol Hepatol, 2021, 19(8): 1627-1634.