










摘" " 要:【目的】分離并鑒定獼猴桃FAD基因家族成員,探究FAD基因在獼猴桃采后成熟過程中的表達模式及其與香氣物質合成前體不飽和脂肪酸變化的關系。【方法】利用生物信息學方法鑒定并分析獼猴桃FAD基因家族成員,采用質構儀和氣相色譜儀測定硬度和脂肪酸含量,借助實時熒光定量PCR驗證FAD在采后成熟過程中的表達特性。【結果】在紅陽獼猴桃基因組中共鑒定出了26個FAD基因,分為6個亞族;該家族大多為堿性蛋白,大部分定位于內質網中;這些成員不均勻地分布在19條染色體上,種內共有9對串聯重復基因和22對片段重復基因;在其啟動子區域上發現大量的光響應元件、植物激素響應元件、逆境脅迫響應元件和生長發育相關元件;表達模式分析和qPCR驗證實驗表明,AcFAD2.2表達量均隨著成熟而不斷顯著上調;采后成熟過程中單不飽和脂肪酸(油酸)含量不斷顯著下降,雙不飽和脂肪酸(亞油酸)含量則不斷顯著提高,多不飽和脂肪酸(亞麻酸)含量在成熟早期和中期無顯著差別,而在后期顯著降低;獼猴桃硬度采后出現快速下降,存在明顯的后熟過程,此過程會形成特征香氣酯類物質,而亞油酸又是酯類香氣物質合成的主要前體物質。【結論】共鑒定了26個獼猴桃FAD基因成員,并篩選出了1個誘導獼猴桃采后成熟過程中亞油酸合成和積累的關鍵酶基因AcFAD2.2,亞油酸含量的增加伴隨著獼猴桃后熟散發特征性香氣,為進一步探究FAD基因參與獼猴桃采后成熟過程不飽和脂肪酸轉化和香氣合成的生物學功能提供了參考依據。
關鍵詞:獼猴桃;FAD基因家族;不飽和脂肪酸;香氣合成;基因表達
中圖分類號:S663.4 文獻標志碼:A 文章編號:1009-9980(2024)11-2195-19
Identification of the FAD gene family in kiwifruit and its expression analysis during postharvest ripening
YANG Caining, ZHANG Yupei, YANG Congcong, CHEN Jinyin*, GAN Zengyu*
(Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits amp; Vegetables/Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China)
Abstract: 【Objective】 Unsaturated fatty acids play many physiological roles in plants, including the formation of triglycerides to provide energy for plant life activities; maintaining cell membrane homeostasis as a key component of cell membranes; participating in hormone regulation and signaling during biotic stress; playing an important role in responding to adversity such as low temperature and drought; and participating in synthesizing aroma substances as precursors during fruit ripening via the LOX pathway, α-oxidation pathway, or β-oxidation pathway. During fruit ripening, the unsaturated fatty acids are used as precursors to synthesize aroma substances through the LOX pathway, α-oxidation pathway, or β-oxidation pathway. At the same time, the unsaturated fatty acids also help the human body in numerous ways, including lowering lipids and blood pressure, enhancing fat metabolism, decreasing thrombosis, enhancing autoimmunity, and having anti-tumor properties. However, the human body is unable to synthesize unsaturated fatty acids, such as linoleic acid and linolenic acid, which can only be ingested from the diet. The animal body contains a high concentration of saturated fatty acids, whereas the plant body contains primarily unsaturated fatty acids. The fatty acid desaturases (FADs) are a group of enzymes that carry out the desaturation process, transforming saturated fatty acids into unsaturated fatty acids. To date, the FAD gene family has been identified in several species; however, it has not been reported in kiwifruit. In addition, most of the current studies on FAD genes have focused on the antistress function of unsaturated fatty acids, with little focus on how these fatty acids affect aroma volatiles. Therefore, the aim of this study was to isolate and characterize the kiwifruit FAD gene family and to clarify its expression pattern in kiwifruit during postharvest ripening and its relationship with the changes in unsaturated fatty acids, so as to lay a theoretical foundation for analyzing the formation of characteristic aroma in kiwifruit during postharvest ripening.【Methods】 Based on the Hong Yang v3 genomic data of Actinidia chinensis, we downloaded the Hidden Markov Model (HMM) file corresponding to the structural domains of the fatty acid desaturase from the Pfam protein family database and used Simple HMM Search in TBtools (v2.102) to preliminarily search the AcFAD genes with the kiwifruit protein data, and then used the SMART database to verify the structural domain information of the candidate protein sequences to finalize the kiwifruit FAD gene family members. Then we used the SMART database to validate the structural domain information of the initial screened candidate protein sequences to identify the kiwifruit FAD gene family members; we used the protein molecular weight calculation (SMS2) Nanjing DETA Bio-mirror website to analyze the physicochemical properties of the kiwifruit FAD gene family members; and we used the Cell-PLoc 2.0 website to predict the subcellular localization of the proteins; A phylogenetic evolutionary tree of FAD protein sequences of kiwifruit, Arabidopsis thaliana and cucumber was constructed using MEGA (version 11.0) software; the chromosomal localization was mapped using Advanced Circos in TBtools, and the replication events of kiwifruit and Arabidopsis thaliana FAD genes were analyzed by One Step MCScanX-Super Fast. The covariance analysis was performed; the exon-intron gene structures were analyzed by GSDS, a gene structure display server; the conserved motifs of AcFAD proteins were analyzed using the MEME online website; the promoter cis-acting elements of each gene were predicted using PlantCARE; and the gene expression heatmaps were generated using TBtools by normalizing the FPKM values of the transcriptomic data obtained. The expression pattern of the FAD genes was explored; the hardness and fatty acid content were determined using mass spectrometry and gas chromatography; and the expression characteristics of the FAD genes were verified with the help of the real-time fluorescence quantitative PCR during post-harvest ripening. 【Results】 In this study, a total of 26 FAD gene family members were identified from the whole Hong Yang v3 genome of Actinidia chinensis. These 26 kiwifruit FAD genes were named based on how closely they resembled the counterparts identified in Arabidopsis thaliana and cucumber. These genes were divided into six subfamilies: FAD3/FAD7/FAD8 (ω-3/Δ-15), FAD2/FAD6 (ω-6/Δ-12), FAB2 (Δ-9), FAD4 (Δ-3), DES/SLD, and FAD5/ADS (Δ-7), each with a different number of subfamily members. All subfamilies had kiwifruit FAD family members, suggesting that the AcFAD proteins might be functionally diversified. A handful of them were acidic, but the majority were basic. The subcellular localization prediction revealed that kiwifruit FAD proteins were relatively dispersed in their localization and are distributed in all plant cell structures, with the highest number in the endoplasmic reticulum, followed by chloroplasts and cell membranes; the chromosome localization showed that the kiwifruit Hong Yang v3 genome had a total of 29 chromosomes, and 25 kiwifruit FAD genes were distributed on 19 different chromosomes (LG). The majority of the FAD genes were localized in the anterior-middle end of the chromosomes. The segmental duplication events contributed to the diversity and evolution of the AcFADs, as evidenced by the 22 pairs of segmental duplicates and 9 pairs of tandem duplicates found in kiwifruit according to the intraspecific covariance mapping; the covariance mapping between kiwifruit and Arabidopsis thaliana interspecies covariance mapping showed the 32 pairs of covariance between the 23 kiwifruit FAD genes and the 17 Arabidopsis thaliana FAD genes, suggesting that kiwifruit and Arabidopsis thaliana would have more FAD homologous genes. In the same branch, most of the members had similar length and the same number of gene structures. The conserved motif analysis revealed that most kiwifruit FAD proteins contained motif 2, motif 4, and motif 14. Moreover, motif 2 and motif 4 were basically located at the C-terminal end, indicating that these motifs were strongly conserved and were typical FAD structural domains, which might perform similar functions. A large number of the light-responsive, phytohormone-responsive (methyl jasmonate, abscisic acid, growth hormone, salicylic acid, gibberellin), stress-responsive (anaerobic, low temperature, drought), and development-related components were found in the FAD promoter region of kiwifruit, and the heatmap expression pattern analysis and qPCR validation experiments showed that the expression of the AcFAD7.2 and the AcFAD2.2 were significantly up-regulated with maturation. During the postharvest ripening process, the content of monounsaturated fatty acids (oleic acid) decreased significantly, while the content of diunsaturated fatty acids (linoleic acid) increased significantly, and the content of polyunsaturated fatty acids (linolenic acid) did not significantly vary with the early and middle stages of ripening, while the content of polyunsaturated fatty acids (linolenic acid) decreased significantly during the late stage; the hardness of kiwifruit rapidly decreased after harvest, and a distinct post-ripening process took place that resulted in the formation of the distinctive aromatic ester substances. The characteristic fragrance esters were produced as a result of this process, and the primary precursor for the synthesis of the ester aroma compounds was linoleic acid. 【Conclusion】 A total of 26 kiwifruit FAD gene members were identified. A significant decrease in the oleic acid content was accompanied by a significant increase in the linoleic acid content during postharvest ripening of kiwifruit. The variations in the oleic and linoleic acid were highly and positively linked with the expression of the ω-6 fatty acid desaturase gene AcFAD2.2. This expression was consistently and considerably up-regulated throughout ripening. Although the expression of the ω-3 fatty acid desaturase gene AcFAD7.2 was up-regulated, the linolenic acid content remained essentially unchanged or even decreased. Therefore, the AcFAD2.2 would be a key enzyme gene involved in the synthesis and accumulation of unsaturated fatty acids in kiwifruit during postharvest ripening, and the increase in the linoleic acid content was accompanied by the characteristic aroma emitted by kiwifruit during postharvest ripening. This paper would provide a reference basis for further investigation of the biological functions of the FAD genes involved in the transformation of unsaturated fatty acids and aroma synthesis during the course of the postharvest ripening in kiwifruit.
Key words: Kiwifruit; FAD gene family; Unsaturated fatty acids; Aroma synthesis; Gene expression
脂肪酸是植物細胞的重要組成成分,它形成甘油三酯為生命活動提供能量[1];作為細胞膜的關鍵成分維持細胞膜的穩態[2];在生物脅迫中參與激素調節與信號轉導[3];在響應低溫和干旱等逆境脅迫中發揮重要作用[4-5];在果實成熟過程中通過LOX途徑、α-氧化途徑或β-氧化途徑參與合成香氣物質[6]。植物中以不飽和脂肪酸為主,飽和脂肪酸轉化成不飽和脂肪酸的過程稱為去飽和,是由一系列脂肪酸去飽和酶(fatty acid desaturases,FADs)來完成的[7]。FADs根據溶解度可分為可溶性去飽和酶和膜結合去飽和酶。硬脂酰ACP去飽和酶(FAB2/SAD)是質體基質中唯一已知的可溶性FAD,它在Δ-9位置(從羧基端開始的第9號碳與10號碳之間)引入雙鍵,催化硬脂酸轉化為油酸,剩余的FAD均是膜結合的[8]。根據功能不同,膜結合FADs又進一步分為FAD2/FAD6(ω-6/Δ-12)、FAD3/FAD7/FAD8 (ω-3/Δ-15)、FAD4(Δ-3)、FAD5/ADS(Δ-7)和DES/SLD五大亞族。其中,FAD2和FAD6是ω-6/Δ-12去飽和酶,即FAD2在內質網、FAD6在質體中于油酸的Δ-12位置,也就是ω-6位置(甲基端開始的第6號碳與7號碳之間)插入雙鍵生成亞油酸[9];FAD3在內質網、FAD7和FAD8在質體中于亞油酸的Δ-15位置(ω-3位置)插入雙鍵生成亞麻酸[10];FAD4和FAD5/ADS都在質體中分別作用于磷脂酰甘油和單半乳糖二酰基甘油中的棕櫚酸合成棕櫚油酸[11];DES和SLD都是在內質網中參與脂肪酸衍生物鞘脂代謝的酶,SLD催化t18∶0鞘脂長鏈堿基(LCB)C8位去飽和生成t18∶1鞘脂[12],DES催化二氫鞘氨醇(d18:0)生成鞘氨醇-1-磷酸(d18:1),DES通常不會單獨起作用,而是和SLD共同參與鞘脂代謝[13]。
1992年有學者先后從擬南芥突變體中克隆得到FAD3和FAD2 [14-15],1993年和1994年從擬南芥中先后克隆出FAD7和FAD8 [16],1993年從藍藻中克隆出FAD6 [17],SLD最先于1998年從向日葵中分離得到[12]。目前研究比較多的是ω-6和ω-3型FAD基因,已經在香蕉[18]、茄子[19]、番茄[20]等中分離出其家族成員。當前對FAD基因研究熱點主要集中在抗逆功能,尤其是低溫冷害脅迫,大量研究證實了脂肪酸去飽和酶能夠調整膜脂不飽和脂肪酸的比例和成分,從而維持細胞膜流動性,達到增強對低溫抵抗力的目的[21]。然而,關于FAD基因在果實成熟中的功能鮮有報道。
果實中的揮發性芳香物質主要通過脂肪酸代謝途徑、萜類代謝途徑和氨基酸代謝途徑合成。其中,直鏈脂肪族醇、醛、酮和酯類物質主要來源于脂肪酸的代謝,因此脂肪酸是形成果實香氣物質的主要前體物質[22]。脂肪酸代謝途徑中對香氣物質合成貢獻最大的是不飽和脂肪酸的代謝,這是通過LOX酶催化的第一步和隨后的反應,通常被稱為脂氧合酶途徑。脂肪酸去飽和酶FAD在脂肪酸碳氫鏈上引入雙鍵,產生不飽和脂肪酸,在將油酸(18∶1)轉化為亞油酸(18∶2)和亞麻酸(18∶3)過程中發揮著關鍵的作用[23]。
獼猴桃果實中因富含有機物質以及人體所必需的多種維生素而備受消費者青睞。獼猴桃在發育階段(未成熟階段)主要產生C6醇和醛等“青香型”芳香物質,但在采收后熟過程中酯類等“果香型”芳香物質增多,因此常會散發出成熟階段特有的果香味,也影響著消費者的偏好[24]。目前關于獼猴桃采后成熟過程中的香氣研究較多,主要集中在貯藏處理方式、成熟度和品種等因素對其香氣物質化學成分種類和含量比例的影響方面[25-26],香氣脂肪酸代謝合成途徑的相關酶基因(如LOX、AAT、ADH等)也已被分離鑒定出來[27-29]。然而對其合成前體物質不飽和脂肪酸的研究鮮有報道,目前發現低溫貯藏延緩了獼猴桃果實中亞油酸和亞麻酸的分解,抑制了脂肪酸LOX代謝途徑中相關酶活性及其基因的表達,從而造成酯類香氣物質的種類減少和相對含量降低,保持了較多醛酮類物質種類和較高的相對含量,維持了果實的特征風味[30],其他相關的研究更多集中在獼猴桃籽和果肉中脂肪酸組分方面,發現其富含多種不飽和脂肪酸[31-32],獼猴桃FAD基因家族也未進行分離鑒定。紅陽獼猴桃屬于中華獼猴桃,因其果心具放射狀紅色條紋而得名,味甜,維生素C含量極高,香氣濃郁[33]。因此,筆者以紅陽獼猴桃為研究試材,采用生物信息學的方法對獼猴桃FAD基因家族成員進行分離和鑒定,然后再基于轉錄組數據對各成員在果實采后成熟過程中的表達模式進行分析,最后通過實時熒光定量PCR驗證FADs基因的表達特性并篩選出差異表達的候選基因,為解析FAD基因在獼猴桃果實采后成熟過程中不飽和脂肪酸代謝和香氣物質形成的生物學功能提供一定的理論基礎。
1 材料和方法
1.1 植物材料
材料為紅陽獼猴桃(Actinidia chinensis ‘Hongyang’)果實。于2023年8月中旬(盛花后130 d左右)從江西省奉新縣果業局獼猴桃種質資源圃采摘試驗果。選取樹齡相同、長勢良好的母樹,采摘大小均勻、果形一致、無病蟲害和機械損傷的果實,采摘當天立即運回實驗室,經人工挑選剔除癍痂、傷果后置于陰涼通風處發汗到次日。經發汗散除田間熱的果實用塑料袋密封貯藏于室溫(20±1)℃中,于貯藏后0、4、10 d取樣,每次隨機挑選18個果實,6個果實為1次重復,設置3次生物學重復,經測量果肉硬度等成熟指標后去掉頭部和尾部,剝除果皮、中柱和籽,取果肉部分混合均勻經液氮速凍后保存于-80 ℃備用。
1.2 獼猴桃FAD基因家族成員鑒定及其蛋白特性分析
從獼猴桃基因組網站(https://kiwifruitgenome.org/)下載Hong Yang v3基因組數據,包括基因序列數據文件、蛋白序列數據文件、GFF3注釋文件等。從Pfam蛋白家族數據庫(http://pfam.xfam.org/)下載FA_去飽和酶(PF00487)、FA_去飽和酶2(PF03405)和TMEM189 (PF10520)結構域對應的隱馬爾科夫模型(HMM)文件,使用TBtools(v2.102)中的Simple HMM Search,以e值≤1e-5為判據,與獼猴桃蛋白數據進行比對,初步篩選出AcFAD基因。然后使用SMART數據庫(https://smart.embl-heidelberg.de/)對初篩得到的候選蛋白序列進行結構域信息驗證,最終確定了26個獼猴桃FAD基因家族成員。在獼猴桃基因組網站中獲得這26個AcFADs編碼區長度。利用蛋白分子質量計算-SMS2南京德泰生物鏡像網站(https://www.detaibio.com/sms2/protein_mw.html)對26個獼猴桃FAD基因家族成員進行蛋白質理化性質分析,獲得氨基酸數量、蛋白分子質量(MW)、等電點(pI)等。通過Cell-PLoc 2.0網站(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)中的Plant-mPLoc對AcFAD蛋白進行亞細胞定位預測。
1.3 獼猴桃FAD基因家族多序列比對與系統發育分析
擬南芥和黃瓜的FAD蛋白質序列來自Cheng等[18]和Dong等[34]的報道,利用MEGA(version 11.0)軟件中的ClustalW對獼猴桃、擬南芥和黃瓜的FAD蛋白序列進行多序列比對。系統發育分析采用鄰接法(neighbor-joining,NJ),在p-distance、部分刪除50%和1000次Bootstrap重復參數下構建系統發育樹,并使用Evolview v2(https://evolgenius.info//evolview-v2/)對進化樹進行美化。
1.4 獼猴桃FAD基因家族染色體定位和共線性分析
根據獼猴桃和擬南芥的全基因組序列文件和GFF3注釋文件,使用TBtools中的Fasta Stats提取獼猴桃全基因組染色體長度并輸出染色體骨架文件,利用One Step MCScanX獲得全基因組共線性文件并據此文件使用Text Block Extract and Filter提取獼猴桃FAD家族基因共線性文件,使用File Transformat for MicroSynteny Viewer提取配對基因對染色體信息,最后使用Advanced Circos繪制獼猴桃FAD染色體定位圖。使用One Step MCScanX-Super Fast對獼猴桃和擬南芥FAD基因的復制事件進行共線性分析,并使用Dual Systeny Plot作可視化圖。
1.5 獼猴桃FAD基因結構與蛋白保守基序分析
通過基因結構顯示服務器GSDS(http://gsds.gao-lab.org/)分析獼猴桃FAD基因的外顯子-內含子基因結構。使用MEME在線網站(https://meme-suite.org/meme/tools/meme)分析AcFAD蛋白的保守基序,最大基序數設置為20,并利用TBtools中的Gene Structure View繪制蛋白保守基序。
1.6 獼猴桃FAD基因家族啟動子順式作用元件分析
使用TBtools從獼猴桃基因組數據庫中提取每個AcFAD基因起始密碼子(ATG)上游1500 bp啟動子序列,利用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare-/html/)預測各個基因的啟動子順式作用元件,再利用TBtools對獲得的順式作用元件進行可視化繪圖。
1.7 AcFADs在果實采后成熟過程中的基因表達分析
將常溫貯藏0、4、10 d獼猴桃果實冷凍樣品分裝3管設置3次生物學重復,在上海派森諾生物科技有限公司完成轉錄組測序。將獲得的轉錄組數據提取上述26個AcFAD基因的FPKM值,將log2(FPKM+1)歸一化處理后得到的數據使用TBtools生成基因表達熱圖。
1.8 果實硬度的測量
使用質構儀(TMS-Touch,美國)測定果實的硬度,每個取樣點隨機選取18個果實,重復測量3次,單位:N[35]。
1.9 果實脂肪酸含量的測定
將獼猴桃果肉冷凍樣品粉末2 g與正己烷∶異丙醇(3∶2,體積比)15 mL和6.7% Na2SO4 7.5 mL混合,10 000g離心10 min(4 ℃),上清液用氮氣吹干。加入甲醇∶甲苯∶H2SO4(88∶10∶2,體積比)制備脂肪酸甲酯(FAMEs)。冷卻后,加入1 mL庚烷和0.5 g無水Na2SO4進行FAME提取。為了檢測脂肪酸含量,使用安捷倫6890 N氣相色譜儀,配備火焰電離檢測器和DB-Wax色譜柱(0.25 mm,30 m,0.25 μm;Jamp;W Scientific)。注入器和檢測器溫度為230 ℃。初始烤箱溫度為50 ℃,以25 ℃·min-1速率增加到200 ℃,然后以3 ℃·min -1速率增加到230 ℃。載氣為氮氣,流速為1 mL·min-1。加入外源十七烷酸(C17∶0)作為內標定量計算脂肪酸含量。
1.10 RNA提取、cDNA合成及實時熒光定量PCR分析
使用多糖多酚植物總RNA提取試劑盒(天根,北京)提取獼猴桃果肉總RNA,每個樣品設置3次技術重復,然后通過凝膠電泳和超微量分光光度計(Bio-Rad,美國)測定提取的R N A的質量和濃度。將提取好的RNA使用三代逆轉錄預混液MonScriptTM RTIII All-in-One Mix with dsDNase(莫納生物,蘇州)反轉錄成第一鏈cDNA,并用ddH2O稀釋3倍,最后采用半定量PCR檢測cDNA的質量。通過WoLF PSORT網站(https://www.genscript.com/wolf-psort.html)設計實時熒光定量引物(表1)。實時熒光定量PCR(qPCR)分析參照之前的研究方法[36]。
1.11 數據統計與分析
所有數據結果以均數±標準誤差(SD)表示。采用SPSS Statistics 25軟件中的單因素方差檢驗進行顯著性差異分析并使用Duncan新復極差字母標記法標注顯著性,最后使用 GraphPad Prism 8.0繪制圖表。
2 結果與分析
2.1 獼猴桃FAD基因家族成員鑒定及其蛋白特性分析
筆者從Hong Yang v3全基因組中共鑒定出26個FAD基因家族成員(表2),根據其與擬南芥和黃瓜中FAD基因親緣關系的遠近命名,包括2個AcFAD2s,2個AcFAD6s,3個AcFAD3s,3個AcFAD7s,1個AcFAB2,1個AcFAD4,3個AcFAD5s,2個AcADSs,7個AcSLDs和2個AcDESs。它們的編碼序列(CDS)長度差異較大,范圍為321 bp(AcFAD5.1)~4392 bp(AcFAD7.3),編碼106~1463個氨基酸。蛋白質理論分子質量(MW)為11.51~161.8 ku,等電點為4.93(AcFAD5.1)~10.09(AcADS1.1),其中只有AcFAD7.3、AcFAD5.1和AcSLD1.4這3個蛋白的pI小于7,說明獼猴桃FAD蛋白大多數為堿性,少數為酸性。亞細胞定位預測結果表明,獼猴桃FAD蛋白定位比較分散,在植物細胞各結構中均有分布。其中AcFAD2蛋白都只定位在內質網中;AcFAD6蛋白只定位在葉綠體中;AcFAD3、AcFAD7和AcADS蛋白在葉綠體和內質網中都有定位;AcFAB2定位在細胞膜和細胞核中;AcFAD4定位在細胞膜、葉綠體、線粒體和細胞核中;AcFAD5.1定位在細胞膜、葉綠體、高爾基體和細胞核中,另2個AcFAD只定位在內質網中;AcSLD1.1定位在細胞膜和內質網中,其他AcSLD只定位在內質網中;AcDES1.2定位在細胞膜和內質網中,AcDES1.1只定位在內質網中。
2.2 獼猴桃FAD基因的系統進化樹分析
為了闡明AcFAD蛋白的功能和進化關系,將26個獼猴桃、19個擬南芥和22個黃瓜的FAD蛋白序列構建了系統發育樹。這些FAD可分為6個亞族,包括FAD3/FAD7/FAD8(ω-3/Δ-15)、FAD2/FAD6 (ω-6/Δ-12)、FAB2(Δ-9)、FAD4(Δ-3)、DES/SLD和FAD5/ADS(Δ-7),每個亞族分別有6、4、1、1、9和5個AcFAD成員(圖1)。各亞族均有獼猴桃FAD家族成員的分布暗示著AcFAD蛋白可能具有功能上的多樣性。在大多數亞族中獼猴桃與擬南芥親緣關系較近,與黃瓜的親緣關系較遠。
2.3 獼猴桃FAD基因的染色體定位和共線性分析
為了研究獼猴桃FAD基因家族的遺傳差異,分析了AcFADs的染色體定位。結果(圖2)顯示獼猴桃Hong Yang v3基因組共有29條染色體,25個獼猴桃FAD基因分布在19條不同的染色體(LG)上,1個獼猴桃FAD基因(AcSLD1.1)分布在Contig(CG)01622重疊群上。大多數FAD基因定位于染色體的前中端。0和20號染色體上都分布著3個FAD基因,1和15號染色體有2個FAD基因,剩下的15條染色體上(3、4、5、6、8、9、11、13、14、16、18、21、22、23和27號)都只有1個FAD基因。由此可見,獼猴桃FAD基因和染色體存在一定的關聯性。
為了進一步了解FAD基因家族的進化關系,進行了獼猴桃物種內以及獼猴桃與擬南芥物種間的共線性分析。種內共線性圖譜顯示有9對串聯重復基因,分別是LG0中的AcDES1.2、AcFAD7.2和AcSLD2.1;LG1的AcFAD6.2和AcADS1.1;LG3的AcFAD7.1;LG4的AcFAD5.2;LG5的AcFAD4和AcSLD1.3。此外還鑒定出22個獼猴桃FAD基因產生了22對片段重復基因,其中AcDES1.2(LG0)與AcDES1.1(LG20)存在共線性;AcFAD7.2(LG0)分別與AcFAD7.1(LG3)、AcFAD7.3(LG22)、AcFAD3.1(LG20)、AcFAD3.2(LG9)存在共線性;AcSLD2.1(LG0)與AcSLD2.3(LG23)、AcSLD1.1(CG01622)、AcSLD2.2(LG16)、AcSLD1.2(LG14)存在共線性;AcFAD6.2(LG1)與AcFAD6.1(LG15)、AcFAD7.1(LG3)、AcFAD3.2(LG9)存在共線性;AcADS1.1(LG1)與AcADS1.2(LG27)存在共線性;AcFAD7.1(LG3)與AcFAD3.1(LG20)、AcFAD3.2(LG9)、AcFAD7.3(LG22)、AcFAD3.3(LG15)存在共線性;AcFAD5.2(LG4)與AcFAD5.3(LG11)、AcFAD5.1(LG21)存在共線性;AcSLD1.3(LG6)與AcSLD2.1(LG0)、AcSLD2.3(LG23)、AcSLD1.1(CG01622)存在共線性(圖2)。由此可見,獼猴桃FAD基因家族的串聯重復事件伴隨有片段重復事件,所以基因重復事件(串聯重復和片段重復)對AcFADs的多樣性和進化具有促進作用。獼猴桃與擬南芥物種間共線性圖譜顯示,23個獼猴桃FAD基因與17個擬南芥FAD基因之間存在32對共線性關系(圖3),說明獼猴桃和擬南芥的FAD同源基因較多。
2.4 獼猴桃FAD基因結構與蛋白保守基序分析
為了深入了解AcFADs結構的異同,提取獼猴桃FAD基因家族成員的CDS序列及其基因組序列繪制了外顯子-內含子基因結構圖(圖4),結果顯示內含子數量在0~33個之間,外顯子數量在1~34個之間(一般比對應內含子數目多1個),其中FAD3/FAD7家族中除了AcFAD7.3內含子數量高達33個外,其他基因成員的內含子數量都穩定在7~8個;FAD2.1沒有內含子,FAD2.2有1個內含子,FAD6成員各有7個和5個內含子,ADS成員均只有2個內含子,DES成員均只有1個內含子,FAD4、SLD、FAD5成員包含1~2個內含子,FAB2有4個內含子。AcSLD1.2和AcSLD2.2沒有5’UTR,AcFAB2沒有3’UTR,AcFAD7.3、AcADS1.2、AcFAD4以及SLD其余的5個成員沒有5’UTR和3’UTR。由此可見,在同一分支中,大多數成員具有相似的長度和相同數量的結構分布。
通過在線網站MEME預測了FAD蛋白序列中的20個保守基序(圖5),結果發現大多數獼猴桃FAD蛋白均含有motif 2、motif 4和motif 14,且motif 2和motif 4基本都位于C端,說明這些基序保守性較強,是典型的FAD結構域,可能行使相似的功能。motif 15是FAD5蛋白特有的基序,motif 18和motif 19是DES蛋白特有的基序,FAD5與DES蛋白共有motif 17,FAD4和ADS1.2蛋白沒有保守基序,FAD3、FAD2和DES家族所有蛋白成員的基序種類、數量和排列方式各自完全一致。同一亞族內的蛋白表現出相似的基序組成,說明同一亞族成員高度保守,具有較近的親緣關系。但亞族間也存在明顯差異,說明一些基因在進化過程中發生了功能分化。
2.5 獼猴桃FAD基因啟動子順式作用元件分析
為探索獼猴桃FAD基因家族順式作用元件的功能,對該家族上游1500 bp的啟動子序列進行了順式作用元件預測(圖6)。結果預測出47種順式作用元件,其中光響應元件數量最多,共計298個(ACE 2個,AE-box 8個,AT1-motif 4個,ATC-motif 5個,ATCT-motif 7個,Box 4 68個,Box Ⅱ 1個,CAG-motif 1個,chs-CMA1a 5個,chs-CMA2a 4個,GA-motif 4個,GATA-motif 20個,G-Box 62個,GT1-motif 28個,I-box 9個,LAMP-element 4個,MRE 22個,Sp1 12個,TCCC-motif 10個,TCT-motif 21個,TGA-element 1個);其次是植物激素響應元件(196個),包括茉莉酸甲酯響應元件72個(CGTCA-motif 36個,TGACG-motif 36個)、脫落酸響應元件59個(ABRE)、生長素響應元件24個(AAAC-motif 1個,AuxRE 1個,AuxRR-core 4個,TGA-box 2個,TGA-element 16個)、水楊酸響應元件21個(TCA-element)和赤霉素響應元件20個(GARE-motif 8個,P-box 7個,TATC-box 5個);再者是逆境脅迫響應元件(110個),包括厭氧誘導所必需的元件69個(ARE 60個,GC-motif 9個)、低溫響應元件23個(LTR)、參與防御和應激反應元件11個(TC-rich repeats)和參與干旱誘導的MYB結合位點元件7個(MBS);最后是植物生長發育相關元件(54個),包括MYBHv1結合位點元件13個(CCAAT-box)、與分生組織表達有關的元件12個(CAT-box)、參與玉米蛋白代謝調控的元件8個(O2-site)、參與胚乳表達的元件7個(AACA_motif 1個,GCN4_motif 6個)、參富含AT的DNA結合蛋白(ATBP-1)的結合位點元件6個(AT-rich element)、與晝夜節律控制有關的元件3個(circadian)、參與細胞周期調控的元件2個(MSA-like)、參與葉綠體中胚層細胞分化的元件2個(HD-Zip 1)和參與黃酮類生物合成基因調控的MYB結合位點元件1個(MBSI)。此外,還有3個最大誘導劑介導的激活元件(2個)(AT-rich sequence)。除了AcADS1.1外,其他AcFADs啟動子序列上均有激素響應元件,因此這些基因極有可能參與激素調控的生理過程;所有獼猴桃FAD基因家族成員都含有逆境脅迫響應元件,所以獼猴桃FAD基因在逆境脅迫應答過程中發揮著重要的作用;AcFAD6.2、AcFAD3.2、AcADS1.1和AcADS1.2沒有調控生長發育的順式作用元件。
2.6 獼猴桃FAD基因家族表達模式分析
為了了解獼猴桃FAD基因在采后成熟過程中的表達模式,對紅陽獼猴桃采后0、4、10 d果肉樣品轉錄組數據進行了熱圖繪制以表征其表達豐度。結果(圖7)顯示,AcFAD3.1、AcFAD3.3、AcSLD1.4和AcDES1.1這4個基因成員在獼猴桃整個采后成熟過程中均不表達;AcFAD6.1、AcFAD7.1、AcSLD1.2和AcSLD2.1在采后成熟早期(常溫貯藏0 d)表現出最高的表達水平,隨著后熟時間的增加其表達水平也隨之下降,在成熟后期(常溫貯10 d)達到最低的表達水平;AcFAD3.2、AcFAD5.3、AcADS1.1、AcADS1.2和AcFAD6.2同樣在采后成熟早期表現出最高的表達水平,但在采后成熟中期(常溫貯4 d)表現出最低的表達水平,后期其表達水平又有所提高;AcFAD7.3、AcFAD5.1在成熟早期和后期的表達水平一致,中期略有下降;AcFAD4僅在成熟早期和中期表達且表達水平較低;AcSLD2.3在成熟中期和后期表達水平基本一致,早期表達水平最低;AcSLD1.1在成熟后期表達水平最高,中期表達水平最低;AcFAD2.1只在成熟后期表達且表達水平極低;AcDES1.2、AcSLD1.3、AcFAD5.2、AcFAD7.2、AcSLD2.2、AcFAB2和AcFAD2.2的表達水平均隨著成熟而不斷提高,且值得注意的是AcFAD2.2的表達水平極高且各樣點間表達水平增加1.4倍左右,后期相比于早期增加了2倍。因此,獼猴桃FAD基因家族各成員在獼猴桃采后成熟過程中有不同的表達模式,暗示著其在成熟過程中的各階段發揮著不同的作用。
2.7 獼猴桃果實成熟過程中硬度和不飽和脂肪酸含量變化
在獼猴桃采后成熟過程中硬度呈下降趨勢,并于采后10 d達到了可食用成熟度(圖8-A)。不飽和脂肪酸是獼猴桃香氣合成的重要前體物質,對采后獼猴桃果實中不飽和脂肪酸含量進行測定,發現油酸(OA,18∶1)含量隨著獼猴桃采后成熟過程不斷下降,亞油酸(LA,18∶2)則表現出與之相反的趨勢,亞麻酸(LeA,18∶3)含量在成熟早期和中期無顯著差別,而在后期含量顯著降低(圖8-B~D)。
2.8 獼猴桃FAD基因家族熒光定量分析
從獼猴桃轉錄組熱圖中挑選出在成熟后期差異表達上調的8個基因(AcSLD1.1、AcSLD1.3、AcSLD2.2、AcSLD2.3、AcFAD5.2、AcFAD7.2、AcFAB2和AcFAD2.2)進行了qPCR驗證。結果(圖9)顯示,在獼猴桃整個采后成熟過程中AcSLD1.3表達量無顯著變化;AcSLD2.2表達量先上調后下調但變化幅度不大;AcSLD1.1、AcSLD2.3和AcFAB2表達量在成熟早期和中期無顯著變化,在后期顯著上調,但表達量較低;與早期相比,AcFAD5.2在后期表達量顯著上調,中期表達量相對于早期和后期無顯著變化;AcFAD7.2和AcFAD2.2表達量都是隨著成熟而不斷顯著上調,但AcFAD7.2表達量并不是很高,中期表達量相比于早期上調2.42倍,后期上調量是早期的13.09倍,而AcFAD2.2中期表達量比早期上調8.44倍,后期表達量比中期上調9.05倍,后期上調量是早期的76.43倍,這與轉錄組數據的變化模式一致,因此推測AcFAD2.2極有可能是參與編碼獼猴桃采后成熟過程中w-6脂肪酸去飽和酶的關鍵候選基因,使得單不飽和脂肪酸轉化為雙不飽和脂肪酸,從而導致了油酸的減少和亞油酸的積累。
3 討 論
脂肪酸去飽和酶對植物生長發育、抵抗生物與非生物脅迫和品質形成等方面具有正向的積極作用[1-4]。近年來,已經在多種植物中對FAD基因家族進行了鑒定,如亞麻中有43個[37]、茄子有38個[19]、核桃中有24個[38]、桃中有6個FAD基因家族成員[39],而本研究中筆者首次在獼猴桃中鑒定出了26個FAD基因。由此可見,不同物種間FAD成員數量存在一定差異,這可能是其基因組大小不同和進化過程中某些基因的復制、分化或缺失造成的。對獼猴桃FAD家族蛋白序列進行理化性質分析發現,其分子質量與氨基酸數量成正比,而在茄子[19]、番茄[20]和亞麻[37]等中也有同樣的規律。獼猴桃FAD的亞細胞定位結果發現FAD2s和多數SLDs/DESs都定位在內質網中,FAD6s定位在葉綠體中,FAD3s/FAD7s定位在葉綠體和內質網中,說明不同成員在這些不同的特定部位中發揮作用,與前人的研究結果一致[9-10,12]。獼猴桃與19個擬南芥FAD同樣都可以分為6大亞族,在FAB2和FAD4亞族中這兩個物種都只有一個FAD成員,而在其他亞族中成員數量分布存在較大的差異(尤其是SLD和FAD3/FAD7/FAD8亞族),該現象與番茄FAD家族相似[20],暗示著這些亞族基因在進化過程中可能發生了特異性擴增。本研究在獼猴桃FAD家族中鑒定出9對串聯重復基因和22對片段重復基因,同樣地在甘藍型油菜FAD家族中存在3對串聯重復和25對片段重復基因[8]、在小麥中形成26對串聯重復和126對片段重復基因[40],因此推測FAD基因家族的擴增主要是基因片段引起的。具有相似的外顯子-內含子基因結構的AcFAD成員通常聚為同一分支,且其編碼的蛋白具有相似的基序組成,但也有部分成員(AcFAD4和AcADS1.2)丟失了保守基序,在茄子FAD相應亞族中也發現此現象[19],說明FAD家族在物種間具有相對保守的進化趨勢。對獼猴桃FAD啟動子序列進行分析,發現大量的光響應元件、植物激素響應元件(茉莉酸甲酯,脫落酸,生長素,水楊酸,赤霉素)、逆境脅迫響應元件(厭氧,低溫,干旱)和生長發育相關元件,尤其是逆境脅迫響應元件遍布在每個成員中,說明獼猴桃FAD的表達受到光的調控,并廣泛參與了植物生長發育、成熟及抗逆過程,在其他呼吸躍變型果實中(如番茄和香蕉等)也發現了相同的順式作用元件[18,20]。
果實風味作為水果重要的品質性狀,是在成熟過程中形成的品質之一,也是影響其銷量以及消費者偏好的重要因素,果實的風味取決于糖酸以及揮發性芳香化合物的種類和含量。獼猴桃作為典型的呼吸躍變型果實,在成熟過程中,存在明顯的呼吸躍變并促發內源乙烯大量合成,從而加速各種揮發性化合物的合成,逐漸產生獨特的果香。在LOX途徑中,亞油酸和亞麻酸首先被氧化為脂肪酸氫過氧化物,隨后被氫過氧化物裂解酶裂解形成己醛和己烯醛。然后,C6醛通過醇脫氫酶還原為相應的C6醇,隨后通過醇酰基轉移酶轉化為酯[30]。哈密瓜亞麻酸含量在貯藏過程中均有所增加,貯藏前期油酸含量急劇增多而中后期則呈下降趨勢,亞油酸含量與之相反,呈上升趨勢[41],這與本研究中發現獼猴桃在采后成熟過程中油酸含量隨成熟進程而顯著下降,亞油酸表現出與之負相關的趨勢,亞麻酸含量在早中期無顯著變化,而在后期有所下降的現象一致。同時,也有研究表明油酸在油棕果實采后成熟階段含量均減少,而亞油酸只在成熟早期階段減少,卻在后期階段顯著增加[42]。番茄果實成熟階段亞油酸含量最高,油酸含量下降,亞油酸含量逐漸升高,亞麻酸含量無顯著變化[43]。以上研究表明大多數果實成熟過程往往伴有亞油酸含量的增加和油酸含量的下降。但也有研究發現了與本研究不一致的現象,如杧果采后成熟過程中亞油酸含量逐漸下降,亞麻酸含量逐漸升高[44],在香蕉果實的成熟進程中亞麻酸增加,呼吸躍變前期亞麻酸含量增加緩慢,至呼吸躍變上升期迅速增加,而亞油酸含量則有所下降[45]。這可能是熱帶水果和亞熱帶水果差異及其芳香物質種類不同所致。
基于FAD家族在獼猴桃成熟各階段的表達模式,發現了AcFAD7.2和AcFAD2.2這兩個表達量均隨著成熟而不斷顯著上調的家族成員。前人研究顯示,在油茶和擬南芥中分別同源和異源過表達ω-3脂肪酸去飽和酶CoFAD7后,亞麻酸的含量顯著增加并且提高了亞麻酸/亞油酸的比值[46]。此外,在煙草中分別過量表達桃 PpFAD3-1和PpFAD3-2后發現亞油酸含量大幅下降,亞麻酸含量顯著上升[47]。但在本研究中并未發現亞麻酸含量增多,反而出現下降,說明獼猴桃成熟過程中亞麻酸的合成速率可能低于其作為前體物質參與芳香物質合成的速率,造成亞麻酸積累量降低,因此編碼ω-3脂肪酸去飽和酶基因AcFAD7.2在獼猴桃采后成熟不飽和脂肪酸合成和積累中發揮的作用并不是很顯著。對大腸桿菌中異源表達桃的PpFAD2-1和PpFAD2-2及其酶活性分析,發現這兩個ω-6脂肪酸去飽和酶基因都能促進油酸向亞油酸的去飽和[48];對橄欖進行OeFAD2-2和OeFAD2-5超量表達,發現其具有將油酸轉化為亞油酸并提高亞油酸含量的能力[49];在番茄中進行異源酵母表達SlFAD2-1和SlFAD2-2能將油酸轉化生成亞油酸并顯著增加了亞油酸含量[50]。在本研究中也同樣發現了油酸含量減少和亞油酸含量增多的現象,作為與番茄SlFAD2-1和SlFAD2-2高度同源的ω-6脂肪酸去飽和酶基因,AcFAD2.2的表達水平也隨著成熟而不斷攀高,其表達模式與其發揮作用的兩種不飽和脂肪酸(油酸和亞油酸)含量變化存在明顯的正相關,說明AcFAD2.2是參與獼猴桃采后成熟過程中脂肪酸代謝的關鍵基因,在不飽和脂肪酸合成與積累過程中發揮著極為重要的作用。
4 結 論
筆者在獼猴桃中鑒定出了26個FAD基因家族成員,根據其發揮作用的部位被定位到細胞的不同部位,因此絕大多數成員定位于內質網或葉綠體中,這些成員隨機分布在19條不同染色體上,片段重復事件是獼猴桃FAD擴增和進化的主要動力,在獼猴桃FAD啟動子序列上發現大量的光響應元件、植物激素響應元件(茉莉酸甲酯、脫落酸、生長素、水楊酸、赤霉素)、逆境脅迫響應元件(厭氧、低溫、干旱)和生長發育相關元件。獼猴桃采后成熟過程中油酸含量下降、亞油酸含量增多,并且AcFAD2.2表達水平隨著成熟而不斷顯著上調,由此可以推斷出AcFAD2.2是油酸去飽和生成亞油酸的關鍵酶基因,并且可能會通過光、激素等響應方式在獼猴桃采后成熟過程中表達來調控不飽和脂肪酸的合成與積累。因此,今后可借助分子生物學技術對此關鍵候選基因進行克隆、功能驗證和上游調控試驗,深入解析獼猴桃FAD基因在采后成熟過程中不飽和脂肪酸積累和香氣物質合成中的功能機制和調控網絡。
參考文獻 References:
[1] HE M,QIN C X,WANG X,DING N Z. Plant unsaturated fatty acids:Biosynthesis and regulation[J]. Frontiers in Plant Science,2020,11:390.
[2] FAN R S,LI L,CAI G,YE J,LIU M H,WANG S H,LI Z Q. Molecular cloning and function analysis of FAD2 gene in Idesia polycarpa[J]. Phytochemistry,2019,168:112114.
[3] 王利民,符真珠,高杰,董曉宇,張晶,袁欣,蔣卉,王慧娟,李艷敏,師曼,張和臣. 植物不飽和脂肪酸的生物合成及調控[J]. 基因組學與應用生物學,2020,39(1):254-258.
WANG Limin,FU Zhenzhu,GAO Jie,DONG Xiaoyu,ZHANG Jing,YUAN Xin,JIANG Hui,WANG Huijuan,LI Yanmin,SHI Man,ZHANG Hechen. Molecular mechanism of unsaturated fatty acids synthesis and regulation in plant[J]. Genomics and Applied Biology,2020,39(1):254-258.
[4] 薛曉夢,李建國,白冬梅,晏立英,萬麗云,康彥平,淮東欣,雷永,廖伯壽. 花生FAD2基因家族表達分析及其對低溫脅迫的響應[J]. 作物學報,2019,45(10):1586-1594.
XUE Xiaomeng,LI Jianguo,BAI Dongmei,YAN Liying,WAN Liyun,KANG Yanping,HUAI Dongxin,LEI Yong,LIAO Boshou. Expression profiles of FAD2 genes and their responses to cold stress in peanut[J]. Acta Agronomica Sinica,2019,45(10):1586-1594.
[5] KUGLER A,ZORIN B,DIDI-COHEN S,SIBIRYAK M,GORELOVA O,ISMAGULOVA T,KOKABI K,KUMARI P,LUKYANOV A,BOUSSIBA S,SOLOVCHENKO A,KHOZIN-GOLDBERG I. Long-chain polyunsaturated fatty acids in the green microalga Lobosphaera incisa contribute to tolerance to abiotic stresses[J]. Plant and Cell Physiology,2019,60(6):1205-1223.
[6] 蔡洪芳. 1-MCP/NO/MeJA對采后桃果實脂肪酸途徑香氣物質的調控研究[D]. 南京:南京農業大學,2020.
CAI Hongfang. Study on the regulation of 1-MCP/NO/MeJA on aroma volatiles in fatty acid pathway of postharvest peach fruit[D]. Nanjing:Nanjing Agricultural University,2020.
[7] 趙訓超,魏玉磊,丁冬,劉夢,蓋勝男,張今杰,邵文靜,李嘉欣,徐晶宇. 甜蕎麥脂肪酸脫氫酶基因(FeFAD)家族的鑒定與分析[J]. 東北農業科學,2021,46(1):36-41.
ZHAO Xunchao,WEI Yulei,DING Dong,LIU Meng,GAI Shengnan,ZHANG Jinjie,SHAO Wenjing,LI Jiaxin,XU Jingyu. Genome-wide identification and bioinformatics analysis of fatty acid desaturase gene (FeFAD) family in common buckwheat[J]. Journal of Northeast Agricultural Sciences,2021,46(1):36-41.
[8] XUE Y F,CHEN B J,WANG R,WIN A N,LI J N,CHAI Y R. Genome-wide survey and characterization of fatty acid desaturase gene family in Brassica napus and its parental species[J]. Applied Biochemistry and Biotechnology,2018,184(2):582-598.
[9] DU C,CHEN Y Y,WANG K,YANG Z,ZHAO C Z,JIA Q L,TAYLOR D C,ZHANG M. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2[J]. Journal of Experimental Botany,2019,70(3):985-994.
[10] PENG Z Y,RUAN J,TIAN H Y,SHAN L,MENG J J,GUO F,ZHANG Z M,DING H,WAN S B,LI X G. The family of peanut fatty acid desaturase genes and a functional analysis of four ω-3 AhFAD3 members[J]. Plant Molecular Biology Reporter,2020,38(2):209-221.
[11] SHANKLIN J,CAHOON E B. Desaturation and related modifications of fatty acids[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:611-641.
[12] 李昊遠,郝翠翠,陳明娜,陳娜,王冕,潘麗娟,王通,禹山林,侯艷華,遲曉元. 花生鞘脂Δ8去飽和酶基因(AhSLD2)的克隆與表達分析[J]. 花生學報,2018,47(2):24-29.
LI Haoyuan,HAO Cuicui,CHEN Mingna,CHEN Na,WANG Mian,PAN Lijuan,WANG Tong,YU Shanlin,HOU Yanhua,CHI Xiaoyuan. Cloning and expression analysis of sphingolipid Δ8 desaturase (AhSLD2) gene in peanut[J]. Journal of Peanut Science,2018,47(2):24-29.
[13] MICHAELSON L V,Z?UNER S,MARKHAM J E,HASLAM R P,DESIKAN R,MUGFORD S,ALBRECHT S,WARNECKE D,SPERLING P,HEINZ E,NAPIER J A. Functional characterization of a higher plant sphingolipid Delta4-desaturase:Defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis[J]. Plant Physiology,2009,149(1):487-498.
[14] ARONDEL V,LEMIEUX B,HWANG I,GIBSON S,GOODMAN H M,SOMERVILLE C R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis[J]. Science,1992,258(5086):1353-1355.
[15] OKULEY J,LIGHTNER J,FELDMANN K,YADAV N,LARK E,BROWSE J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis[J]. The Plant Cell,1994,6(1):147-158.
[16] IBA K,GIBSON S,NISHIUCHI T,FUSE T,NISHIMURA M,ARONDEL V,HUGLY S,SOMERVILLE C. A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana[J]. Journal of Biological Chemistry,1993,268(32):24099-24105.
[17] REDDY A S,NUCCIO M L,GROSS L M,THOMAS T L. Isolation of a Δ6-desaturase gene from the Cyanobacterium synechocystis sp. strain PCC 6803 by gain-of-function expression in Anabaena sp. strain PCC 7120[J]. Plant Molecular Biology,1993,22(2):293-300.
[18] CHENG C Z,LIU F,SUN X L,WANG B,LIU J P,NI X T,HU C H,DENG G M,TONG Z,ZHANG Y Y,Lü P T. Genome-wide identification of FAD gene family and their contributions to the temperature stresses and mutualistic and parasitic fungi colonization responses in banana[J]. International Journal of Biological Macromolecules,2022,204:661-676.
[19] 朱宗文,張愛冬,吳雪霞,查丁石. 生物信息學鑒定分析茄子脂肪酸去飽和酶(FAD)基因家族[J]. 分子植物育種,2023,21(8):2453-2463.
ZHU Zongwen,ZHANG Aidong,WU Xuexia,ZHA Dingshi. Identification and bioinformatics analysis of fatty acid desaturase (FAD) gene family in eggplant (Solanum melongena L.)[J]. Molecular Plant Breeding,2023,21(8):2453-2463.
[20] 張明亞,龐勝群,劉玉東,蘇永峰,牛博文,韓瓊瓊. 番茄FAD基因家族的鑒定與表達分析[J]. 生物技術通報,2024,40(7):150-162.
ZHANG Mingya,PANG Shengqun,LIU Yudong,SU Yongfeng,NIU Bowen,HAN Qiongqiong. Identification and expression analysis of FAD gene family in Solanum lycopersicum[J]. Biotechnology Bulletin,2024,40(7):150-162.
[21] 高謝旺,譚安琪,胡信暢,祝孟洋,阮穎,劉春林. 利用CRISPR/Cas9技術創制高油酸甘藍型油菜新種質[J]. 植物遺傳資源學報,2020,21(4):1002-1008.
GAO Xiewang,TAN Anqi,HU Xinchang,ZHU Mengyang,RUAN Ying,LIU Chunlin. Creation of new germplasm of high-oleic rapeseed using CRISPR/Cas9[J]. Journal of Plant Genetic Resources,2020,21(4):1002-1008.
[22] 王慶華,王磊,吳文江,郭家選,沈元月,吳國良. 果實香氣物質的合成及其激素調控研究進展[J/OL]. 分子植物育種,2021:1-11(2021-11-02)[2024-09-07]. https://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.
WANG Qinghua,WANG Lei,WU Wenjiang,GUO Jiaxuan,SHEN Yuanyue,WU Guoliang. Advances in aroma compounds biosynthesis and hormone regulation of fruit[J/OL]. Molecular Plant Breeding,2021:1-11(2021-11-02)[2024-09-07]. https://kns.cnki.net/kcms/detail/46.1068.S.20211029.1846.006.html.
[23] 蔡璨,白玉,韓藝,郭佳欣,沙偉,張梅娟,彭疑芳,馬天意. 植物多不飽和脂肪酸的研究進展[J]. 高師理科學刊,2023,43(9):64-69.
CAI Can,BAI Yu,HAN Yi,GUOJIA Xin,SHA Wei,ZHANG Meijuan,PENG Yifang,MA Tianyi. Research progress of plant polyunsaturated fatty acids[J]. Journal of Science of Teachers’ College and University,2023,43(9):64-69.
[24] 陳成,王依,楊勇,閻永齊. 采收成熟度對‘金艷’獼猴桃果實品質及香氣成分的影響[J]. 中國農學通報,2020,36(31):28-36.
CHEN Cheng,WANG Yi,YANG Yong,YAN Yongqi. Effects of maturity stage on fruit quality and aroma components of ‘Jinyan’ kiwifruit[J]. Chinese Agricultural Science Bulletin,2020,36(31):28-36.
[25] 陳義挺,賴瑞聯,馮新,程春振,鐘春水,高敏霞,吳如健. 不同貯藏條件下獼猴桃香氣成分的變化規律研究[J]. 熱帶作物學報,2020,41(6):1251-1256.
CHEN Yiting,LAI Ruilian,FENG Xin,CHENG Chunzhen,ZHONG Chunshui,GAO Minxia,WU Rujian. Change of aroma components in different storage conditions of kiwifruit[J]. Chinese Journal of Tropical Crops,2020,41(6):1251-1256.
[26] COZZOLINO R,DE GIULIO B,PETRICCIONE M,MARTIGNETTI A,MALORNI L,ZAMPELLA L,LAURINO C,PELLICANO M P. Comparative analysis of volatile metabolites,quality and sensory attributes of Actinidia chinensis fruit[J]. Food Chemistry,2020,316:126340.
[27] 張波,李鮮,陳昆松. 基于EST庫的獼猴桃脂氧合酶基因家族成員的克隆[J]. 園藝學報,2008,35(3):337-342.
ZHANG Bo,LI Xian,CHEN Kunsong. Molecular cloning of lipoxygenase gene family members in kiwifruit based on EST database[J]. Acta Horticulturae Sinica,2008,35(3):337-342.
[28] CROWHURST R N,GLEAVE A P,MACRAE E A,AMPOMAH-DWAMENA C,ATKINSON R G,BEUNING L L,BULLEY S M,CHAGNE D,MARSH K B,MATICH A J,MONTEFIORI M,NEWCOMB R D,SCHAFFER R J,USADEL B,ALLAN A C,BOLDINGH H L,BOWEN J H,DAVY M W,ECKLOFF R,FERGUSON A R,FRASER L G,GERA E,HELLENS R P,JANSSEN B J,KLAGES K,LO K R,MACDIARMID R M,NAIN B,MCNEILAGE M A,RASSAM M,RICHARDSON A C,RIKKERINK E H,ROSS G S,SCHR?DER R,SNOWDEN K C,SOULEYRE E J F,TEMPLETON M D,WALTON E F,WANG D,WANG M Y,WANG Y Y,WOOD M,WU R M,YAUK Y K,LAING W A. Analysis of expressed sequence tags from Actinidia:Applications of a cross species EST database for gene discovery in the areas of flavor,health,color and ripening[J]. BMC Genomics,2008,9:351.
[29] ZHANG J Y,HUANG S N,CHEN Y H,WANG G,GUO Z R. Identification and characterization of two waterlogging responsive alcohol dehydrogenase genes (AdADH1 and AdADH2) in Actinidia deliciosa[J]. Molecular Breeding,2017,37(4):52.
[30] 陶淑華,陳麗,蔣鎮燁,宋倩倩,宋亦超,姜天甲,鄭小林. 低溫貯藏對美味獼猴桃布魯諾果實主要揮發性物質和脂肪酸代謝的影響[J]. 核農學報,2020,34(2):288-297.
TAO Shuhua,CHEN Li,JIANG Zhenye,SONG Qianqian,SONG Yichao,JIANG Tianjia,ZHENG Xiaolin. Effects of lower temperature on flavor components and fatty acid pathway in harvested kiwifruit (Actinidia deliciosa cv. Bruno)[J]. Journal of Nuclear Agricultural Sciences,2020,34(2):288-297.
[31] 李可,袁懷瑜,朱永清,周艷,夏陳,趙楠,李華佳. 不同品種獼猴桃籽油脂肪酸組成的PCA分析[J]. 中國調味品,2021,46(2):70-74.
LI Ke,YUAN Huaiyu,ZHU Yongqing,ZHOU Yan,XIA Chen,ZHAO Nan,LI Huajia. PCA analysis of fatty acid composition of kiwi seed oils with different varieties[J]. China Condiment,2021,46(2):70-74.
[32] ZHANG B,YIN X R,LI X,YANG S L,FERGUSON I B,CHEN K S. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production[J]. Journal of Agricultural and Food Chemistry,2009,57(7):2875-2881.
[33] 甘武. 獼猴桃果實品質和香氣成分分析研究[D]. 南昌:江西農業大學,2018.
GAN Wu. Analysis of fruit quality and aroma components of kiwifruit[D]. Nanchang:Jiangxi Agricultural University,2018.
[34] DONG C J,CAO N,ZHANG Z G,SHANG Q M. Characterization of the fatty acid desaturase genes in cucumber:Structure,phylogeny,and expression patterns[J]. PLoS One,2016,11(3):e0149917.
[35] GAN Z Y,SHAN N,FEI L Y,WAN C P,CHEN J Y. Isolation of the 9-Cis-epoxycarotenoid dioxygenase (NCED) gene from kiwifruit and its effects on postharvest softening and ripening[J]. Scientia Horticulturae,2020,261:109020.
[36] 袁馨,徐云鶴,張雨培,單楠,陳楚英,萬春鵬,開文斌,翟夏琬,陳金印,甘增宇. 獼猴桃后熟過程中ABA響應結合因子AcAREB1調控AcGH3.1的表達[J]. 園藝學報,2023,50(1):53-64.
YUAN Xin,XU Yunhe,ZHANG Yupei,SHAN Nan,CHEN Chuying,WAN Chunpeng,KAI Wenbin,ZHAI Xiawan,CHEN Jinyin,GAN Zengyu. Studies on AcAREB1 regulating the expression of AcGH3.1 during postharvest ripening of kiwifruit[J]. Acta Horticulturae Sinica,2023,50(1):53-64.
[37] 侯靜靜,趙利,王斌. 亞麻FAD基因家族的生物信息學鑒定分析[J]. 寒旱農業科學,2023(3):246-253.
HOU Jingjing,ZHAO Li,WANG Bin. Identification and bioinformatics analysis of FAD gene family in Linum usitatissimum L.[J]. Journal of Cold-Arid Agricultural Sciences,2023(3):246-253.
[38] LIU K,ZHAO S G,WANG S,WANG H X,ZHANG Z H. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data[J]. BMC Genomics,2020,21(1):299.
[39] 金正楠. 轉錄因子PpNAC1和表觀遺傳修飾通過調控PpFAD3-1表達參與桃果實芳香物質合成[D]. 杭州:浙江大學,2022.
JIN Zhengnan. Transcription factor PpNAC1 and epigenetic modification are involved in the synthesis of volatiles in peach fruits by regulating the expression of PpFAD3-1[D]. Hangzhou:Zhejiang University,2022.
[40] HAJIAHMADI Z,ABEDI A,WEI H,SUN W B,RUAN H H,ZHUGE Q,MOVAHEDI A. Identification,evolution,expression,and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.)[J]. BMC Genomics,2020,21(1):778.
[41] 王靜,茅林春,楊璐,李學文,張輝,呂卓,劉彩虹,李乾,侯琛元. 草酸處理對采后哈密瓜果實膜脂代謝的影響[J]. 中國食品學報,2019,19(8):189-198.
WANG Jing,MAO Linchun,YANG Lu,LI Xuewen,ZHANG Hui,Lü Zhuo,LIU Caihong,LI Qian,HOU Chenyuan. Effect of oxalic acid on reduction of membrane lipids metabolism of Hami melon’s fruit in postharvest[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):189-198.
[42] 吳秋妃,楊程,張淑巖,韋露,馮美利,李睿,周麗霞,曹紅星. 油棕果實發育和采后脂肪酸合成轉錄代謝差異分析[J]. 熱帶作物學報,2024,45(2):234-246.
WU Qiufei,YANG Cheng,ZHANG Shuyan,WEI Lu,FENG Meili,LI Rui,ZHOU Lixia,CAO Hongxing. Differential analysis of fatty acid synthesis,transcriptional metabolism during fruit development and postharvest in oil palm[J]. Chinese Journal of Tropical Crops,2024,45(2):234-246.
[43] STAVECKIEN? J,KULAITIEN? J,LEVICKIEN? D,VAITKEVI?IEN? N. Changes in fatty acid content in Solanum spp. fruits during ripening[J]. Plants,2023,12(2):268.
[44] DESHPANDE A B,CHIDLEY H G,OAK P S,PUJARI K H,GIRI A P,GUPTA V S. Data on changes in the fatty acid composition during fruit development and ripening of three mango cultivars (Alphonso,Pairi and Kent) varying in lactone content[J]. Data in Brief,2016,9:480-491.
[45] WADE N L. Membrane lipid composition and tissue leakage of pre- and early-climacteric banana fruit[J]. Postharvest Biology and Technology,1995,5(1/2):139-147.
[46] 張嘉錫. 油茶亞麻酸合成關鍵基因CoFAD7的功能分析和優異等位變異挖掘[D]. 長沙:中南林業科技大學,2024.
ZHANG Jiaxi. Functional analysis of CoFAD7,a key gene for the linolenic acid synthesis in Camellia oleifera,and mining of excellent allelic variation[D]. Changsha:Central South University of Forestry and Technology, 2024.
[47] WANG J J,LIU H R,GAO J,HUANG Y J,ZHANG B,CHEN K S. Two ω-3 FADs are associated with peach fruit volatile formation[J]. International Journal of Molecular Sciences,2016,17(4):464.
[48] PENG B,GU Z X,ZHOU Y F,NING Y Z,XU H Y,LI G,NI Y,SUN P P,XIE Z Q,SHI S P,DARK A,SONG Z Z. Potential role of fatty acid desaturase 2 in regulating peach aroma formation[J]. Postharvest Biology and Technology,2023,204:112473.
[49] HERNáNDEZ M L,SICARDO M D,BELAJ A,MARTíNEZ-RIVAS J M. The oleic/linoleic acid ratio in olive (Olea europaea L.) fruit mesocarp is mainly controlled by OeFAD2-2 and OeFAD2-5 genes together with the different specificity of extraplastidial acyltransferase enzymes[J]. Frontiers in Plant Science,2021,12:653997.
[50] LEE M W,PADILLA C S,GUPTA C,GALLA A,PEREIRA A,LI J M,GOGGIN F L. The FATTY ACID DESATURASE2 family in tomato contributes to primary metabolism and stress responses[J]. Plant Physiology,2020,182(2):1083-1099.