









摘" " 要:【目的】細菌性潰瘍病是獼猴桃產業面臨的毀滅性病害,篩選抗性獼猴桃種質資源,可為抗病育種與品種改良奠定基礎。【方法】利用離體枝條接種的方法,連續兩年對山梨63101與中華獼猴桃磨山雄7號雜交群體進行潰瘍病抗性鑒定;選取19份抗病性存在差異的種質,進一步采用石蠟切片法和掃描電鏡技術觀察葉片組織結構與氣孔特征,并測定葉片中總酚、可溶性糖、木質素含量等,篩選與潰瘍病抗病顯著相關的指標。【結果】84份種質資源中含抗病種質67份(占比79.76%)、耐病13份(占比15.48%)、感病3份(占比3.57%)、高感1份(占比1.19%)。相關性分析表明葉片的海綿組織厚度、氣孔密度和長度與抗病性呈顯著負相關,總酚、可溶性糖及木質素含量與抗病性呈極顯著正相關。氣孔寬度、上表皮厚度、下表皮厚度、柵欄組織厚度與枝條抗病性不相關。【結論】篩選出67份抗病種質資源,證實葉片海綿組織厚度、氣孔密度、氣孔長度、木質素含量、可溶性糖含量、總酚含量等6個指標可作抗性評價指標,為獼猴桃品種的抗病雜交選育及快速抗性鑒定奠定了基礎。
關鍵詞:獼猴桃;潰瘍病;種質資源;抗性評價;生理生化指標
中圖分類號:S663.4;S436.634 文獻標志碼:A 文章編號:1009-9980(2024)11-2235-15
Evaluation of disease resistance and research of resistance mechanism of kiwifruit hybrid population derived from Actinidia rufa and Actinidia chinensis var. chinensis
HE Di1, 2, ZHONG Caihong2#, ZHU Jiahui2, PAN Hui2, LI Wenyi2, YANG Jie2, HUANG Yue1, LIU Pu1*, LI Li2*
(1School of Horticulture, Anhui Agricultural University/Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Hefei 230036, Anhui, China; 2Wuhan Botanic Garden/Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture/Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, Hubei, China)
Abstract: 【Objective】 Kiwifruit is highly appreciated by consumers because of its delicious taste and high nutritional value. Although the global kiwifruit industry has grown rapidly in recent years, it is still facing the great challenge of bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). The disease can cause large scale death of kiwifruit because of its fast transmission and strong pathogenicity, leading to serious yield and economic losses in many countries and limiting the development of the kiwifruit industry. Utilization of resistant kiwifruit cultivars has always been recognized as the most cost-effective and environment-friendly strategy for disease control, but there still is a lack of knowledge about the disease resistance of different cultivars. The analysis of the resistance of different kiwifruit germplasms to bacterial canker and the correlation between different evaluation indexes are of great significance to breeding new kiwifruit varieties resistant to the disease. 【Methods】 The kiwifruit germplasm resources used in this study are the hybrid populations of Actinidia rufa × A. chinensis var. chinensis in the National Kiwifruit Resource Nursery, with consistent ploidy and tree age. Psa M228 was provided by the laboratory of Pathogen Biology and the Research Team of Integrated Control of Fruit Tree Diseases, Northwest A amp; F University, China. Psa was diluted to 1.0×109 CFU·mL-1 before inoculation. The one-year old detached branches, approximately 0.8 cm in diameter, were sterilized with 75% alcohol and then cut into 12-14 cm, the ends of the branches were dipped in candle wax to reduce dehydration. A wound of about 3 mm was made and Psa was added to the wound. Subsequently, all of the branches were put on a draining board on which two layers of sterile absorbent paper had previously been placed. The lower tray was filled with sterile water close to the bottom of the draining board, and another two layers of sterile absorbent paper were placed over the cane pieces. The germplasms with differences in disease resistance were selected, and the leaf tissue structure and stomatal characteristics were observed by paraffin section method and scanning electron microscope technique, and the total phenol, soluble sugar and lignin content of leaves were determined to screen out the indicators significantly related to canker disease resistance. After 42 d of incubation, the outer cortex of the branches was peeled off with a sterile knife for observing and measuring the lesion; the germplasm resistance was classified according to the length of the lesion: Resistant (R): lesion length ≤7.0 mm; Tolerant (T): 7.0 mmlt;lesion length≤9.0 mm; Susceptible (S): 9.0 mmlt;lesion length≤11.0 mm; and High susceptible (HS): lesion length gt;11.0 mm. The data were analyzed by one-way ANOVA (one-way ANOVA) Duncan’s New Compound Extreme Variance method and Pearson correlation analysis using SPSS 21.0 software. 【Results】 Significant difference in the level of resistance of different kiwifruit germplasms were found. There were 67 accessions of disease-resistant germplasms in 84 accessions of germplasms, accounting for 79.76%, 13 accessions of disease-tolerant germplasms, accounting for 15.48%, 3 accessions of susceptible germplasms, accounting for 3.57%, and 1 accession of highly susceptible germplasm, accounting for 1.19%. There were significant differences in the thickness of leaf spongy tissue of different kiwifruit germplasms, and the thickness of the susceptible varieties were generally higher than the that of the resistant varieties, with a maximum stomatal density of 855.2 stomata·mm-2 on the susceptible varieties. The distribution of stomatal apparatus length ranged from 16.78 to 7.68 μm. The total phenol content of the most resistant germplasm was highest at 52.53 mg·g-1. The soluble sugar content varied significantly among the germplasms, from 33.05 mg·g-1 to 51.05 mg·g-1. The higher the lignin content, the higher the resistant to the disease. The thickness of the upper epidermis was greater than that of the lower epidermis in all the germplasms, but it was not related to disease resistance, and the width of the fenestrated tissues and stomata were also not related to disease resistance of the branch. The leaf spongy tissue thickness, stomatal density, and stomatal length were significantly and negatively correlated with resistance, while total phenolic content, soluble sugar content, and lignin content were significantly and positively correlated with resistance. 【Conclusion】 In this study, 67 accessions of resistant germplasm were screened out from the 84 accessions of germplasms of he hybrid populations of A. rufa and A. chinensis var. chinensis. The spongy tissue thickness, stomatal density, stomatal length, lignin content, soluble sugar content, and total phenol content could be used as disease resistance indicators.
Key words: Kiwifruit; Bacterial canker; Germplasm resources; Resistance evaluation; Physiological and biochemical parameters
獼猴桃(Actinidia spp.)隸屬獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.),是一種重要的經濟作物,由于其果實風味獨特、營養豐富、抗壞血酸含量高而備受關注[1-2]。根據聯合國糧食及農業組織(FAO)最新數據,2022年我國獼猴桃收獲面積近20萬hm2,占全球的70%;年產量是238萬t,占全球的52%,遠超意大利、新西蘭、伊朗、希臘等國家[3-4]。獼猴桃細菌性潰瘍病是丁香假單胞桿菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae,Psa)引起的病害,該病害于1984年在日本靜岡的美味獼猴桃上首次報道,目前已成為世界獼猴桃生產的最大制約因素,嚴重危害產業健康發展[4]。生產上對獼猴桃潰瘍病防治以防御性措施為主,如避雨栽培和一些化學藥劑(銅制劑、春雷霉素等抗生素)。但這些措施的使用會增加生產成本,也不利于獼猴桃產業的綠色健康發展[5]。因此,挖掘和篩選抗性品種對潰瘍病的控制至關重要[6]。中國擁有豐富的獼猴桃種質資源,對獼猴桃種質進行抗潰瘍病評價,挖掘可利用的優質獼猴桃種質資源,從中篩選出抗病性較強的種質,可為品種抗病遺傳改良奠定重要基礎。
植物在長期適應環境的過程中,為抵御微生物病原體的侵染,進化出組成型和誘導型防御機制[7]。
植物本身的形態結構構成阻止病原菌滲透的組成型防御機制,如葉片厚度、柵欄組織厚度、下表皮厚度、海綿組織厚度、氣孔大小和密度等。研究發現枇杷葉斑病抗性與葉片厚度、海綿組織厚度和氣孔密度顯著相關[8];核桃葉片的氣孔長度和面積與疫病病情指數呈顯著正相關,海綿組織與柵欄組織厚度比與病情指數呈顯著負相關,海綿組織越密集、柵欄組織越發達,品種的抗性就越強[9]。臍橙抗潰瘍病品種的氣孔密度和大小都明顯低于感病品種[10];獼猴桃潰瘍病抗性與葉片的氣孔密度和長度呈負相關,與全葉厚度呈正相關[11-12]。
病原菌突破組成型防御后會引起植物啟動誘導型防御機制,產生一系列生理生化反應增強寄主對病菌的抗性。植物抵御病原菌侵染的第一步就是誘導合成酚類物質,如植保素、木質素等酚類化合物[13]。水稻總酚含量與細菌性枯萎病抗性呈顯著正相關[14];石榴枯萎病抗性品種中總酚、類黃酮和抗氧化物質含量相對更高[15]。糖類物質不僅是植物體內的能量儲存和轉移介質,也是病原菌繁殖的營養物質,其含量變化與抗病性密切相關。相較于感病品種,杧果角斑病抗性品種的可溶性糖含量更高[16],獼猴桃潰瘍病抗病品種、棉花黃萎病抗病品種的木質素含量明顯高于感病品種[17-19]。
中國是獼猴桃原產地,野生獼猴桃種質資源豐富。全世界獼猴桃屬植物共有54個種,21個變種,中國分布有52個種,其中有44個種為中國特有[20]。目前商業栽培獼猴桃品種主要由中華獼猴桃和美味獼猴桃馴化培育而來[21],對潰瘍病抗性較差。野生獼猴桃種質資源中含有豐富的抗性基因,但大量的野生獼猴桃資源并未開展潰瘍病抗性評價,種質抗感性與抗性生理指標的關系研究報道也較少。宋雅林等[22]發現29個不同獼猴桃品種對潰瘍病抗病性具有顯著差異。溫欣等[23]對51份軟棗獼猴桃種質的潰瘍病抗性進行分析,發現中高抗資源33份,中抗資源18份。李黎等[24]對國家獼猴桃資源圃中29個種82份種質資源進行了抗性評價,發現不同獼猴桃種質的抗性差異顯著,篩選到高抗種質5份,中抗種質9份。筆者在本研究中以國家獼猴桃資源圃中的84份山梨63101與中華獼猴桃磨山雄7號雜交群體為材料,基于離體枝條接種進行潰瘍病抗性鑒定,并選取19個抗性不同的株系對葉片結構、氣孔器特征和生理生化指標進行分析,明確與抗病相關的指標,為獼猴桃抗性資源利用和抗性育種提供理論依據。
1 材料和方法
1.1 材料
供試菌株Psa M228為獼猴桃潰瘍病病原菌丁香假單胞菌獼猴桃致病變種Pseudomonas syringae pv. actinidiae(Psa),由西北農林科技大學果樹病害病原生物學及綜合防治研究團隊實驗室提供[25],中國科學院武漢植物園植物種質創新與特色農業重點實驗室保存。
2019年,武漢植物園獼猴桃課題組選擇母本(山梨獼猴桃63101)與父本(中華獼猴桃磨山雄7號)進行雜交,獲得的種子進行播種,共得到后代252株,倍性均為2倍體,樹勢生長良好,均保存于國家獼猴桃資源圃內,選擇其中84株為試驗材料。
1.2 方法
1.2.1 菌株培養 將供試菌株M228接種于LB固體培養基活化培養,于25 ℃下培養36 h后,挑取單菌落至5 mL液體LB培養基中。于28 °C、180 r·min-1搖床上培養過夜,12 000 r·min-1離心5 min,取沉淀,用無菌水稀釋懸浮液至OD600=1,濃度為109 CFU·mL-1,備試驗使用。
1.2.2 采用離體枝條進行接種 分別于2022年冬和2023年冬選取直徑約為0.8 cm長勢一致且健康的1年生枝條,剪成12~14 cm的小枝條,用石蠟封住枝條兩端,防止水分流失;用75%乙醇對枝條進行表面消毒,用打孔器在枝條中部切割傷口,切口3 mm寬,深至木質部,傷口上滴加10 μL的菌液;每種材料接種6根枝條,以無菌水為對照。待菌液完全風干后,置于底部鋪有濕濾紙的托盤中,傷口朝上,用保鮮膜覆蓋密封保證枝條水分,托盤內留有多余水分,內部濕度保持80%,放于16 °C、16 h光照/8 h黑暗條件下培養;培養42 d后用無菌刀削去枝條外皮層,觀察測量病菌侵染后形成的病斑。根據枝條病斑長度進行種質抗性等級劃分,參照裴艷剛等[26]及Wang等[27]的方法略作調整:抗病(resistant,R),病斑長度≤7.0 mm;耐病(tolerant,T),7.0 mm<病斑長度≤9.0 mm;感病(susceptible,S),9.0 mm<病斑長度≤11.0 mm;高感(high susceptible,HS),病斑長度>11.0 mm。
1.2.3 石蠟切片與觀察 參照張俊環等[28]的方法略作調整:使用番紅-固綠對染的方法制作切片,切取1 cm×1 cm新鮮葉片組織,放入FAA固定液中固定24 h以上,再經脫水、透明、浸蠟、包埋、切片處理,最后用番紅-固綠染色,樹脂膠封片。制作完成的切片由武漢賽維爾生物科技有限公司進行全視野數字切片掃描(whole slide imaging),通過CaseViewer 2.4軟件測量葉片上表皮厚度、下表皮厚度、海綿組織厚度及柵欄組織厚度等生理指標。
1.2.4 掃描電鏡觀察 參照胡光明等[29]的方法略作調整:切取1 cm×0.5 cm大小的新鮮葉片組織,用4%的甲醛室溫固定2 h,再轉移至4 ℃保存;將固定好的樣品依次轉入30%、50%、75%、90%和100% 5個濃度梯度的乙醇中脫水,每次40 min;脫水后的樣品放進二氧化碳臨界點干燥儀內進行干燥后轉入離子濺射鍍膜儀日立樣品臺進行噴金處理;最后利用臺式掃描電鏡觀察并拍照,用Image-J圖像處理軟件分別對氣孔密度和氣孔長度、寬度進行測量,并將密度相關指標換算成每平方毫米的數目。
1.2.5 生理生化指標測定 參考李小方等[30]《植物生理學實驗指導》測量生理指標。總酚(TP)含量采用福林酚法測定,稱取0.1 g新鮮樣本,加入1.5 mL的60%乙醇研磨后,60 ℃水浴振蕩提取2 h,離心后取上清液待測。可溶性糖(SS)含量采用蒽酮比色法測定,取待測樣本0.1 g,加入1 mL水,研磨后沸水浴10 min后,離心取上清液稀釋50倍后待測。取總酚、可溶性糖待測液,按照南京建成生物工程研究所提取試劑盒說明書加入試劑提取,利用多功能酶標儀測量。樣本研磨后使用武漢力博瑞公司ELISA科研試劑盒提取木質素,并計算木質素含量。每個生理生化指標測定3次重復,取平均值。
1.3 數據統計
所有指標用Excel 2019整理,利用SPSS 21.0軟件對數據進行單因素方差分析(one-way ANOVA)和Duncan’s差異顯著性檢驗和Pearson相關性分析,表中數據用平均值±標準誤差表示。
2 結果與分析
2.1 山梨中華群體種質抗性評價
以東紅為對照,連續2 a(年)對雜交群體進行離體枝條接種試驗,根據病斑長度從低到高劃分為四個抗性等級:抗病(R)、耐病(T)、感病(S)、高感(HS)。從表1和圖1中可以看出84份種質枝條發病后病斑大小有差異顯著,病斑長度在3~22 mm之間。84份種質中含抗病種質67份,占比79.76%;耐病種質13份,占比15.48%;感病種質3份,占比3.57%;高感種質僅有1份,占比1.19%。其中雜交群體母本(山梨獼猴桃63101)的病斑均值為4.24 mm,父本(中華獼猴桃磨山雄7號)的病斑均值為7.32 mm。由表1中結果可以得出二者雜交所產生的后代群體抗性較強,抗病種質總體占比高達79.76%。2022年枝條接種結果與2023年接種結果之間相關系數為0.77,呈顯著相關,說明群體抗性比較穩定(圖2)。
2.2 不同抗性獼猴桃種質葉片組織結構比較
選取19份抗病性存在差異的種質進行葉片組織結構比較(表2),可見獼猴桃葉片結構均由表皮、葉肉細胞和葉脈組成,上下表皮細胞均由一層體積較大、形狀不規則、緊密貼合的單層細胞構成。葉片柵欄組織與海綿組織分化明顯,為典型的異面葉。柵欄組織緊密排列呈柵狀,垂直于上表皮細胞下方,內含大量的葉綠體。海綿組織位于柵欄組織與下表皮之間,排列疏松,呈海綿狀。研究結果表明,19份種質的柵欄組織厚度分布在75.3~136.29 μm之間,與病斑值無顯著相關性。海綿組織厚度分布在74.47~130.05 μm之間,與枝條病斑長度值呈顯著正相關,即病斑長度越長,抗性越低,則海綿組織越厚。種質上表皮厚度分布在28.70~11.60 μm之間,比下表皮厚度(14.93~8.36 μm)要大,但上下表皮厚度與獼猴桃抗病能力不相關。
2.3 不同抗性獼猴桃種質氣孔特征比較
19份獼猴桃種質氣孔特征如表3所示,氣孔均分布在下表皮,形狀為橢圓形或寬圓形,氣孔器由兩個腎形保衛細胞組成。密度分布在855.2~331.05個·mm-2,其中同一視野中E674氣孔密度最大,為855.2個·mm-2,其病斑長度均值最長,抗病性最差;E2545氣孔密度最小,為331.05個·mm-2,其病斑長度均值最小,抗病性最強。氣孔長度分布在16.78~7.68 μm之間,其中抗性最強種質為E2545,氣孔長度為7.68 μm;抗性最弱種質為E674,氣孔長度為16.78 μm。由此可見,隨著抗性降低,獼猴桃種質的葉片氣孔密度與氣孔長度增大。氣孔寬度最大為2.68 μm,最小為1.02 μm。其中E2545抗性最強,氣孔寬度為1.27 mm,E674抗性最弱,氣孔寬度為1.61 mm。
氣孔密度與病斑均值相關系數為0.715,氣孔長度與病斑長度均值相關系數為0.905,均呈現極顯著正相關,進一步證實抗病種質的氣孔密度與長度小于感病種質,整體隨抗性增強呈現遞減趨勢。氣孔寬度與病斑長度均值相關系數為-0.231,不存在相關性(圖3)。
2.4 不同野生獼猴桃種質生理生化指標比較
對上述19份獼猴桃種質采集葉片進行生理指標測定,發現不同種質的生理數據間存在差異。根據表4可知,每g葉片的總酚含量(w,后同)在23.15~52.23 mg·g-1之間,枝條抗性最高的種質為E2545,其總酚含量最高,為52.23 mg·g-1;抗性最差的種質E674總酚含量為25.57 mg·g-1。同樣,可溶性糖含量分布在51.05~33.05 mg·g-1之間,抗性最高的種質為E2545,可溶性糖含量最高為51.05 mg·g-1;抗性最差的種質E674可溶性糖含量最低為33.05 mg·g-1。不同種質葉片木質素含量差異顯著,在96.72~80.41 mg·g-1之間,木質素含量(96.72 mg·g-1)最高的為E2545種質,其抗性也最強;含量(80.41 mg·g-1)最低的種質為E2532。
抗性種質葉片中的總酚、可溶性糖、木質素含量顯著高于感病種質。隨著抗性降低,19份種質的總酚、可溶性糖、木質素含量均呈現下降趨勢。對不同種質間生理指標與枝條病斑長度進行相關性分析,如圖4所示,可見總酚含量、可溶性糖含量、木質素含量均與枝條病斑長度呈極顯著負相關,相關系數分別為-0.732、-0.853、-0.855。
綜合而言,潰瘍病菌接種枝條后病斑越短,種質抗病性越高,對應生理指標中的總酚、可溶性糖及木質素含量越高。相反,潰瘍病菌接種枝條后病斑長度越長,種質感病性越高,對應生理指標中的總酚、可溶性糖及木質素含量越低。
3 討 論
防治獼猴桃潰瘍病最直接有效的方法就是培育和栽培抗性品種[31]。對種質資源進行抗性鑒定,是選育抗性品種的前提。關于獼猴桃潰瘍病鑒定方法,田間鑒定的結果最具直觀性,但易受環境等諸多因素的影響,鑒定結果不穩定且容易導致病原菌擴散[5]。室內離體枝條接種具有安全、高效、可靠等優點,在梨[32]、蘋果[33]、獼猴桃[23,34-35]、柑橘[36]、山楂[37]上應用廣泛。溫欣等[23]對51份軟棗獼猴桃種質進行潰瘍病菌離體枝條和葉片接種,結果表明離體葉片接種、離體葉脈接種、半木質化離體枝條接種法均可作為抗性鑒定方法,其中離體枝條接種的結果較為準確。Hoyte等[38]對75個商業品系及中華/軟棗、中華/黑蕊、中華/對萼3個類型的2000余份雜交群體實生苗進行離體木質化枝條及嫩枝接種,發現兩種方法均可有效用于獼猴桃對潰瘍病抗性評價。
我國野生獼猴桃種質資源極其豐富,近年來國內學者也開展了系列抗性評價工作。崔麗紅等[39]、王發明等[5]、裴艷剛等[26]研究結果均表明就潰瘍病抗性而言,毛花獼猴桃品種>美味獼猴桃品種>中華獼猴桃品種。劉娟[40]、宋雅林等[22]、Datson等[41]研究證實不同種或變種獼猴桃資源的抗病性差異顯著,毛花、軟棗、京梨、葛棗等種的抗病性較強,中華、闊葉、長葉相對較感病。Hoyte等[38]研究證實軟棗、黑蕊、對萼與中華雜交后代部分抗性增強,種內抗性存在明顯分化。李黎等[24]研究證實山梨、毛花及軟棗等野生種質抗性較強,但抗性存在種內分化。本研究所用材料為山梨與中華雜交后代,研究結果表明群體材料抗性雖存在分化,但整體后代抗性較強。
植物的表型結構與抗性密切相關。葉面是植物與病原菌接觸的第一層屏障,葉片結構差異直接影響病原菌侵染的難易程度。李伯凌等[42]認為高抗品種木薯葉片的柵欄組織細胞和海綿組織細胞排列較感病品種更整齊緊密。田麗波等[43]認為海綿組織厚度越厚、葉片結構越疏松的苦瓜品系,越容易受到白粉病的侵染。本研究通過顯著性相關分析,發現不同種質的獼猴桃葉片海綿組織厚度存在顯著差異,海綿組織越厚植物抗病性越弱,但上下表皮厚度、柵欄組織厚度與抗病性沒有相關性,規律與上述文獻[42-43]一致。氣孔是植物與外界進行氣體交換的場所,也是病原菌的主要入侵點,植物表皮的氣孔數量與形態結構與抗病性息息相關。在油茶[44]、枇杷[8]、核桃[45]等植物中,氣孔密度越大,氣孔越長,植物越易感病。本研究結果證明獼猴桃葉片的氣孔密度、長度與獼猴桃種質抗性呈顯著正相關,與賀占雪等[11]、李淼等[12]、李靖等[46]在獼猴桃中的研究結果相同。綜上,不同種質獼猴桃的海綿組織厚度和氣孔器大小、密度與抗潰瘍病相關性顯著,這些微表觀特征也可為獼猴桃潰瘍病抗病選育提供形態學參考。
當植物被病原菌感染時,感染部位會通過苯丙烷途徑大量合成木質素,促進植物細胞壁的木質化,抵抗病原菌的進一步感染[47]。可溶性糖含量低會抑制病原菌在植物體內的繁殖與生長[48]。李亞等[49]、鄭磊等[16]認為核桃對黃單胞桿菌抗性、杧果對細菌性角斑病抗性均與可溶性含糖量呈顯著正相關。酚類物質是木質素合成的前體,植物感病組織中酚類化合物的積累會抑制病原菌的入侵,是誘導植物發揮抗性的主要物質[50]。陳浩等[51]發現接種霜霉病菌后,抗病荔枝品種的總酚和類黃酮含量顯著高于感病品種;李國平等[52]認為杧果葉片的總酚、類黃酮、阿魏酸、木質素相對含量與對細菌性角斑病抗性呈正相關。Qin等[53]研究發現,高感中華獼猴桃品種紅陽和抗性毛花品種中存在22個參與木質素合成的差異表達基因,表明木質素含量與潰瘍病抗性呈正相關。本研究中獼猴桃葉片中木質素、可溶性糖、總酚含量均與抗病性呈顯著正相關,與上述研究結果規律一致。
獼猴桃產業的持續發展需要潰瘍病抗病品種的栽培推廣,野生型獼猴桃經過長期的自然選擇與遺傳變異有著豐富的抗性基因[24],山梨獼猴桃抗旱、耐澇或耐高濕及抗病性的能力較強,且果實風味淡甜、果面無毛[54]。目前大部分商業栽培的中華獼猴桃品種雖風味濃郁、果實較大,但對潰瘍病感病或中抗,且遺傳背景比較狹窄。雜交育種可以使后代具有親本雙方的優良性狀,實現優異多基因聚合的育種目標,從而可以培育出滿足消費者和生產者需求的優良品種。申素云等[55]對山梨與中華雜交果實進行品質與感官評價,發現山梨與中華雜交種類的整體喜好度平均值最高,風味喜好度和濃烈程度也較高。結合本試驗的結果,有望篩選到產量高、品質佳且潰瘍病抗性強的優質高抗山梨中華雜交子代。
此外,基于種質抗性評價結果,可進一步對抗性基因進行QTL群體定位或者挖掘關鍵抗性基因。Tahir等[56-57]利用簡化基因組測序GBS在中華獼猴桃染色體LG27上發現1個主要效應QTL位點,隨后進一步在四倍體中華獼猴桃中鑒定到4個關鍵QTL位點。Zhao等[6]和Liu等[58]從高感紅陽基因組中鑒定出3個抗潰瘍病關鍵基因,并基于抗感獼猴桃種質的轉錄組差異鑒定獲得了2個抗潰瘍病關鍵因子。本研究對山梨與中華雜交群體進行了抗性評價,后續可根據該評價結果進一步挖掘抗性基因,為闡明獼猴桃抗潰瘍病機制奠定材料基礎。
4 結 論
研究評價了84份山梨與中華獼猴桃雜交群體種質的潰瘍病抗性,篩選出67份抗病種質,并發現海綿組織厚度、氣孔密度、氣孔長度、木質素含量、可溶性糖含量、總酚含量6個指標與獼猴桃抗性相關,其中海綿組織厚度、氣孔密度、氣孔長度與獼猴桃抗病性呈顯著負相關,木質素含量、可溶性糖含量、總酚含量與獼猴桃抗病性呈顯著正相關。研究結果為獼猴桃抗性育種及抗性機制研究奠定了基礎。
參考文獻 References:
[1] 呂正鑫,王海令,賀艷群,劉青,黃春輝,賈東峰,徐小彪. 基于HS-SPME-GC-MS的5份獼猴桃種質風味品質研究[J]. 果樹學報,2022,39(1):47-59.
Lü Zhengxin,WANG Hailing,HE Yanqun,LIU Qing,HUANG Chunhui,JIA Dongfeng,XU Xiaobiao. Flavor quality analysis of five kiwifruit germplasm based on HS-SPMEGC-MS[J]. Journal of Fruit Science,2022,39(1):47-59.
[2] 徐子怡,羅晨宇,占坤,邱榮輝,黃春輝,徐小彪,賈東峰. 獼猴桃OSCA基因家族鑒定及其在非生物脅迫下的表達分析[J]. 果樹學報,2024,41(3):436-447.
XU Ziyi,LUO Chenyu,ZHAN Kun,QIU Ronghui,HUANG Chunhui,XU Xiaobiao,JIA Dongfeng. Genome-wide identification of OSCA gene family members and their expression under different abiotic stresses in kiwifruit[J]. Journal of Fruit Science,2024,41(3):436-447.
[3] 鐘彩虹,黃文俊,李大衛,張瓊,李黎. 世界獼猴桃產業發展及鮮果貿易動態分析[J]. 中國果樹,2021(7):101-108.
ZHONG Caihong,HUANG Wenjun,LI Dawei,ZHANG Qiong,LI Li. Dynamic analysis of global kiwifruit industry development and fresh fruit trade[J]. China Fruits,2021(7):101-108.
[4] ZHONG C H,HUANG W J,WANG Z P,LI L,LI D W,ZHANG Q,ZHAO T T,ZHANG P. The breeding progress and development status of the kiwifruit industry in China[J]. Acta Horticulturae,2022(1332):445-454.
[5] 王發明,莫權輝,葉開玉,龔弘娟,蔣橋生,劉平平,李潔維. 獼猴桃潰瘍病抗性育種研究進展[J]. 廣西植物,2019,39(12):1729-1738.
WANG Faming,MO Quanhui,YE Kaiyu,GONG Hongjuan,JIANG Qiaosheng,LIU Pingping,LI Jiewei. Research progress on kiwifruit resistance breeding to Pseudomonas syringae pv. actinidiae[J]. Guihaia,2019,39(12):1729-1738.
[6] ZHAO C,LIU W,ZHANG Y L,LI Y Z,MA C,TIAN R Z,LI R,LI M J,HUANG L L. Two transcription factors,AcREM14 and AcC3H1,enhance the resistance of kiwifruit Actinidiachinensis var. chinensis to Pseudomonas syringae pv. actinidiae[J]. Horticulture Research,2023,11(1):uhad242.
[7] YANG S M,XU T L,YANG Y,PEI W Y,LUO L,YU C,WANG J,CHENG T R,ZHANG Q X,PAN H T. H2O2 accumulation plays critical role in black spot disease resistance in roses[J]. Horticulture,Environment,and Biotechnology,2023,64(1):1-14.
[8] 陳依麗,陳雨瓊,鄧穎,李春雨,彭澤,楊向暉. 枇杷屬植物葉片結構與葉斑病抗性的相關性研究[J]. 果樹學報,2022,39(11):2133-2140.
CHEN Yili,CHEN Yuqiong,DENG Ying,LI Chunyu,PENG Ze,YANG Xianghui. Analysis of correlation between leaf structure and resistance to leaf spot in Eriobotrya[J]. Journal of Fruit Science,2022,39(11):2133-2140.
[9] YANG H B,HAN S,HE D,JIANG S J,CAO G L,WAN X Q,CHEN L H,XIAO J J,ZHU P. Resistance evaluation of walnut (Juglans spp.) against Xanthomonas arboricola and the correlation between leaf structure and resistance[J]. Forest Pathology,2021,51(1):e12659.
[10] WANG Y,FU X Z,LIU J H,HONG N. Differential structure and physiological response to canker challenge between ‘Meiwa’ kumquat and ‘Newhall’ navel orange with contrasting resistance[J]. Scientia Horticulturae,2011,128(2):115-123.
[11] 賀占雪,李欣,朱太富,蘇效蘭,王連春. 野生獼猴桃枝葉組織結構與抗潰瘍病的關系分析[J]. 中國植保導刊,2023,43(10):9-14.
HE Zhanxue,LI Xin,ZHU Taifu,SU Xiaolan,WANG Lianchun. Analysis of the relationship between the resistance of wild kiwifruit to canker and the tissue structure of its branches and leaves[J]. China Plant Protection,2023,43(10):9-14.
[12] 李淼,檀根甲,李瑤,承河元,李珂. 獼猴桃品種葉片組織結構與抗潰瘍病的關系[J]. 安徽農業科學,2002,30(5):740-742.
LI Miao,TAN Genjia,LI Yao,CHENG Heyuan,LI Ke. Study on the leaf tissue structure of kiwifruit cultivars in relation to bacterial canker disease resistance[J]. Journal of Anhui Agricultural Sciences,2002,30(5):740-742.
[13] 任艷芳,宋雅萍,肖桂云,張黎明,何俊瑜,林肖,王艷玲. 一氧化氮介導水楊酸誘導的采后杧果果實炭疽病抗性反應[J]. 植物生理學報,2021,57(3):632-642.
REN Yanfang,SONG Yaping,XIAO Guiyun,ZHANG Liming,HE Junyu,LIN Xiao,WANG Yanling. Nitric oxide mediates salicylic acid-induced defense responses in mango fruit against anthracnose disease[J]. Plant Physiology Journal,2021,57(3):632-642.
[14] SHASMITA,MOHAPATRA D,MOHAPATRA P K,NAIK S K,MUKHERJEE A K. Priming with salicylic acid induces defense against bacterial blight disease by modulating rice plant photosystem II and antioxidant enzymes activity[J]. Physiological and Molecular Plant Pathology,2019,108:101427.
[15] PRIYA B T,MURTHY B N S,GOPALAKRISHNAN C,ARTAL R B,JAGANNATH S. Identification of new resistant sources for bacterial blight in pomegranate[J]. European Journal of Plant Pathology,2016,146(3):609-624.
[16] 鄭磊,詹儒林,柳鳳,李國平,趙艷龍,常金梅,何衍彪. 杧果感染細菌性角斑病菌后的生理代謝變化[J]. 廣東農業科學,2016,43(4):67-72.
ZHENG Lei,ZHAN Rulin,LIU Feng,LI Guoping,ZHAO Yanlong,CHANG Jinmei,HE Yanbiao. Physiological metabolic changes of mango infected by bacterial leaf spot pathogen[J]. Guangdong Agricultural Sciences,2016,43(4):67-72.
[17] 李亞巍. 獼猴桃漆酶基因AcLac35的克隆及抗潰瘍病的功能分析[D]. 合肥:安徽農業大學,2019.
LI Yawei. Isolation of laccase Aclac35 in kiwifruit and analysis its role in defense to bacterial canker[D]. Hefei:Anhui Agricultural University,2019.
[18] MENDU L,ULLOA M,PAYTON P,MONCLOVA-SANTANA C,CHAGOYA J,MENDU V. Lignin and cellulose content differences in roots of different cotton cultivars associated with different levels of Fusarium wilt race 4 (FOV4) resistance-response[J]. Journal of Agriculture and Food Research,2022,10:100420.
[19] ZHANG Y,WU L Z,WANG X F,CHEN B,ZHAO J,CUI J,LI Z K,YANG J,WU L Q,WU J H,ZHANG G Y,MA Z Y. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants[J]. Molecular Plant Pathology,2019,20(3):309-322.
[20] 孫雷明,方金豹. 我國獼猴桃種質資源的保存與研究利用[J]. 植物遺傳資源學報,2020,21(6):1483-1493.
SUN Leiming,FANG Jinbao. Conservation,research and utilization of kiwifruit germplasm resources in China[J]. Journal of Plant Genetic Resources,2020,21(6):1483-1493.
[21] WU H L,MA T,KANG M H,AI F D,ZHANG J L,DONG G Y,LIU J Q. A high-quality Actinidia chinensis (kiwifruit) genome[J]. Horticulture Research,2019,6:117.
[22] 宋雅林,林苗苗,鐘云鵬,陳錦永,齊秀娟,孫雷明,方金豹. 獼猴桃品種(系)潰瘍病抗性鑒定及不同評價指標的相關性分析[J]. 果樹學報,2020,37(6):900-908.
SONG Yalin,LIN Miaomiao,ZHONG Yunpeng,CHEN Jinyong,QI Xiujuan,SUN Leiming,FANG Jinbao. Evaluation of resistance of kiwifruit varieties (line) against bacterial canker disease and correlation analysis among evaluation indexes[J]. Journal of Fruit Science,2020,37(6):900-908.
[23] 溫欣,秦紅艷,艾軍,王月,韓先焱,李昌禹. 軟棗獼猴桃種質資源潰瘍病抗性鑒定方法的建立與評價[J]. 植物保護,2021,47(2):193-199.
WEN Xin,QIN Hongyan,AI Jun,WANG Yue,HAN Xianyan,LI Changyu. Establishment and evaluation of resistance identification method for Pseudomonas syringae pv. actinidiae disease in Actinidia arguta germplasm resources[J]. Plant Protection,2021,47(2):193-199.
[24] 李黎,潘慧,李文藝,汪祖鵬,鐘彩虹. 中國野生獼猴桃資源的潰瘍病抗性種質篩選[J]. 植物科學學報,2022,40(6):801-809.
LI Li,PAN Hui,LI Wenyi,WANG Zupeng,ZHONG Caihong. Screening of wild Actinidia germplasms resistant to bacterial canker disease in China[J]. Plant Science Journal,2022,40(6):801-809.
[25] ZHAO Z B,GAO X N,HUANG Q L,HUANG L L,QIN H Q,KANG Z. Identification and characterization of the causal agent of bacterial canker of kiwifruit in the Shaanxi province of China[J]. Journal of Plant Pathology,2013,95(1):155-162.
[26] 裴艷剛,馬利,歲立云,崔永亮,劉曉敏,龔國淑. 不同獼猴桃品種對潰瘍病菌的抗性評價及其利用[J]. 果樹學報,2021,38(7):1153-1162.
PEI Yangang,MA Li,SUI Liyun,CUI Yongliang,LIU Xiaomin,GONG Guoshu. Resistance evaluation and utilization of different kiwifruit cultivars to Pseudomonas syringae pv. actinidiae[J]. Journal of Fruit Science,2021,38(7):1153-1162.
[27] WANG F M,LI J W,YE K Y,GONG H J,LIU P P,JIANG Q S,QI B B,MO Q H. Preliminary report on the improved resistance towards Pseudomonas syringae pv. actinidiae of cultivated kiwifruit (Actinidia chinensis) when grafted onto wild Actinidia guilinensis rootstock in vitro[J]. Journal of Plant Pathology,2021,103(1):51-54.
[28] 張俊環,張美玲,楊麗,姜鳳超,于文劍,王玉柱,孫浩元. 基于葉片顯微結構綜合評價杏不同品種(系)的抗旱性[J]. 果樹學報,2023,40(11):2381-2390.
ZHANG Junhuan,ZHANG Meiling,YANG Li,JIANG Fengchao,YU Wenjian,WANG Yuzhu,SUN Haoyuan. Comprehensive evaluation of drought resistance of different apricot cultivars(lines) based on leaf microstructure[J]. Journal of Fruit Science,2023,40(11):2381-2390.
[29] 胡光明,肖濤,彭家清,李大衛,田華,王華玲,肖麗麗,程均歡,黃海雷,吳偉,鐘彩虹. 基于葉片形態及顯微特征評價12個獼猴桃栽培品種的抗旱性[J]. 果樹學報,2024,41(5):911-928.
HU Guangming,XIAO Tao,PENG Jiaqing,LI Dawei,TIAN Hua,WANG Hualing,XIAO Lili,CHENG Junhuan,HUANG Hailei,WU Wei,ZHONG Caihong. Evaluation of drought resistance of 12 kiwifruit cultivars based on leaf morphology and microscopic characteristics[J]. Journal of Fruit Science,2024,41(5):911-928.
[30] 李小方,張志良. 植物生理學實驗指導[M]. 5版. 北京:高等教育出版社,2016.
LI Xiaofang,ZHANG Zhiliang. Experimental guidance of plant physiology[M]. 5th ed. Beijing:Higher Education Press,2016.
[31] 張敏,唐冬梅,趙志博,仲偉敏. 貴州產區黃肉獼猴桃品種及優系潰瘍病抗性評價[J]. 分子植物育種,2021,19(23):7892-7899.
ZHANG Min,TANG Dongmei,ZHAO Zhibo,ZHONG Weimin. Evaluation of canker resistance on yellow-fleshed kiwifruit cultivars and superior lines in Guizhou[J]. Molecular Plant Breeding,2021,19(23):7892-7899.
[32] 陳勵坤,徐葉挺,王永鵬,何臨梓,曾斌,艾沙江·買買提. 新疆梨種質資源的火疫病抗性評價[J]. 中國果樹,2022(8):16-22.
CHEN Likun,XU Yeting,WANG Yongpeng,HE Linzi,ZENG Bin,Aisajan·Mamat. Evaluation on fire blight resistance of Pyrus sinkiangensis Yu germplasm resources[J]. China Fruits,2022(8):16-22.
[33] 曹雅芝,陳衛民,張勝軍,陸彪,崔志軍,李克梅,韓麗麗,張學超,張曉倩,阿依達娜·阿思克別列. 83份新疆野蘋果種質資源對梨火疫病菌的抗病性評價[J]. 植物檢疫,2024,38(1):33-46.
CAO Yazhi,CHEN Weimin,ZHANG Shengjun,LU Biao,CUI Zhijun,LI Kemei,HAN Lili,ZHANG Xuechao,ZHANG Xiaoqian,Ayidana·Asikebielie. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Erwinia amylovora[J]. Plant Quarantine,2024,38(1):33-46.
[34] QIN H Y,ZHAO Y,CHEN X L,ZHANG B X,WEN X,LI C Y,FAN S T,WANG Y,YANG Y M,XU P L,LIU Y X,AI J. Pathogens identification and resistance evaluation on bacterial canker in Actinidia arguta germplasm[J]. Journal of Plant Pathology,2023,105(3):973-985.
[35] WANG F M,MO Q H,YE K Y,GONG H J,QI B B,LIU P P,JIANG Q S,LI J W. Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Plant Pathology,2020,69(6):979-989.
[36] 占爽,吳望,胡軍華,吳玉珠,喬興華,陳力,程蘭,周彥. 重慶萬州疑似柑桔輪斑病的病原鑒定及防治藥劑篩選[J]. 中國南方果樹,2021,50(1):1-7.
ZHAN Shuang,WU Wang,HU Junhua,WU Yuzhu,QIAO Xinghua,CHEN Li,CHENG Lan,ZHOU Yan. Identification and fungicides screening for Pseudofabraea citricarpa like pathogen caused citrus target spot disease in Wanzhou,Chongqing[J]. South China Fruits,2021,50(1):1-7.
[37] 王杰花,韓麗麗,張勝軍,陳衛民,張學超. 新疆山楂種質資源對梨火疫病的抗性鑒定與評價[J]. 北方園藝,2023(24):30-37.
WANG Jiehua,HAN Lili,ZHANG Shengjun,CHEN Weimin,ZHANG Xuechao. Identification and evaluation of resistance of hawthorn germplasm resources to pear fire blight in Xinjiang[J]. Northern Horticulture,2023(24):30-37.
[38] HOYTE S,REGLINSKI T,ELMER P,MAUCHLINE N,STANNARD K,CASONATO S,AH CHEE A,PARRY F,TAYLOR J,WURMS K,YU J,CORNISH D,PARRY J. Developing and using bioassays to screen for Psa resistance in New Zealand kiwifruit[J]. Acta Horticulturae,2015(1095):171-180.
[39] 崔麗紅,高小寧,張迪,黃麗麗,黃蔚,陳繼富. 湘西地區獼猴桃細菌性潰瘍病抗性資源篩選及其抗性機理研究[J]. 植物保護,2019,45(3):158-164.
CUI Lihong,GAO Xiaoning,ZHANG Di,HUANG Lili,HUANG Wei,CHEN Jifu. Screening of resistance resource and resistance mechanism of kiwifruit to Pseudomonas syringae pv. actinidiae in Xiangxi area[J]. Plant Protection,2019,45(3):158-164.
[40] 劉娟. 獼猴桃潰瘍病抗性材料評價及其親緣關系的ISSR聚類分析[D]. 雅安:四川農業大學,2015.
LIU Juan. Evaluation of resistant varieties on kiwifruit bacterial canker and cluster analysis of genetic relations by ISSR markers[D]. Yaan:Sichuan Agricultural University,2015.
[41] DATSON P,NARDOZZA S,MANAKO K,HERRICK J,MARTINEZ-SANCHEZ M,CURTIS C,MONTEFIORI M. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae[J]. Acta Horticulturae,2015(1095):181-184.
[42] 李伯凌,霍本君,朱壽松,熊茜,李可,羅麗娟,李春霞,陳銀華. 木薯葉片組織結構及生理生化特征與其抗細菌性枯萎病的關系[J]. 熱帶生物學報,2017,8(3):292-300.
LI Boling,HUO Benjun,ZHU Shousong,XIONG Qian,LI Ke,LUO Lijuan,LI Chunxia,CHEN Yinhua. The structure and physiological characteristics of cassava leaves and their relationship with the resistance to bacterial blight[J]. Journal of Tropical Biology,2017,8(3):292-300.
[43] 田麗波,商桑,楊衍,司龍亭,李丹丹. 苦瓜葉片結構與白粉病抗性的關系[J]. 西北植物學報,2013,33(10):2010-2015.
TIAN Libo,SHANG Sang,YANG Yan,SI Longting,LI Dandan. Relationship between the leaf structure of bitter melon and resistance to powdery mildew[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2010-2015.
[44] 王文峰,喬新派,胡孝明,陳圓圓,卜付軍,張黨權,楊超臣. 油茶葉片形態結構及內含物與炭疽病抗性的相關性[J]. 經濟林研究,2024,42(2):103-111.
WANG Wenfeng,QIAO Xinpai,HU Xiaoming,CHEN Yuanyuan,BU Fujun,ZHANG Dangquan,YANG Chaochen. Relationship between leaf structure and inclusions of Camellia oleifera and anthracnose resistance[J]. Non-wood Forest Research,2024,42(2):103-111.
[45] 何丹. 四川核桃品種(系)對黑斑病的抗性評價及與葉結構的相關性[D]. 雅安:四川農業大學,2018.
HE Dan. The resistance of Sichuan walnut varieties (clones) to walnut blight and the correlation between leaf structure and walnut blight[D]. Yaan:Sichuan Agricultural University,2018.
[46] 李靖,涂美艷,鐘程操,孫淑霞,陳棟,宋海巖,劉飄,廖明安,江國良. 6個獼猴桃品種抗潰瘍病差異及生理機制研究[J]. 西南農業學報,2019,32(11):2579-2585.
LI Jing,TU Meiyan,ZHONG Chengcao,SUN Shuxia,CHEN Dong,SONG Haiyan,LIU Piao,LIAO Ming’an,JIANG Guoliang. Study on difference of canker-resistance and physiological mechanism of six kiwifruit varieties[J]. Southwest China Journal of Agricultural Sciences,2019,32(11):2579-2585.
[47] 張燁婧,陳捷胤,李冉,戴小楓. 棉花抗黃萎病生理生化機制研究進展[J]. 植物保護,2024,50(2):19-36.
ZHANG Yejing,CHEN Jieyin,LI Ran,DAI Xiaofeng. Recent advances in physiological and biochemical mechanisms of cotton resistance to Verticillium wilt[J]. Plant Protection,2024,50(2):19-36.
[48] 王芳,肖玉,糜加軒,時羽杰,萬雪琴,楊漢波. 不同抗性泡核桃對褐斑病病原菌侵染的生理生化響應[J]. 西北植物學報,2022,42(12):2083-2092.
WANG Fang,XIAO Yu,MI Jiaxuan,SHI Yujie,WAN Xueqin,YANG Hanbo. Physiological and biochemical responses of different resistant walnuts to brown spot infection by Ophiognomonia leptostyla[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(12):2083-2092.
[49] 李亞,韓穎,楊斌,趙寧. 黃單胞桿菌侵染后不同品種核桃抗病性相關生理指標的測定[J]. 福建農林大學學報(自然科學版),2020,49(4):453-458.
LI Ya,HAN Ying,YANG Bin,ZHAO Ning. Assessing resistance against Xanthomonasar boricola in 4 walnuts cultivars using physiological indexes[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2020,49(4):453-458.
[50] GU G F,YANG S,YIN X H,LONG Y H,MA Y,LI R Y,WANG G L. Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and morphological structure modification in the kiwifruit stems[J]. International Journal of Molecular Sciences,2021,22(22):12185.
[51] 陳浩,孫進華,王樹軍,李煥苓,王果,王家保. 霜疫霉侵染對不同荔枝品種果皮苯丙烷類代謝的影響[J]. 熱帶作物學報,2021,42(6):1694-1699.
CHEN Hao,SUN Jinhua,WANG Shujun,LI Huanling,WANG Guo,WANG Jiabao. Effects of phenylpropanoid metabolism in different Litchi varieties during the infection of Phytophthora litchii[J]. Chinese Journal of Tropical Crops,2021,42(6):1694-1699.
[52] 李國平,鄭磊,柳鳳. 杧果細菌性角斑病菌對杧果酚類代謝的影響[J]. 中國南方果樹,2021,50(1):66-70.
LI Guoping,ZHENG Lei,LIU Feng. Effect of bacterial ceratospora mangifera on phenolic metabolites of mango[J]. South China Fruits,2021,50(1):66-70.
[53] QIN X B,ZHANG M,LI Q H,CHEN D L,SUN L M,QI X J,CAO K,FANG J B. Transcriptional analysis on resistant and susceptible kiwifruit genotypes activating different plant-immunity processes against Pseudomonas syringae pv. actinidiae[J]. International Journal of Molecular Sciences,2022,23(14):7643.
[54] 韓飛,趙婷婷,劉小莉,張琦,李大衛,田華,彭玨,鐘彩虹. 山梨獼猴桃與中華獼猴桃種間雜交后代果實性狀的遺傳傾向分析[J]. 植物科學學報,2022,40(4):505-512.
HAN Fei,ZHAO Tingting,LIU Xiaoli,ZHANG Qi,LI Dawei,TIAN Hua,PENG Jue,ZHONG Caihong. Genetic analysis of fruit traits in Actinidia rufa (Siebold and Zuccarini) Planchon ex Miquel × Actinidia chinensis var. chinensis C. F. Liang kiwifruit hybrid population[J]. Plant Science Journal,2022,40(4):505-512.
[55] 申素云,王周倩,張琦,楊潔,韓飛,鐘彩虹,王傳華,黃文俊. 36份獼猴桃種質資源的果實品質與感官評價分析[J]. 植物科學學報,2023,41(4):540-551.
SHEN Suyun,WANG Zhouqian,ZHANG Qi,YANG Jie,HAN Fei,ZHONG Caihong,WANG Chuanhua,HUANG Wenjun. Analysis of fruit quality and sensory evaluation of 36 kiwifruit (Actinidia) germplasm accessions[J]. Plant Science Journal,2023,41(4):540-551.
[56] TAHIR J,HOYTE S,BASSETT H,BRENDOLISE C,CHATTERJEE A,TEMPLETON K,DENG C,CROWHURST R,MONTEFIORI M,MORGAN E,WOTTON A,FUNNELL K,WIEDOW C,KNAEBEL M,HEDDERLEY D,VANNESTE J,MCCALLUM J,HOEATA K,NATH A,CHAGNé D,GEA L,GARDINER S E. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis)[J]. Horticulture Research,2019,6:101.
[57] TAHIR J,BRENDOLISE C,HOYTE S,LUCAS M,THOMSON S,HOEATA K,MCKENZIE C,WOTTON A,FUNNELL K,MORGAN E,HEDDERLEY D,CHAGNé D,BOURKE P M,MCCALLUM J,GARDINER S E,GEA L. QTL mapping for resistance to cankers induced by Pseudomonas syringae pv. actinidiae (Psa) in a tetraploid Actinidia chinensis kiwifruit population[J]. Pathogens,2020,9(11):967.
[58] LIU W,ZHAO C,LIU L,HUANG D,MA C,LI R,HUANG L L. Genome-wide identification of the TGA gene family in kiwifruit (Actinidia chinensis spp.) and revealing its roles in response to Pseudomonas syringae pv. actinidiae (Psa) infection[J]. International Journal of Biological Macromolecules,2022,222:101-113.