999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

番茄青枯病對海南不同質地磚紅壤肥力的影響

2024-12-31 00:00:00李海鵬易偉鵬孫曉東曹啟民黃月華孫楚涵
熱帶作物學報 2024年8期

摘""要:本研究以海南不同質地磚紅壤(文昌市文城鎮砂土、儋州市大成鎮壤土、澄邁縣永發鎮黏土)為試驗對象,探究番茄青枯病對海南不同質地磚紅壤肥力的影響。青枯病發生后,比較處理組和對照組植株發病情況,以及比較處理組和對照組根系土壤的理化性質(pH、有機質-OM、有效氮-AN、有效磷-AP、有效鉀-AK、孔隙度-SP、容重-BD、質量含水量-MWC)與酶活力(過氧化氫酶-CAT、過氧化物酶-POD、蔗糖酶-SC、脲酶-UE、酸性磷酸酶-ACP),分析青枯病發生與各指標的關系;通過Spearman相關性分析與冗余分析(RDA)確定土壤受番茄青枯病顯著影響的肥力指標。結果表明:在3種質地土壤中,黏土青枯病發病率、病情指數最高,而壤土最低;3種質地土壤處理組的pH、AP、SP、POD均低于對照組,黏土處理組的AN、AK、MWC、UE均高于黏土對照組,而壤土處理組的CAT、ACP、MWC、BD高于對照組;Spearman相關性分析結果顯示3種質地土壤的OM含量、AP含量、SP、POD活力均與發病率呈負相關,其中砂土的pH、ACP與發病率呈顯著負相關(Plt;0.05),CAT、UE與青枯病發病率呈顯著正相關(Plt;0.05);壤土的pH、OM、POD、UE與發病率呈顯著負相關(Plt;0.05),CAT、ACP與發病率呈顯著正相關(Plt;0.05);黏土的SP、POD活力與發病率呈顯著負相關(Plt;0.05),AK含量與DI呈顯著正相關(Plt;0.05)。RDA結果表明對照組與處理組的SP、OM與AN含量與UE相關性高,對照組與處理組的SP、AK分別與ACP、CAT相關性較高。青枯病發生后,砂土與壤土的對照組、處理組大部分肥力指標均低于黏土,但土壤肥力水平并不是青枯病發生的充分條件;盡管如此,土壤大部分肥力指標會因青枯病爆發而降低。砂土中青枯病發病率、病情指數低于黏土的可能原因是砂土的AP含量較高,壤土的青枯病發病率、病情指數最低主要由于較低的pH條件不適宜青枯菌生存。黏土青枯病病害情況最嚴重,其pH、氮素水平、質量含水量均適宜青枯菌的生長繁殖,而且潛在的有益微生物群落相對豐度也可能低于砂土與壤土。因此,不同質地土壤的青枯病防治措施應當因地制宜。本研究相關結論可為今后海南青枯病防治體系的建立提供理論依據。

關鍵詞:理化性質;酶活力;土壤肥力;青枯病中圖分類號:S432""""""文獻標志碼:A

Effects"of"Tomato"Bacterial"Wilt"on"Fertility"Indicators"of"Different"Textural"Latosol"in"Hainan"Province

LI"Haipeng1,2,3,"YI"Weipeng5*,"SUN"Xiaodong4,"CAO"Qimin2**,"HUANG"Yuehua1,3**,"SUN"Chuhan1

1."College"of"Ecology"and"Environment,"Hainan"University,"Haikou,"Hainan"570228,"China;"2."Institute"of"Agricultural"Environment"and"Soil,"Hainan"Academy"of"Agricultural"Sciences,"Haikou,"Hainan"571100,"China;"3."Key"Laboratory"of"Agro-forestry"Environmental"Processes"and"Ecological"Regulation"of"Hainan"Province,"Haikou,"Hainan"570228,"China;"4."Institute"of"Vegetables,"Hainan"Academy"of"Agricultural"Sciences,"Haikou,"Hainan"571100,"China;"5."Hainan"Agricultural"Ecology"and"Resources"conservation"Station"/"The"GEF"Project"Work"Leadership"Office"of"the"Department"of"Agriculture"and"Rural"Affairs"of"Hainan"Province,"Haikou,"Hainan"570203,"China

Abstract:"The"effect"of"bacterial"wilt"on"the"fertility"of"different"textures"of"latosol"in"Hainan"province"(sand"from"Wencheng"town,"Wenchang"city;"loam"from"Dacheng"town,"Danzhou"city;"clay"from"Yongfa"town,"Chengmai"county)"was"investigated."After"the"occurrence"of"bacterial"wilt,"the"disease"incidence,"physicochemical"indicators"including"pH,"organic"matter"(OM),"available"nitrogen"(AN),"available"phosphorus"(AP),"available"potassium"(AK),"soil"porosity"(SP),"bulk"density"(BD),"mass"water"content"(MWC)"as"well"as"enzyme"activity"indicators"including"catalase"(CAT),"peroxidase"(POD),"sucrase"(SC),"urease"(UE)"and"acid"phosphatase"(ACP)"of"the"soil"inoculated"with"Ralstonia"solanacearum"and"blank"control"were"compared"to"analyze"the"effects"of"bacterial"wilt"on"various"fertility"indicators."Spearman"correlation"analysis"and"redundancy"analysis"(RDA)"were"used"to"determine"the"significant"indicators"affected"by"bacterial"wilt"in"different"soil"textures."The"results"showed"that"the"disease"incidence"and"severity"disease"index"in"clay"were"the"highest"among"the"three"soil"textures,"while"those"of"loam"were"the"lowest."In"the"inoculation"treatments,"pH,"AP,"SP"and"POD"of"the"three"soil"textures"werenbsp;lower"than"those"of"the"control,"while"AN,"AK,"MWC"and"UE"of"clay"inoculation"treatment"were"higher"than"those"of"the"clay"control."CAT,"ACP,"MWC"and"BD"of"loam"inoculation"treatment"were"higher"than"those"of"the"loam"control."Spearman"correlation"analysis"results"showed"that"OM"content,"AP"content,"SP"and"POD"of"the"three"texture"soils"were"negatively"correlated"with"disease"incidence;"ACP,"pH"and"disease"incidence"in"WCS"were"significantly"negatively"correlated"(Plt;0.05)"with"disease"incidence;"CAT"and"UE"were"significantly"positively"correlated"(Plt;0.05)"with"disease"incidence."In"loam,"pH,"OM,"POD"and"UE"was"significantly"negatively"correlated"with"disease"incidence"(Plt;0.05);"while"CAT"and"ACP"were"significantly"positively"correlated"with"disease"incidence"(Plt;0.05);"SP"and"POD"in"clay"were"significantly"negatively"correlated"with"disease"incidence"(Plt;0.05);"however,"AK"content"in"clay"was"significantly"positively"correlated"with"disease"incidence"(Plt;0.05)."RDA"results"showed"that"the"SP,"OM"content"and"AN"content"in"the"control"and"inoculation"treatments"were"highly"correlated"with"UE,"while"both"SP"and"AK"content"in"the"control"and"inoculation"treatments"were"highly"correlated"with"ACP"and"CAT"respectively."After"the"occurrence"of"bacterial"wilt,"most"fertility"indicators"of"control"and"inoculation"treatment"of"sand"and"loam"were"lower"than"those"in"clay."However,"soil"fertility"level"was"not"a"sufficient"condition"for"bacterial"wilt,"but"most"soil"fertility"indicators"were"reduced"due"to"the"outbreak"of"bacterial"wilt."The"lower"disease"incidence"and"disease"index"of"tomato"bacterial"wilt"in"sand"than"in"clay"may"be"due"to"the"higher"AP"content."The"reason"why"disease"incidence"and"disease"index"of"tomato"bacterial"wilt"in"loam"is"lower"is"perhaps"that"low"pH"conditions"are"unsuitable"for"the"survival"of"bacterial"wilt."Clay"with"the"most"severe"bacterial"wilt"disease"situation"including"pH,"nitrogen"level"and"mass"water"content"was"suitable"for"the"growth"and"reproduction"of"bacterial"wilt."The"relative"abundance"of"potential"beneficial"microbial"communities"in"clay"may"also"be"lower"than"sand"and"loam."Therefore,"the"control"measures"of"bacterial"wilt"in"different"soil"textures"should"be"adapted"to"local"conditions."Meanwhile,"the"relevant"conclusions"of"this"study"would"provide"a"theoretical"basis"for"establishing"the"control"system"of"bacterial"wilt"in"Hainan"province"in"the"future.

Keywords:"physicochemical"properties;"enzyme"activity;"soil"fertility;"bacterial"wilt

DOI:"10.3969/j.issn.1000-2561.2024.08.024

由青枯雷爾氏菌(Ralstonia"solanacearum)引起的青枯病是一種細菌性土傳病害,對全球多種植物造成極其嚴重的危害,其中茄科作物(煙草、茄子、番茄和辣椒等)遭受青枯病害的報道最為廣泛[1-2]。青枯雷爾氏菌(以下簡稱為“青枯菌”)通過植物根系損傷處進入植物體內,在木質部定殖后,攫取用于植物生長代謝的營養物質,大量繁殖,導致植物寄主枯萎死亡[3-4]。根據相關研究,土壤理化、生物指標等是決定土壤肥力的關鍵因素,而青枯病發病情況與土壤肥力密切相關[5-6]。當植物根系土壤pH達到5.2時,有利于青枯菌侵入[7-8];土壤碳氮比、氮磷比均與青枯病的病情相關,植物從土壤中吸收的磷、鉀元素可降低青枯病發病率[9-10]。土壤營養元素含量受到土壤中各種酶的影響,土壤碳循環有蔗糖酶、纖維素酶的參與,脲酶、磷酸酶與土壤氮、磷循環相關[11-13]。相較于感染青枯病的桑樹根際土壤,健康桑樹根際土壤的磷酸二脂酶、β-葡萄糖苷酶活性更高[14];脲酶與土壤營養物質提升可降低煙草青枯病的發病率,增強土壤肥力[15]。

我國南方大多數地區農業生產都面臨著青枯病的持續性干擾[16]。海南島的氣候環境條件有利于青枯菌繁殖,島上多種作物均遭受青枯病的侵害[17-19];磚紅壤是海南島面積最大的土壤類型,青枯病爆發對海南島不同質地磚紅壤肥力的影響卻鮮有報道,本研究通過對比未發病植株磚紅壤與感染青枯病植株磚紅壤(砂土、壤土、黏土)的理化性質和酶活力,解析與青枯病緊密關聯的環境指標,以期為構建海南島青枯病防治體系提供理論依據。

1""材料與方法

1.1""試驗地區環境概況

分別選取海南省文昌市文城鎮的砂土試驗地、儋州市大成鎮的壤土試驗地及澄邁縣永發鎮的黏土試驗地進行大田試驗,3處試驗地緯度接近、氣候條件相同,種植前均無植被覆蓋、無前作。試驗期間,各地區日均溫、降水量等背景值見表1。

1.2""材料

選取番茄(Solanum"lycopersicum)作為模式作物,供試番茄品種Ailsa"Craig"LA2838A(AC"LA2838A)為青枯病易感品種,由中國熱帶農業科學院提供。試驗期間,3種質地土壤所施肥料為獅馬牌固體復合肥(生產商:歐洲化學安特衛普公司),養分組成為N∶P∶K=15∶15∶15,總養分gt;45%。青枯病病原菌Ralstonia"solanacearum"FJAT"1303由本實驗室分離純化后獲得。

1.3""方法

1.3.1""試驗設計與采樣""2021年10月中旬,當番茄苗長至4~5片真葉時,將番茄苗分別移栽至3種質地土壤中(行株距:100"cm×50"cm);2021年12月下旬,經實地調查,各地番茄均處于健康生長狀態。分別將各地種植區域劃分為6個小區,其中3個小區作為空白對照組區域,分別是砂土對照組、壤土對照組、黏土對照組;另3個小區作為接種處理組區,分別是砂土接種處理組、壤土接種處理組、黏土接種處理組;對照組與接種處理組試驗小區相距50"m,分隔在道路兩旁。將備好的濃度為1×106"CFU/mL青枯菌LB培養液以傷根接種法接種至各地處理組番茄根系土壤中,接種量為100"mL/株[20]。同時以相同方法和用量向各地對照組區域番茄根系土壤接種無菌LB培養液。2022年2月上旬,分別計算砂土、壤土、黏土的番茄植株發病率與病情指數。用五點采樣法確定采樣點位,采集土樣時,除測定物理性質的土樣用環刀直接采取外,用于測定化學性質與酶活力的土樣用抖根法采集[21-22]。試驗期間施肥與澆水量次數相同,未做任何殺菌處理。在試驗結束后對各質地土壤接種處理組試驗小區反復消毒。

1.3.2""測定方法""完成采樣后,將各質地土壤對照組與接種處理組的樣品分別混合為復合土樣。按《森林土壤水分-物理性質的測定LY/T"1215—"1999》標準[22]測定土壤物理性質,指標包括土壤孔隙度(soil"porosity,"SP)、容重(bulk"density,"BD)、質量含水量(mass"water"content,"MWC)。其余土壤樣品在室溫下風干后,按鮑士旦[23]的方法測定土壤化學性質,指標包括土壤pH、有機質(organic"matter,"OM)、有效氮(available"nitrogen,"AN)、有效磷(available"phosphorus,"AP)和有效鉀(available"potassium,"AK)。按購自北京索萊寶科技有限公司的試劑盒說明書中步驟測定土壤酶活強度,指標包括土壤過氧化氫酶(catalase,"CAT)、酸性磷酸酶(acid"phosphatase,"ACP)、蔗糖酶(sucrase,"SC)、過氧化物酶(peroxidase,"POD)、脲酶(urease,"UE)。

1.4""數據處理

各指標數據采用SPSS"26.0軟件進行單因素方差分析(Anova),通過最小顯著差法進行多重比較(least"significant"difference,"LSD),采用Spearman相關性分析、冗余分析(redundancy"analysis,"RDA)明晰土壤各環境指標與青枯病發病情況的關系;使用Grap hpad"Prism"9.0軟件、Canoco"5.0軟件與https://"www.chiplot.online/在線工具繪制圖像、配色。用ROBERTS[24]的方法進行病情指數分級(表2),發病率與病情指數計算公式如下:發病率=(植株發病數量/植株總數)×100%;病情指數=Σ(病情等級×植株發病數量)×100%/(最高病情等級×植株總數)。

2""結果與分析

2.1""青枯病發病情況

經調查,3種質地土壤各對照組植株發病率、病情指數均為0,接種處理組植株發病率與病情指數見表3,各質地土壤接種處理組植株發病率、病情指數大小次序為:黏土gt;砂土gt;壤土;3種質地土壤接種處理組間番茄植株發病率、病情指數相互之間差異顯著(Plt;0.05)。

2.2""土壤理化性質分析

3種質地土壤對照組與接種處理組理化性質見表4。對照組中,砂土的AP含量和BD最高,OM、AN、AK含量和SP最低,其中砂土的AP含量顯著高于壤土和黏土(Plt;0.05),而砂土的OM、AN、AK含量和SP均顯著低于壤土和黏土(Plt;0.05),壤土的pH、BD和MWC最低,AN含量最高,壤土的BD、AN僅與砂土差異顯著(Plt;"0.05);黏土的pH、OM、AK含量、SP和MWC

最高,AP含量最低,其MWC顯著高于砂土和壤土(Plt;0.05),OM含量和SP顯著高于砂土(Plt;0.05),黏土的pH與砂土差異顯著(Plt;0.05)。接種處理組中,砂土的AN含量最低,BD最高,黏土的AN含量最高,BD最低;砂土的AN含量和BD與黏土相應指標存在顯著性差異(Plt;0.05);相較于對照組,接種處理組中3種質地土壤pH差異顯著(Plt;0.05),而3種質地土壤SP兩兩之間差異均不顯著;3種質地土壤對照組與接種處理組AK含量差異顯著(Plt;0.05)。3種質地土壤接種處理組土壤OM、AP含量與SP均低于對照組,MWC均高于對照組;壤土和黏土接種處理組的AK含量均高于相應對照組,而壤土接種處理組AN含量低于壤土對照組,砂土和黏土的AN含量分別高于各自對照組;黏土接種處理組的pH與對照組持平,砂土和壤土的pH均低于相應對照組。

2.3""土壤酶活力分析

各質地土壤對照組與接種處理組酶活力見表5,對照組中各質地土壤酶活力SC指標中黏土最高,壤土最低,三者SC活力差異均不顯著;除SC外其他酶活力大小次序均為黏土gt;壤土gt;砂土(Plt;0.05),且三者的CAT、POD、UE和ACP指標兩兩之間差異顯著(Plt;0.05)。接種處理組

中,3種質地土壤CAT活力大小次序、顯著性差異情況與對照組相同,壤土的SC和ACP活力最高,其中ACP活力顯著高于砂土(Plt;0.05),3種質地土壤SC活力相互之間差異均不顯著;黏土的POD和UE活力最高,其POD活力分別與砂土和壤土的POD活力差異顯著(Plt;0.05),但黏土UE活力與另外二者不存在顯著差異。砂土接種處理組除CAT活力高于對照組外,其余酶活力都低于對照組,壤土對照組中CAT、ACP與SC活力低于接種處理組,其余土壤酶活力均高于接種處理組;黏土接種處理組除UE外的土壤酶活力均低于對照組。

2.4""青枯病發病率與各肥力指標的相關性分析

3種質地土壤對照組與接種處理組青枯病發病率與土壤肥力各指標的Spearman相關性分析結果見圖1。各質地土壤OM含量、AP含量、SP、POD活力均與發病率呈負相關,其中壤土中POD活力、OM含量,黏土中SP和POD活力均與發病率呈顯著負相關(Plt;0.05);3種質地土壤MWC都與發病率呈正相關;砂土、壤土中CAT活力與發病率呈顯著正相關(Plt;0.05),砂土中UE和ACP活力分別與發病率呈顯著正相關(Plt;0.05)和顯著負相關(Plt;0.05);砂土與壤土pH和CAT活力分別與發病率呈顯著負相關(Plt;0.05)和顯著正相關(Plt;0.05);黏土中AK含量與發病率呈顯著正相關(Plt;0.05),砂土和壤土中AK含量與發病率呈負相關。

2.5""土壤肥力指標的冗余分析

圖2A、圖2B分別為對照組、接種處理組理化性質與酶活力的冗余分析(redundancy"analysis,"RDA)結果。第1、2序列軸分別解釋了對照組總方差的65.24%、24.47%,接種處理組總方差的65.37%、19.32%。對照組中BD、AP與第1序列軸呈正相關,其余指標與第1序列軸呈負相關,接種處理組與對照組相反。對照組中,UE(P=0.002)、ACP(P=0.024)與理化性質呈顯著相關,UE與OM、UE、SP相關性高,ACP與AK、SP相關性較高;POD、CAT、SC對理化性質影響不顯著,但在第1序列軸仍與各理化指標有一定相關性。接種處理組中,ACP(P=0.022)、CAT(P=0.004)與理化性質顯著相關,其中ACP也與AN聯系最為緊密,CAT與SP、AK聯系最緊密;土壤理化性質與POD、ACP、SC關聯不顯著。值得一提的是,對照組、接種處理組中SC與第1序列軸關聯性在酶活指標中最低。

3""討論

結合前人研究發現,土壤pH、容重和質量含水量與青枯病的發生關系密切。土壤pH在6.5~"7.5范圍時,適合茄科作物幼苗生長,但在pH為6.4時,番茄青枯病發病率最高[8,"25];接種處理組中,較砂土與壤土,黏土的pH對青枯菌的繁殖更“友好”,Spearman相關性分析結果中僅黏土的pH與青枯病發病率呈正相關,這解釋了為什么接種處理組中黏土的發病率、病情指數最高。植株根系在土壤中生長一段時間后,生長的側根填充表層土壤的間隙,根系附近土壤會出現致密化現象,土壤容重降低[26];由于砂土與黏土中大

部分番茄植株因青枯病發作根系萎縮,表層土壤間隙未被填充,所以接種處理組中壤土中健康植株比例較砂土與黏土高,壤土接種處理組的容重比對照組高,與砂土、黏土容重差異表現相反;正因如此,降雨與灌溉水才會更易進入砂土和黏土接種處理組表層土壤,導致砂土和黏土接種處理組的質量含水量分別比相應對照組高8.62%和19.98%,土壤維持高質量含水量時間越長,青枯病越易發作,這與劉憲臣[27]的研究結果一致。當青枯病發生時,不同質地土壤的肥力均下降。有機質既是評價土壤肥力的關鍵因素,也是土壤微生物的養分來源[25],青枯病的爆發致使3種質地土壤有機質流失,土壤有機質含量對植株青枯病發生概率影響顯著[13]。Spearman相關性分析結果表明,各質地土壤脲酶活力、有機質含量和有效氮含量均與青枯病發病率呈一定相關性,砂土、黏土的青枯病發病率與有效氮呈正相關;RDA分析結果顯示對照組與接種處理組脲酶、有效氮、有機質和孔隙度均存在緊密關聯。由此可以得出:由于番茄青枯病植株所在土壤微生物多樣性降低[6],其根系具備破壞表面土壤結構的微生物群落相對豐度降低,這可能是接種處理組土壤孔隙度均低于對照組的原因[26]。壤土接種處理組中有機質含量比對照組低11.04%,其下降比例遠高于其他2種質地土壤接種處理組,說明壤土的有機質流失較砂土和黏土更嚴重。這導致壤土接種處理組中能夠與有機質結合未被降解的脲酶比例降低[28]。砂土與黏土接種處理組比相應對照組的脲酶活力更高,土壤氮循環加強,土壤大量氮素轉化為NH4+,最終導致有效氮含量升高,相比于砂土、和黏土接種處理組對照組不減反增。從高升升[29]的研究結果來看,高氮水平的土壤種植的植株青枯病病害程度更嚴重[30]。

土壤中的磷是生物體的必需營養元素,而磷酸酶可以將土壤中有機磷酸鹽轉化為無機磷,供植物吸收[31-32],Spearman相關性分析與RDA分析結果表明,有效磷含量與酸性磷酸酶活力關聯不顯著,這與WEI等[33]的研究結果相符,其原因可能是各質地土壤中的有效磷主要成分來源于人工施加的無機復合肥。Spearman相關性結果顯示各質地土壤有效磷均與發病率呈負相關,其中砂土中有效磷含量與青枯病發病率相關性最高,這可能是由于土壤有效磷含量達到一定水平會間接抑制青枯病的傳播。3種質地土壤對照組有效鉀含量、酸性磷酸酶活力與孔隙度的大小次序均為砂土lt;壤土lt;黏土,可能是由于孔隙度低的土壤質量密度較大,這一定程度上會抑制對酸性磷酸酶活力有積極效應的根系分泌物的產生[34]。

一般來說,有效鉀含量高的土壤,其酸性磷酸酶活力也較高[35]。在本研究中,對照組RDA分析結果中酸性磷酸酶活力與有效鉀含量和孔隙度同樣關聯緊密;作為預測土傳病害的指征的酸性磷酸酶,其活力與3種質地土壤有效鉀含量相關性并不一致;說明青枯病爆發后,接種處理組土壤酸性磷酸酶活力與有效鉀含量潛在的相互促進規律被打破[13]。接種處理組的RDA結果表明與有效鉀和孔隙度相關性較高的酶活指標是過氧化氫酶,過氧化氫酶可表征土壤微生物呼吸代謝強度[36],在本研究中,接種處理組的RDA分析結果表明,與有效鉀和孔隙度相關性較高的酶活指標是過氧化氫酶。Spearman相關性結果顯示僅黏土的過氧化氫酶活力與發病率呈負相關,可能是由黏土中大量原優勢菌群資源被青枯菌“掠奪”導致,而砂土、壤土中可能存在相對豐度較高的生防菌,所以黏土的植株發病率最高;結合HU等[37]的研究結果可推斷,青枯菌在接種處理組土壤中大量繁殖,攻占了土壤中的溶鉀細菌(potassium"solubilizing"bacteria)的生存空間,同時導致孔隙度降低,最終導致有效鉀含量下降[38];但在黏土中,黏土接種處理組的有效鉀含量比對照組高,可能原因是接種處理組的黏土中有效氮含量高,植物吸收有效氮中的NH4+達到一定水平后對K+跨細胞膜運輸有單方向拮抗作用,導致有效鉀無法被黏土接種處理組番茄植株充分吸收,由于黏土孔隙度較高,未被吸收的有效鉀流失較少,這可能是黏土的青枯病發病率、病情指數、有效鉀含量與脲酶活力高于砂土和壤土的原因之一[39-40]。

一般來說,青枯病病害程度越低,過氧化物酶活力越高,但由于各質地土壤接種處理組有機質流失,過氧化物酶活力隨之下降,Spearman相關性結果顯示各質地土壤有機質與過氧化物酶呈正相關,接種處理組中,流失更多有機質的壤土和黏土的過氧化物酶活力與青枯病發病率顯著相關。蔗糖酶參與碳代謝進程[11],接種處理組中壤土pH更適宜產蔗糖酶的酵母菌生存,所以壤土接種處理組中蔗糖酶活力高于對照組,但因青枯菌的侵入,相關酵母菌可能并不是各質地土壤優勢菌群[41]。

4""結論

青枯病與土壤生態系統的關系復雜,根據本研究得出以下結論:

(1)極低的pH是壤土番茄青枯病發病率低于砂土和黏土的主要原因之一。由于有效磷含量較高,砂土番茄青枯病病害程度小于黏土,雖然黏土大部分肥力指標都高于砂土和壤土,但黏土的pH、氮素水平、質量含水量都適宜青枯菌的生長繁殖,因此,黏土潛在生防菌相對豐度也可能低于砂土和壤土。

(2)土壤碳、氮、磷等養分對土壤生態系統極為重要。pH的下降會促進青枯病發生,導致有機質、有效磷流失;不同質地土壤氮素水平閾值不同,發病率最高的黏土的土壤高氮素水平既影響植物對鉀的吸收,又促進了青枯病的傳播。青枯病發生后,番茄根系土壤的容重受青枯病的影響降低,質量含水量也因此升高,間接促進青枯病的爆發。

(3)3種質地土壤過氧化物酶活力均因青枯菌的侵入隨有機質的流失而降低,蔗糖酶活力并未受土壤有機質影響。土壤的孔隙度、碳、氮循環和有效鉀含量分別與酸性磷酸酶、過氧化氫酶關聯緊密,砂土、壤土過氧化氫酶活力與土壤潛在生防菌群有關;無論植株青枯病病害程度如何,土壤酸性磷酸酶均與理化性質關聯緊密。

(4)海南3種質地土壤中黏土番茄青枯病發病率最高,壤土最低。肥力指標在青枯病的影響下變化趨勢并不一致,土壤肥力水平高低不是青枯病病害程度大小的必要條件。

對于不同質地土壤種植的作物病害防治措施應因地制宜,對癥下藥,根據土壤肥力情況去建立田間管理模式。本研究為今后海南島青枯病防治對策提供了一定理論基礎,今后可結合不同質地土壤微生物群落特征、土壤肥力與青枯病關聯作進一步探究。

參考文獻

[1]"MAMPHOGORO"T"P,"BABALOLA"O"O,"AIYEGORO"O"A."Sustainable"management"strategies"for"bacterial"wilt"of"sweet"peppers"(Capsicum"annuum)"and"other"Solanaceous"crops[J]."Journal"of"Applied"Microbiology,"2020,"129(3):"496-508.

[2]"CAI"Q"H,"ZHOU"G"S,"AHMED"W,"CAO"Y"Y,"ZHAO"M"W,"LI"Z"H,"ZHAO"Z"X."Study"on"the"relationship"between"bacterial"wilt"and"rhizospheric"microbial"diversity"of"flue-cured"tobacco"cultivars[J]."European"Journal"of"Plant"Pathology,"2021,"160(2):"265-276.

  • LIU"X,"GANG"Y,"WEI"Y"L,"RUFIAN"J"S,"LI"Y"S,"ZHUANG"H"Y,"XUE"H,"MORCILO"R"J"L,"MACHO"A"P."A"bacterial"effector"protein"hijacks"plant"metabolism"to"support"pathogen"nutrition[J]."Cell"Host"amp;"Microbe,"2020,"28(4):"548-557.
  • GENIN"S,"DENNY"T"P."Pathogenomics"of"the"Ralstonia"solanacearum"species"complex[J]."Annual"Review"of"Phytopathology,"2012,"50:"67-89.
  • 馬超,"楊欣潤,"江高飛,"張勇,"周開勝,"韋中."病原青枯菌土壤存活的影響因素研究進展[J]."土壤學報,"2021,"58(6):"1359-1367.MA"C,"YANG"X"R,"JIANG"G"F,"ZHANG"Y,"ZHOU"K"S,"WEI"Z."Research"progresses"on"key"factors"affecting"survival"of"Ralstonia"solanacearum"in"soils[J]."Acta"Pedologica"Sinica,"2021,"58(6):"1359-1367."(in"Chinese)
  • WANG"R,"ZHANG"H"C,"SUN"L"G,"Qi"G"F,"CHEN"S,"ZHAO"X"Y."Microbial"community"composition"is"related"to"soil"biological"and"chemical"properties"and"bacterial"wilt"outbreak[J]."Scientific"Reports,"2017,"7:"343.

[7]"KHAN"M,"SIDDIQUI"Z"A."Interactions"of"Meloidogyne"incognita,"Ralstonia"solanacearum"and"Phomopsis"vexans"on"eggplant"in"sand"mix"and"fly"ash"mix"soils[J]."Scientia"Horticulturae,"2017,"225:"177-184.

[8]"王貽鴻,"趙云峰,"孔凡玉,"王新偉,"陳德鑫,"馮超,"王文靜,"王曉強,"王靜."酸堿度對煙草青枯菌生長特性的影響[J]."煙草科技,"2018,"51(9):"27-32.WANG"Y"H,"ZHAO"Y"F,"KONG"F"Y,"WANG"X"W,"CHEN"D"X,"FENG"C,"WANG"W"J,"WANG"X"Q,"WANG"J."Effects"of"pH"on"growth"characteristics"of"Ralstonia"solanacearum"in"tobacco[J]."Tobacco"Science"amp;"Technology,"2018,"51(9):"27-32."(in"Chinese)

[9]"CAO"Y"F,"THOMASHOW"L"S,"LUO"Y,"HU"H"W,"DENG"XU"H,"LIU"H"J,"SHEN"Z"Z,"LI"R,"SHEN"Q"R."Resistance"to"bacterial"wilt"caused"by"Ralstonia"solanacearum"depends"on"the"nutrient"condition"in"soil"and"applied"fertilizers:"a"meta-analysis[J]."Agriculture"Ecosystems"amp;"Environment,"2022,"329:"107874.

  • DAVEY"R"S,"MCNEILL"A"M,"BARNETT"S"J,"GUPTA"VADAKATTU"V"S"R."Potential"for"suppression"of"Rhizoctonia"root"rot"is"influenced"by"nutrient"(N"and"P)"and"carbon"inputs"in"a"highly"calcareous"coarse-textured"topsoil[J]."Soil"Research,"2021,"59(4):"329-345.
  • GAO"D"C,"BAI"E,"YANG"Y."A"global"meta-analysis"on"freeze-thaw"effects"on"soil"carbon"and"phosphorus"cycling[J]."Soil"Biology"amp;"Biochemistry,"2021,"159:"108283.
  • GAO"D,"BAI"E,"LI"M,"ZHAO"C"H,"YU"K"L,"HAGEDORN"F"."Responses"of"soil"nitrogen"and"phosphorus"cycling"to"drying"and"rewetting"cycles:"a"meta-analysis[J]."Soil"Biology"amp;"Biochemistry,"2020,"148:"107896.
  • 孫戰,"王圣潔,"楊錦昌,"魏永成,"林春花,"馬海賓."木麻黃根區土壤理化特性及酶活性與青枯病發生關聯分析[J]."生態環境學報,"2022,"31(1):"70-78.SUN"Z,"WANG"S"J,"YANG"J"C,"WEI"Y"C,"LIN"C"H,"MA"H"B."Correlation"analysis"of"the"occurrence"of"bacterial"wilt"andphysicochemical"properties"and"enzyme"activity"of"root-zone"soil"of"Casuarina"spp[J]."Ecology"and"Environmental"Sciences,"2022,"31(1):"70-78."(in"Chinese)
  • 覃仁柳,"林剛云,"吳銀秀,"黃小丹,"楊尚東,"屈達才."桑樹青枯病與根際土壤肥力及微生物群落結構特征的研究[J]."中國生物防治學報,"2021,"37(6):"1256-1264.QIN"R"L,"LIN"G"Y,"WU"Y"X,"HUANG"X"D,"YANG"S"D,"QU"D"C."Characteristic"of"soil"fertility"and"microbial"community"structure"in"rhizosphere"of"bacterial"wilt"infected"and"non-infected"mulberry"plants[J]."Chinese"Journal"of"Biological"Control,"2021,"37(6):"1256-1264."(in"Chinese)
  • CHEN"S,"QI"G,"MA"G,"ZHAO"X."Biochar"amendment"controlled"bacterial"wilt"through"changing"soil"chemical"properties"and"microbial"community[J]."Microbiological"Research,"2020,"231:"126373.

[16]"JIANG"G,"WEI"Z,"XU"J,"CHEN"H,"ZHANG"Y,"SHE"X,"MACHO"A"P,"DING"W,"LIAO"B."Bacterial"wilt"in"China:"history,"current"status,"and"future"perspectives[J]."Frontiers"in"Plant"Science,"2017,"8:"1549.

  • 涂娜娜,"武華周,"婁德釗,"盧芙萍,"耿濤,"王樹昌."海南青枯病抗、感桑品種根際土壤真菌群落多樣性分析[J]."熱帶作物學報,"2021,"42(12):"3671-3677.TU"N"N,"WU"H"Z,"LOU"D"Z,"LU"F"P,"GENG"T,"WANG"S"C."Diversity"of"fungi"communities"in"rhizosphere"soil"of"resistant"and"susceptible"mulberry"against"bacterial"wilt"in"Hainan[J]."Chinese"Journal"of"Tropical"Crops,"2021,"42(12):"3671-3677."(in"Chinese)
  • 周洋,"佘小漫,"藍國兵,"于琳,"金寶紅,"何自福."海南17個辣椒品種對青枯病抗性的評價[J]."熱帶農業科學,"2020,"40(9):"71-76.ZHOU"Y,"SHE"X"M,"LAN"G"B,"YU"L,"JIN"B"H,"HE"Z"F."Evaluation"of"17"pepper"varieties"in"resistance"to"bacterial"wilt"in"Hainan"province[J]."Chinese"Journal"of"Tropical"Agriculture,"2020,"40(9):"71-76."(in"Chinese)
  • 趙志祥,"嚴婉榮,"陳圓,"肖彤斌,"肖敏."海南生姜青枯病病原菌鑒定[J]."基因組學與應用生物學,"2015,"34(4):"763-768.ZHAO"Z"X,"YAN"W"R,"CHEN"Y,"XIAO"T"B,"XIAO"M."Identification"of"ginger"bacterial"wilt"in"Hainan[J]."Genomics"and"Applied"Biology,"2015,"34(4):"763-768."(in"Chinese)
  • 曾文青."砧用冬瓜枯萎病抗性鑒定、轉錄組分析及嫁接適應性研究[D]."南寧:"廣西大學,"2021.ZENG"W"Q."Resistance"identification,"transcriptome"analysis"and"grafting"adaptability"study"of"rootstocks"wax"gourd"to"fusarium"wilt[D]."Nanning:"Guangxi"University,"2021."(in"Chinese)
  • ZHANG"C"S,"LIN"Y,"TIAN"X"Y,"XU"Q,"CHEN"S,"LIN"W."Tobacco"bacterial"wilt"suppression"with"biochar"soil"addition"associates"to"improved"soil"physiochemical"properties"and"increased"rhizosphere"bacteria"abundance[J]."Applied"Soil"Ecology,"2017,"112:"90-96.
  • 中國林業科學研究院林業研究所森林土壤研究室."森林土壤水分-物理性質的測定:"LY/T"1215-1999[S]."北京:"國家林業局,"1999.Forest"Soil"Research"Office,"Institute"of"Forestry,"Chinese"Academy"of"Forestry."Determination"of"forest"soil"water-physical"properties:"LY/T"1215-1999[S]."Beijing:"National"Forestry"Administration,"1999.
  • 鮑士旦."土壤農化分析[M]."北京:"中國農業出版社,"2000.BAO"S"D."Agrochemical"analysis"of"soil[M]."Beijing:"China"Agricultural"Publishing"House,"2000."(in"Chinese)
  • ROBERTS"D"P,"DENNY"T"P,"SCHELL"M"A."Cloning"of"the"egl"gene"of"Pseudomonas"solanacearum"and"analysis"of"its"role"in"phytopathogenicity[J]."Journal"of"Bacteriology,"1988,"170(4):"1445-1451.

[25]"LI"C"J,"AHMED"W,"LI"D"F,"YU"L"J,"XU"L,"XU"T"Y,"ZHAO"Z"X."Biochar"suppresses"bacterial"wilt"disease"of"flue-cured"tobacco"by"improving"soil"health"and"functional"diversity"of"rhizosphere"microorganisms[J]."Applied"Soil"Ecology,"2022,"171:"104314.

[26]"HELLIWELL"J"R,"STURROCK"C"J,"MILLER"A"J,"WHA LLEY"A"J,"RICHARDMOONEY"W,"SACHA"J."The"role"of"plant"species"and"soil"condition"in"the"structural"development"of"the"rhizosphere[J]."Plant"Cell"and"Environment,"2019,"42(6):"1974-1986.

[27]"劉憲臣."溫濕度對煙草青枯病發生的影響及調控技術研究[D]."重慶:"西南大學,"2014.LIU"X"C."A"study"on"effects"of"changes"and"control"of"temperature"and"humidity"on"the"occurring"ofnbsp;tobacco"bacterial"wilt"and"the"control"techniques[D]."Chongqing:"Southwest"University,"2014."(in"Chinese)

  • 萬人源,"馬會杰,"蔣賓,"楊麗冉,"周大鵬,"和明珠,"楊廣容."茶園土壤真菌群落組成及影響因素研究[J]."中國農學通報,"2021,"37(33):"88-97.WAN"R"Y,"MA"H"J,"JIANG"B,"YANG"L"R,"ZHOU"D"P,"HE"M"Z,"YANG"G"R."The"fungi"community"structure"and"influencing"factors"in"tea"gardens"soil[J]."Chinese"Agricultural"Science"Bulletin,"2021,"37(33):"88-97."(in"Chinese)
  • 高升升."高氮投入促進煙草青枯病爆發機理研究[D]."重慶:"西南大學,"2020.GAO"S"S."Study"on"mechanism"of"high"nitrogen"input"promoting"outbreak"of"tobacco"bacterial"wilt[D]."Chongqing:"Southwest"University,"2020."(in"Chinese)
  • WU"J,"ZHAO"H,"WANG"X."Soil"microbes"influence"nitrogen"limitation"on"plant"biomass"in"alpine"steppe"in"North"Tibet[J]."Plant"and"Soil,"2022,"474(1/2):"395-409.
  • MACDONALD"G"K,"BENNETT"E"M,"POTTER"P"A,"RAMANKUTTY"N."Agronomic"phosphorus"imbalances"across"the"world’s"croplands[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2011,"108(7):"3086-3091.

[32]"LIU"Y"Q,"WANG"Y"H,"KONG"W"L,"LIU"W"H,"XIE"X"L,"WU"X"Q."Identification,"cloning"and"expression"patterns"of"the"genes"related"to"phosphate"solubilization"in"Burkholderia"multivorans"WS-FJ9"under"different"soluble"phosphate"levels[J]."AMB"Express,"2020,"10(1):"108.

[33]"WEI"Z,"HU"J,"GU"Y"A,"YIN"S"X,"XU"Y"C,"JOUSSET"A,"SHEN"Q"R,"FRIMAN"V"P."Ralstonia"solanacearum"pathogen"disrupts"bacterial"rhizospherenbsp;microbiome"during"an"invasion[J]."Soil"Biology"and"Biochemistry,"2018,"118:"8-17.

[34]"BARTKOWIAK"A,"LEMANOWICZ"J,"KOBIERSKI"M."The"content"of"macro-"and"microelements"and"the"phosphatase"activity"of"soils"under"a"varied"plant"cultivation"technology[J]."Eurasian"Soil"Science,"2015,"48(12):"1354-"1360.

[35]"才曉玲,"李志洪,"何偉,"李凱."土壤質量密度對玉米根系N、P、K含量及土壤磷酸酶的影響[J]."甘肅農業大學學報,"2011,"46(3):"38-42.CAI"X"L,"LI"Z"H,"HE"W,"LI"K."Effects"of"soil"bulk"density"on"N,"P"and"K"contents"and"phosphatase"of"soil"from"maize"root[J]."Journal"of"Gansu"Agricultural"University,"2011,"46(3):"38-42."(in"Chinese)

[36]"KUSCU"I"S"K,"CETIN"M,"YIGIT"N,"SAVACI"G."Relationship"between"enzyme"activity"(urease-catalase)"and"nutrient"element"in"soil"use[J]."Polish"Journal"of"Environmental"Studies,"2018,"27(5):"2107-2112.

[37]"HU"T,"GU"J,"ZHEN"L,"LV"R,"JIA"F."Influences"of"potassium"solubilizing"bacteria"and"K-feldspar"on"enzyme"activities"and"metabolic"activities"of"the"bacterial"communities"in"kiwifruit"planting"soil[J]."The"Journal"of"General"and"Applied"Microbiology,"2021,"67(3):"106-113.

  • MI"Y,"ZHAO"X,"LIU"F,"SUN"C,"LIU"L."Changes"in"soil"quality,"bacterial"community"and"anti-pepper"Phytophthora"disease"ability"after"combined"application"of"straw"and"multifunctional"composite"bacterial"strains[J]."European"Journal"of"Soil"Biology,"2021,"105:"103329.
  • 孫小茗."鉀離子跨細胞膜吸收過程受銨影響的機理探討[D]."揚州:"揚州大學,"2006.SUN"X"M."Study"on"the"mechanism"of"ammonium"affectingnbsp;the"absorption"of"potassium"ions"across"cell"membranes[D]."Yangzhou:"Yangzhou"University,"2006."(in"Chinese)
  • FAN"Y"F,"GAO"J"L,"SUN"J"Y,"LIU"J,"SU"Z"J,"HU"S"P,"WANG"Z"G,"YU"X"F."Potentials"of"straw"return"and"potassium"supply"on"maize"(Zea"mays"L.)"photosynthesis,"dry"matter"accumulation"and"yield[J]."Scientific"Reports,"2022,"12(1):"799.
  • 梁敏,"李楠楠,"鄒東恢."蔗糖酶的提取工藝及性質研究[J]."湖北農業科學,"2010,"49(9):"2218-2220.LIANG"M,"LI"N"N,"ZOU"D"H."Research"on"extraction"technology"and"enzyme"quality"of"invertase"from"yeast[J]."Hubei"Agricultural"Sciences,"2010,"49(9):"2218-2220."(in"Chinese)

主站蜘蛛池模板: 丁香五月婷婷激情基地| 国产午夜一级淫片| 亚洲熟妇AV日韩熟妇在线| 本亚洲精品网站| 亚洲国产精品VA在线看黑人| 色婷婷视频在线| 白浆免费视频国产精品视频| 22sihu国产精品视频影视资讯| 丁香亚洲综合五月天婷婷| 欧美中文字幕一区| 婷婷六月在线| 亚洲一区二区黄色| 自拍亚洲欧美精品| 国产日韩欧美中文| 19国产精品麻豆免费观看| 精品福利视频导航| 国产一区成人| 亚洲精品在线影院| 亚洲制服中文字幕一区二区| 国产精品九九视频| 婷婷中文在线| 综合成人国产| 欧美亚洲国产精品第一页| 色综合久久无码网| 亚洲欧美精品一中文字幕| av无码一区二区三区在线| 久久狠狠色噜噜狠狠狠狠97视色 | 人妻精品全国免费视频| 日韩欧美成人高清在线观看| 91福利免费视频| 精品国产成人av免费| 色天天综合| 亚洲高清在线天堂精品| 日韩小视频在线观看| 色噜噜狠狠狠综合曰曰曰| 91在线精品麻豆欧美在线| 国产欧美网站| 青青操国产| 国产高清在线观看91精品| 小13箩利洗澡无码视频免费网站| 成人免费午间影院在线观看| 国产麻豆精品在线观看| 国产国模一区二区三区四区| 四虎亚洲精品| 国产手机在线小视频免费观看| 国产高清免费午夜在线视频| 青青草国产精品久久久久| 97精品久久久大香线焦| 国产91色在线| 亚洲福利视频网址| 日韩精品一区二区三区中文无码 | 精品欧美日韩国产日漫一区不卡| 久久性妇女精品免费| 无码免费试看| 男女性午夜福利网站| 欧洲高清无码在线| 国产午夜福利亚洲第一| 国产成+人+综合+亚洲欧美| 毛片在线播放a| 激情综合图区| 在线99视频| 亚洲 日韩 激情 无码 中出| 日韩免费无码人妻系列| 亚洲视频影院| 亚洲欧美极品| 成人免费网站在线观看| 久久国产免费观看| 国产在线精品网址你懂的| 亚洲第一成人在线| 亚洲三级网站| 五月激情婷婷综合| 精久久久久无码区中文字幕| 国产主播福利在线观看| 亚洲第一综合天堂另类专| 日本一区二区不卡视频| 精品午夜国产福利观看| 欧美自慰一级看片免费| 亚洲人成高清| 亚洲国产成人综合精品2020| 国产高清在线丝袜精品一区| 香蕉视频在线观看www| 日本欧美在线观看|