999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

紅瓤核桃JrbHLHA2轉錄因子靶向查爾酮合成酶基因JrCHS4調控種皮花青苷合成的功能研究

2024-12-31 00:00:00王磊樊璐李亞奇陳俊儒孟海軍吳國良
果樹學報 2024年10期

摘" " 要:【目的】查爾酮合成酶(CHS)是植物花青苷合成途徑中的第一個限速酶,探究紅瓤核桃(Juglans regia L. RW-1)查爾酮合成酶(CHS)在種皮花青苷合成中的功能,為紅瓤核桃的品種改良提供理論支撐。【方法】以紅瓤核桃RW-1和普通核桃中林1號不同發育期的種皮為材料,根據qRT-PCR結果,篩選并克隆JrCHS4基因;克隆2種核桃JrCHS4的啟動子序列,通過GUS染色和GUS蛋白定量分析啟動子活性差異;通過酵母單雜交(Y1H)和雙熒光素酶檢測試驗(LUC)驗證上游bHLH轉錄因子對JrCHS4啟動子的調控作用;通過農桿菌介導將JrCHS4瞬時轉化煙草葉片,觀察葉片顏色及花青苷含量的變化。【結果】花后60、120 d時僅JrCHS4在紅瓤核桃種皮中的表達量顯著高于普通核桃種皮且表達量差異最大,分別約為66.04、11 970.93倍,花后90 d時除JrCHS4在2種核桃種皮中的表達量基本相同外,其他3個JrCHSs在紅瓤核桃種皮中的表達量均顯著低于普通核桃種皮,推測JrCHS4可能是紅瓤核桃種皮花青苷合成的關鍵基因。GW-JrCHS4啟動子與RW-JrCHS4啟動子具有98.50%的同源性,含有許多響應激素如脫落酸、乙烯、赤霉素以及與逆境脅迫相關的順式作用元件,與GW-JrCHS4啟動子相比,RW-JrCHS4啟動子缺失了1個MYB結合位點MYB1AT,插入了1個bHLH結合位點MYCCONSENSUSAT。GUS染色結果表明,RW-JrCHS4啟動子誘導產生的藍色深于GW-JrCHS4啟動子誘導產生的藍色;經GUS蛋白定量檢測,RW-JrCHS4啟動子活性顯著高于GW-JrCHS4啟動子活性,約是GW-JrCHS4啟動子活性的1.17倍。酵母單雜交試驗結果表明,JrbHLHA2可以特異性結合JrCHS4啟動子;經LUC試驗進一步驗證,JrbHLHA2能夠顯著激活JrCHS4啟動子的活性,其LUC/REN比值約是對照的2.45倍。瞬時轉化JrCHS4的煙草葉片綠色變淺呈現輕微的紅色,總花青苷含量得到了顯著提高,約是對照的1.09倍,表明JrCHS4能夠促進花青苷的生物合成與積累。【結論】紅瓤核桃JrbHLHA2轉錄因子靶向查爾酮合成酶基因JrCHS4是調控紅瓤核桃種皮花青苷合成的關鍵因素。

關鍵詞:紅瓤核桃;花青苷;查爾酮合成酶;轉錄調控

中圖分類號:S664.1 文獻標志碼:A 文章編號:1009-9980(2024)10-2002-12

Functional research on JrbHLHA2 transcription factor targeting chalcone synthase gene JrCHS4 regulating anthocyanin biosynthesis in red walnut

WANG Lei1, 2, FAN Lu2#, LI Yaqi2, CHEN Junru2, MENG Haijun2, WU Guoliang2*

(1Xinjiang Production amp; Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, Xinjiang, China; 2College of Horticultural Science, Henan Agricultural University, Zhengzhou 450046, Henan, China)

Abstract: 【Objective】 Walnut (Juglans regia L.), which ranks first among the four major nut crops, has been widely planted and processed for utilization. Red walnut RW-1 with red leaves, pericarps and seed coats has been researched because of its high contents of anthocyanin. Anthocyanins are important secondary metabolites in plants, which play an important role in avoiding UV damage, attracting insect pollination and resisting low temperature stress. Although the anthocyanin biosynthesis gene has been studied in other plants, the function in walnut is still unclear. Chalcone synthase is the first key enzyme in anthocyanin biosynthesis pathway, which determines the final product of anthocyanin biosynthesis. In this study, the function of JrCHS4 was researched by transient transformation in tobacco leaves. 【Methods】 The expression patterns of key chalcone synthase genes related to anthocyanin biosynthesis (JrCHS1-JrCHS4) were detected by qRT-PCR. The promoters of JrCHS4 in two different color types of walnuts were cloned by the Phytozome database. The cis-acting elements were predicted by PLACE databases. The promoters were inserted into pCAMBIA1381-GUS vector, and the recombinant vector was transformed into Agrobacterium strain GV3101 for transient expression. The activity of two promoters was detected by GUS histochemical staining and quantitation GUS protein. The regulatory effect of upstream bHLH transcription factors (JrbHLHA1, JrbHLHA2, JrEGL1a and JrEGL1b) on the JrCHS4 promoter was detected by yeast one-hybrid (Y1H) and luciferase assay (LUC). The over-expression vector of JrCHS4 was transient transformed into tobacco leaves, and the changes of leaf color and anthocyanin content were observed. 【Results】 The expression patterns of four CHSs genes related to anthocyanin biosynthesis were detected by qRT-PCR using different development stages of seed coat. The results showed that at 60th and 120th days after flowering, the expression level of JrCHS4 was significantly higher in the red walnut seed coat than in the normal walnut seed coat and the difference in expression level was the largest, which indicated that JrCHS4 may be the key gene in red walnut anthocyanin biosynthesis. To investigate whether the different expression trends of CHS4 gene in the seed coat development of red walnut RW-1 and normal walnut Zhonglin 1 were related to their promoters, the promoters of JrCHS4 were cloned from the two types of walnuts by the Phytozome database, and 98.50% nucleotide identify were shared. From PLACE database, some elements related to hormone response and stress, like ABRE, MYC, ERE, GARE and MYB1AT, were found in RW-JrCHS4 promoter. Compared with the GW-JrCHS4 promoter, the RW-JrCHS4 promoter lacked one MYB binding site MYB1AT and inserted one bHLH binding site MYCCONSENSUSAT. In order to determine the difference in activity of two JrCHS4 promoters, the promoters were cloned into pCAMBIA1381-GUS vector. After they were transformed into Agrobacterium strain GV3101, the positive clones were transient transformed into tobacco leaves. The result of histochemical assay showed that the negative control (only GUS without the promoter) showed almost no expression, the positive control (35S-GUS) showed a strong expression, and the GUS activity under RW-JrCHS4 was higher than that of GW-JrCHS4. The same results were also gotten by quantitation of GUS protein. The results from both assays showed that compared with the GW-JrCHS4 promoter, the promoter of RW-JrCHS4 showed high activity, which suggested that the different expression patterns of JrCHS4 may be caused by their promoter activities. To screen out the bHLH transcription factors, which were in the upstream of JrCHS4, four bHLHs related to anthocyanin biosynthesis (JrbHLHA1, JrbHLHA2, JrEGL1a and JrEGL1b) were selected out. After cloned into pGADT7 vector, four bHLHs were co-transformed into yeast stain Y1HGold with RW-JrCHS4pro-pAbAi. The optimal AbA concentration to inhibit the expression of JrCHS4 promoter was 150 ng·mL-1. After they grew on the selected medium, only JrbHLHA2-pGADT7+RW-JrCHS4pro-pAbAi stain ensured the normal growth, while none of the other combinations could grow, which indicated that JrbHLHA2 could bind to the promoter of JrCHS4. Moreover, the results of LUC assays showed that the activity of RW-JrCHS4 promoter co-transformed with JrbHLHA2 was almost three times more than co-transformed with empty vector. So the results indicated that JrbHLHA2 and JrCHS4 may be the key genes of anthocyanin biosynthesis in red walnut, and JrbHLHA2 was bound the promoter of JrCHS4 to promote the biosynthesis and accumulation of anthocyanin. In order to verity the function of JrCHS4 in anthocyanin biosynthesis, the over-expression vector of JrCHS4 was transformed into tobacco leaves. After they were injected for seven days, the accumulated anthocyanin content of injected JrCHS4 tobacco leaves was higher than the empty vector injected. The results indicated that JrCHS4 promoted the accumulation of anthocyanin. 【Conclusion】 The JrbHLHA2 transcription factor targeting chalcone synthase gene JrCHS4 is the key factor to regulate the biosynthesis of anthocyanin in red walnut RW-1, which provided important theoretical significance and application value for seed coat color improvement as well as breeding new varieties of red walnut.

Key words: Red walnut; Anthocyanin; Chalcone synthase; Transcriptional regulation

花青苷是植物重要的次生代謝產物,主要存在于高等植物的花、果實、種皮等器官中,使植物呈現不同的色彩,在避免植物受到紫外線傷害、吸引昆蟲傳粉和抵御低溫脅迫等方面起著重要的作用[1]。花青苷的合成由一系列的酶促反應構成,主要包括苯丙氨酸解氨酶(phenylalanine ammonialyase,PAL)、查爾酮合成酶(chalcone synthase,CHS)、查爾酮異構酶(chalcone isomerase,CHI)、黃烷酮-3-羥化酶(flavanone 3-hydroxylase,F3H)、二氫黃酮醇-4-還原酶(dihydroflavonol 4-reductase,DFR)、花青素合成酶(anthocyanidin synthase,ANS)、類黃酮-3-O-糖基轉移酶(UDP-glucose:flavonoid-3-O-glucosyltransferase,UFGT)等[2]。

查爾酮合成酶(chalcone synthase,CHS)是類黃酮生物合成途徑中的第一個關鍵酶,催化3分子的丙二酰-CoA和1分子的4-香豆酰-CoA結合形成查爾酮,是類黃酮途徑中的第一個呈色物質[3]。大量研究表明,CHS能夠影響花青苷的累積水平。在智利草莓[Fragaria chiloensis (L.) Mill.]果實發育過程中,ABA通過激活FcPAL、FcCHS、FcANS等花青素途徑的關鍵基因加速果實顏色的積累[4];套袋處理降低了杏果實中包括PaCHS在內的花青苷合成基因的表達量,從而導致花青苷含量的下降[5]。蘋果[6]、梨[7]和柑橘[8]中,CHS基因的表達量隨花青苷積累量的增加而升高;實驗室前期在紅瓤核桃自然雜交后代中鑒定了4個與花青苷含量呈正相關的JrCHSs基因,但其功能還沒有相關研究[9]。

bHLH(basic Helix-Loop-Helix,堿性螺旋-環-螺旋)轉錄因子是植物第二大轉錄因子家族,其蛋白結構包含兩個功能不同的區域,即位于N端的堿性區域(DNA識別區)和C端的HLH區域(可形成同源或異源二聚體),在植物的生長發育、抵抗脅迫和轉導信號等方面發揮著重要作用,是植物花青苷合成的關鍵調控因子[3]。研究發現,茄子SmbHLH13可以正向調控茄子F3H和CHS基因的表達,促進茄子花青素的合成[10]。筆者課題組前期根據生物信息學與表達分析,篩選出了4個與紅瓤核桃花青苷合成相關的bHLH轉錄因子基因JrbHLHA1、JrbHLHA2、JrEGL1a、JrEGL1b[11],但對其調控紅瓤核桃花青苷生物合成的分子機制比如與JrCHSs基因的調控關系沒有相關研究。

核桃(Juglans regia L.)是世界四大堅果之首,含有豐富的營養成分,被廣泛種植和加工利用[12]。據聯合國糧食及農業組織(FAO)(http://faostat.fao.org)最新數據統計,2022年中國核桃收獲面積占世界核桃收獲面積的28.58%,產量占世界核桃產量的36.14%,均穩居世界首位。中國核桃栽培歷史已有3000多年,具有極豐富的種質資源,目前廣泛栽培的核桃品種種皮均為黃白色或淺黃色[13],可選擇的外觀性狀較少。筆者課題組前期在太行山區域發現了珍稀的紅瓤核桃種質資源(J. regia L. RW-1),其葉片、果皮和種皮均因富含花青苷而呈紅色,但其呈色機制目前尚不清楚,限制了核桃的色澤品質改良。因此,筆者在前期研究的基礎上,篩選紅瓤核桃種皮花青苷合成關鍵CHS基因,探究其與上游JrbHLHs的調控關系,并驗證其在花青苷生物合成與積累中發揮的功能與作用,以期解析紅瓤核桃種皮花青苷合成與積累的分子機制,為促進紅瓤核桃色澤品質的改良及育種奠定基礎。

1 材料和方法

1.1 試驗材料

供試材料為野生資源紅瓤核桃(J. regia L. RW-1,資源編號JUREG4108210002)和普通核桃中林1號(J. regia L. ‘Zhonglin 1’),均種植于河南農業大學科教園區毛莊果樹資源圃,南北向定植,株行距2 m × 3 m,常規肥水管理。選擇生長狀況良好、長勢一致的植株,于花后60、90、120 d采集紅瓤核桃RW-1(RW)和普通核桃中林1號(GW)的種皮,采集樣品于液氮速凍后置于-80 ℃超低溫冰箱中保存備用。

所有用于注射的煙草(Nicotiana tabacum L.)均在溫度22 ℃、濕度60%、光照16 h/黑暗8 h的培養箱中進行培養。

1.2 總花青素含量測定

將樣品于液氮中速凍并研磨至粉末狀,懸浮于預冷的1%鹽酸甲醇溶液中,充分混勻后于4 ℃黑暗浸提24 h,4 ℃條件下12 000g離心10 min收集上清液,檢測上清液在波長為530、620、650 nm處的吸光值,代入公式計算:總花青素含量(w,后同)/(mg·g-1)=[(A530-A620)-0.25(A650-A620)]/0.1,進行3次生物學重復[14]。

1.3 DNA提取及啟動子克隆

使用EZ-10 Spin Column Plant Genomic DNA Purification Kit(生工生物工程股份有限公司,上海)對樣品進行DNA提取[15]。JrCHS4的啟動子序列通過核桃基因組[16]預測獲得,關鍵順式作用元件的分析通過PLACE(https://www.dna.affrc.go.jp/PLACE/?action=newplace)獲得。

1.4 RNA提取與cDNA合成、實時熒光定量PCR(qRT-PCR)

使用快速通用植物RNA提取試劑盒(北京華越洋生物科技有限公司,北京)對樣品進行RNA提取,利用HiScript? Ⅲ RT SuperMix for qPCR(+gDNA wiper)反轉錄試劑盒(南京諾唯贊生物科技股份有限公司,南京)對質量合格的RNA進行cDNA合成。

于ABI 7500實時PCR系統(Applied Biosystems,Foster City,CA,United States)使用ChamQ Universal SYBR qPCR Master Mix(南京諾唯贊生物科技股份有限公司,南京)進行qRT-PCR試驗。以Jr18S (XM_019004991.1)作為內參基因,基因相對表達水平使用2-△△Ct法計算[17],引物序列見表1。

1.5 GUS染色與GUS蛋白定量檢測

從2種核桃DNA中分別克隆JrCHS4啟動子片段插入至植物表達載體pCAMBIA1381-GUS,分別轉入農桿菌GV3101-pSoup感受態細胞(北京莊盟國際生物基因科技有限公司,北京),瞬時轉化本氏煙草葉片,進行GUS染色和GUS蛋白定量分析[18]。

1.6 酵母單雜交(Y1H)

將紅瓤核桃JrCHS4啟動子片段插入至pAbAi載體,從紅瓤核桃cDNA中克隆JrbHLHs轉錄因子編碼序列插入至pGADT7載體。使用經典酵母轉化試劑盒(北京酷來搏科技有限公司,北京)進行酵母感受態的制備與轉化,以pGADT7為陰性對照,將含有JrbHLHs-AD重組質粒的Y1HGold(含RW-JrCHS4pro-pAbAi重組質粒)菌株點至AbA濃度梯度的固體SD/-Leu培養基平板上于29 ℃培養箱培養2~4 d后觀察互作情況。

1.7 雙熒光素酶報告基因檢測(LUC)

將分別帶有JrCHS4pro-LUC、JrbHLHA2-2300重組質粒的農桿菌菌液按1∶9的體積比混合,注射本氏煙草葉片,使用Dual-Luciferase? Reporter Assay System試劑盒(普洛麥格生物技術有限公司,北京)測定螢火蟲熒光素酶LUC和海腎螢光素酶REN酶活性,計算LUC/REN比值[19]。

1.8 煙草葉片瞬時表達分析

將帶有JrCHS4-2300重組質粒的農桿菌菌液注射至大葉煙草葉片,其間仔細觀察葉片的顏色變化情況,后采集經注射的煙草葉片于液氮速凍研磨后進行總花青素含量的測定與分析[20]。

1.9 數據分析

采用Microsoft Excel 2019軟件進行試驗數據整理;采用SPSS 21.0軟件進行試驗數據統計分析;采用Adobe Photoshop 2021、GraphPad Prism 8軟件繪圖。

2 結果與分析

2.1 紅瓤核桃不同發育時期種皮CHSs的表達分析

課題組前期根據核桃基因組數據篩選CHS家族,通過功能注釋分析篩選到了4個可能與花青苷合成相關的CHSs[9]。利用qRT-PCR檢測CHSs基因在2種核桃不同發育時期種皮中的表達模式,結果表明花后60、120 d時4個CHSs基因在紅瓤核桃種皮中的表達量均顯著高于在普通核桃種皮中的表達量,其中JrCHS4(gene35863,XM_018966498.2)在2種核桃種皮中的表達量差異最大,分別約為66.04、11 970.93倍;花后90 d時除JrCHS4在2種核桃種皮中的表達量基本相同外,其他3個JrCHSs在紅瓤核桃種皮中的表達量均顯著低于在普通核桃種皮中的表達量(圖1)。因此,推測JrCHS4可能是紅瓤核桃種皮花青苷合成的關鍵基因。

2.2 紅瓤核桃JrCHS4啟動子的克隆及啟動子活性分析

為了研究CHS4基因在紅瓤核桃和普通核桃種皮發育中表達趨勢的不同是否與其啟動子有關,對2種核桃的CHS4啟動子序列進行了克隆。通過序列比對,GW-JrCHS4啟動子與RW-JrCHS4啟動子具有98.50%的同源性(圖2)。紅瓤核桃JrCHS4啟動子含有許多響應激素如脫落酸、乙烯、赤霉素以及與逆境脅迫相關的順式作用元件,如ABRE、MYC、ERE、GARE、MYB1AT等,與普通核桃JrCHS4啟動子相比,缺失了1個MYB結合位點MYB1AT,插入了1個bHLH結合位點MYCCONSENSUSAT(表2)。

GUS染色結果表明,RW-JrCHS4啟動子誘導產生的藍色深于GW-JrCHS4啟動子誘導產生的藍色(圖3-A)。GUS蛋白定量結果顯示,RW-JrCHS4啟動子活性顯著高于GW-JrCHS4啟動子活性,約是GW-JrCHS4啟動子活性的1.17倍,與上述GUS染色結果相一致(圖3-B)。

2.3 紅瓤核桃JrCHS4啟動子上游bHLH轉錄因子的篩選及驗證

為了探究JrCHS4啟動子與4個花青苷合成相關的bHLH轉錄因子JrbHLHA1、JrbHLHA2、JrEGL1a、JrEGL1b的調控關系,進行了酵母單雜交試驗。結果顯示,抑制JrCHS4啟動子自身表達的最佳AbA質量濃度為150 ng·mL-1,且僅JrbHLHA2-AD+JrCHS4pro在此AbA質量濃度的SD/-Leu篩選培養基上能夠正常生長,其他組合均無法生長(圖4-A)。LUC試驗進一步驗證了JrbHLHA2能夠顯著激活JrCHS4基因啟動子的活性,其LUC/REN比值約是對照LUC/REN比值的2.45倍(圖4-B)。以上結果表明,JrbHLHA2轉錄因子可以與JrCHS4的啟動子特異性結合并激活其表達。

2.4 煙草葉片中過表達紅瓤核桃JrCHS4促進花青苷積累

為了驗證JrCHS4在花青苷生物合成與積累中發揮的功能與作用,將JrCHS4構建植物表達載體并瞬時轉化至大葉煙草葉片,轉化后7 d左右觀察發現,瞬時轉化JrCHS4的煙草葉片與對照相比,綠色變淺,呈現輕微的紅色(圖5-A)。其中,JrCHS4在瞬時轉化JrCHS4煙草葉片中的表達量約是在對照煙草葉片中的30.07倍(圖5-B)。對瞬轉煙草葉片測定總花青素含量的結果顯示,瞬時轉化JrCHS4煙草葉片的總花青素含量顯著高于對照煙草葉片,約是對照煙草葉片的1.09倍(圖5-C)。以上結果表明,JrCHS4能夠促進花青苷的生物合成與積累。

3 討 論

花青苷是重要的天然抗氧化劑,在清除人體自由基、改善血糖平衡、預防心腦血管疾病等方面有著積極的作用[21];花青苷在紅瓤核桃種皮中積累不僅提高了核桃的營養價值,也豐富了種仁的外觀品質,市場前景廣闊,但其呈色機制目前尚不清楚,限制了核桃的色澤品質改良。因此,探究紅瓤核桃種皮著色機制、挖掘關鍵調控基因,對培育優質紅瓤核桃新品種具有重要的理論意義和應用價值。

查爾酮合成酶是花青苷合成通路的第一個限速酶,決定著花青苷合成的種類及含量[22]。筆者課題組前期基于轉錄組數據,首先進行基因功能注釋篩選出了17個注釋為“Chalcone synthetase”的基因,后又通過構建核桃CHSs基因表達圖譜篩選獲得了4個具有顯著差異表達的JrCHSs基因JrCHS1~JrCHS4,且表達量與花青苷含量呈正相關[9]。筆者以前期獲得的4個與花青苷合成相關的JrCHSs基因為研究對象,通過qRT-PCR發現,花后60、120 d時JrCHS4在紅瓤核桃種皮中的表達量顯著高于普通核桃種皮且表達量差異最大,分別約為66.04、11 970.93倍,該結果與MaCHS2基因在紅皮香蕉各組織中的表達量高于天寶香蕉各組織[23]、PeCHS基因在紫色西番蓮果皮中的表達量明顯高于黃色西番蓮果皮[24]和IbCHS1基因在紫肉甘薯中的表達量高于黃肉、白肉甘薯[25]等研究結果一致,表明JrCHS4可能是紅瓤核桃種皮花青苷合成的關鍵基因。

本研究結果表明,紅瓤核桃不同時期種皮JrCHSs的表達量受到了果實發育的影響,在花后60 d和120 d時表達量較高,而在花后90 d時表達量顯著降低。在紅瓤核桃種皮顏色形成過程中,花后60 d是花青苷積累的關鍵時期,花青苷大量合成,因此4個JrCHSs基因在花后60 d紅瓤核桃種皮中的表達量較高;在花后90 d時,紅瓤核桃種皮花青苷合成速度減慢,此時4個JrCHSs基因在紅瓤核桃種皮中便保持了較低的表達水平;花后120 d時,核桃果實在發育成熟時期通常伴隨有含水量降低現象,推測可能誘導了紅瓤核桃種皮中的花青苷再次大量合成,因此4個JrCHSs基因在紅瓤核桃種皮中的表達量又再一次升高。

根據PLACE數據庫,2種核桃JrCHS4啟動子中均含有ABA相關的ABRE元件、乙烯相關的ERE元件、赤霉素相關的GARE元件[26-28],以及MYB、bHLH轉錄因子的結合位點[29]。根據順式作用元件分析結果推測,JrCHS4基因可能參與激素信號轉導以及逆境脅迫響應等生物學過程,并受到MYB和bHLH轉錄因子的調控。根據前人研究,MYB和bHLH是影響花青苷生物合成的關鍵轉錄因子,如彭亞麗等[30]闡述了MYB轉錄因子在蔬菜花青苷合成中的激活作用與抑制作用;荔枝中與LcMYB1起協同作用的LcbHLH1、LcbHLH3能夠調控荔枝花青素生物合成的晚期結構基因,進而調控荔枝中花青素的合成與積累[31];過表達MdMYC2的轉基因蘋果愈傷組織中能夠積累更多的花青素且顯著提升MdCHS、MdDFR等花青素生物合成相關基因的表達水平[32]。而筆者在本研究中發現與GW-JrCHS4啟動子相比,RW-JrCHS4啟動子缺失了1個MYB結合位點MYB1AT,插入了1個bHLH結合位點MYCCONSENSUSAT,推測bHLH結合位點MYCCONSENSUSAT的插入可能會導致bHLH轉錄因子對JrCHS4啟動子結合作用的差異,進而影響bHLH轉錄因子對JrCHS4的調控,從而影響紅瓤核桃種皮花青苷的積累,同樣MYB結合位點MYB1AT的缺失也將會影響MYB轉錄因子對JrCHS4的調控,具體影響將會在之后的研究中繼續進行深入探索。

前人研究表明,bHLH是花青苷合成通路結構基因的主要調控因子之一[33],探究JrCHS4與上游JrbHLHs的調控關系能夠為解析紅瓤核桃種皮花青苷生物合成分子機制提供數據支撐。通過酵母單雜交試驗表明JrbHLHA2能夠特異地結合到JrCHS4的啟動子上,通過LUC試驗證明JrbHLHA2能夠提高JrCHS4啟動子的啟動活性。在藍莓中,酵母單雜交試驗表明,3個花青素生物合成VcbHLHs(VcAN1、VcbHLH1-1和VcbHLH1-2)可特異性結合VcCHS21啟動子的G-box序列(CACGTG)進而調控VcCHS21的表達[34],說明bHLH轉錄因子對CHS在花青苷合成中的調節作用具有普遍性。

瞬時轉化煙草葉片是驗證果樹花青苷合成相關基因功能的常用方法,在蘋果[35]、梨[36]等物種中應用廣泛。為了進一步研究JrCHS4在花青苷合成中的作用,將JrCHS4的過表達載體瞬時轉化煙草葉片,結果表明過表達JrCHS4顯著提高了煙草葉片花青苷含量,與馬鈴薯StCHS4、StCHS5[37]瞬時轉化煙草葉片能夠提高花青苷含量的結果一致,表明JrCHS4能夠促進花青苷的生物合成與積累。

4 結 論

探究了JrbHLHA2靶向JrCHS4調控花青苷合成的分子機制。紅瓤核桃JrCHS4在種皮發育過程中持續高表達,且啟動子活性高于GW-JrCHS4啟動子。JrbHLHA2能夠直接結合RW-JrCHS4啟動子并促進其上調表達,JrCHS4過表達煙草葉片能夠促進花青苷的積累。推測JrbHLHA2靶向JrCHS4啟動子促進了紅瓤核桃花青苷的積累,這對紅瓤核桃的改良育種提供了一定的理論依據。

參考文獻 References:

[1] 王欣,張天柱. 園藝作物花青素合成調控研究進展[J]. 生物技術進展,2022,12(1):10-16.

WANG Xin,ZHANG Tianzhu. Research progress on the regulation of anthocyanin synthesis in horticultural crops[J]. Current Biotechnology,2022,12(1):10-16.

[2] TANAKA Y,SASAKI N,OHMIYA A. Biosynthesis of plant pigments:Anthocyanins,betalains and carotenoids[J]. Plant Journal,2008,54(4):733-749.

[3] 劉愷媛,王茂良,辛海波,張華,叢日晨,黃大莊. 植物花青素合成與調控研究進展[J]. 中國農學通報,2021,37(14):41-51.

LIU Kaiyuan,WANG Maoliang,XIN Haibo,ZHANG Hua,CONG Richen,HUANG Dazhuang. Anthocyanin biosynthesis and regulate mechanisms in plants:A review[J]. Chinese Agricultural Science Bulletin,2021,37(14):41-51.

[4] MATTUS-ARAYA E,GUAJARDO J,HERRERA R,MOYA-LEóN M A. ABA speeds up the progress of color in developing F. chiloensis fruit through the activation of PAL,CHS and ANS,key genes of the Phenylpropanoid/Flavonoid and anthocyanin pathways[J]. International Journal of Molecular Sciences,2022,23(7):3854.

[5] XI W P,FENG J,LIU Y,ZHANG S K,ZHAO G H. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin[J]. BMC Plant Biology,2019,19(1):287.

[6] XU Y T,FENG S Q,JIAO Q Q,LIU C C,ZHANG W W,CHEN W Y,CHEN X S. Comparison of MdMYB1 sequences and expression of anthocyanin biosynthetic and regulatory genes between Malus domestica Borkh. cultivar ‘Ralls’ and its blushed sport[J]. Euphytica,2012,185(2):157-170.

[7] ZHANG X D,C ALLAN A,YI Q,CHEN L M,LI K Z,SHU Q,SU J. Differential gene expression analysis of Yunnan red pear,Pyrus pyrifolia,during fruit skin coloration[J]. Plant Molecular Biology Reporter,2011,29(2):305-314.

[8] BERNARDI J,LICCIARDELLO C,PATRIZIA RUSSO M,LUISA CHIUSANO M,CARLETTI G,REFORGIATO RECUPERO G,MAROCCO A. Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L. Osbeck) ripening[J]. Journal of Plant Physiology,2010,167(4):301-310.

[9] 趙偉,李琳,劉永輝,章露露,楊瑩,孟海軍,王磊,吳國良. 紅仁核桃自然雜交后代不同表型葉片差異表達CHS基因的鑒定及生物信息學分析[J]. 果樹學報,2021,38(2):179-191.

ZHAO Wei,LI Lin,LIU Yonghui,ZHANG Lulu,YANG Ying,MENG Haijun,WANG Lei,WU Guoliang. Identification and bioinformatics analysis of CHS genes in different phenotypic leaves of natural hybrid progenies of red-kernel walnut[J]. Journal of Fruit Science,2021,38(2):179-191.

[10] XI H C,HE Y J,CHEN H Y. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant[J]. Horticultural Plant Journal,2021,7(1):73-80.

[11] ZHAO W,LIU Y H,LI L,MENG H J,YANG Y,DONG Z B,WANG L,WU G L. Genome-wide identification and characterization of bHLH transcription factors related to anthocyanin biosynthesis in red walnut (Juglans regia L.)[J]. Frontiers in Genetics,2021,12:632509.

[12] 張翰生,昌秦湘,康建忠,梁宗鎖. 核桃的營養價值及其開發利用研究進展[J]. 浙江農業學報,2024,36(4):905-919.

ZHANG Hansheng,CHANG Qinxiang,KANG Jianzhong,LIANG Zongsuo. Research progress on nutritional value and utilization of walnut[J]. Acta Agriculturae Zhejiangensis,2024,36(4):905-919.

[13] 裴東,魯新政. 中國核桃種質資源[M]. 北京:中國林業出版社,2011.

PEI Dong,LU Xinzheng. Walnut germplasm resources in China[M]. Beijing:China Forestry Publishing House,2011.

[14] ZHAO W,FAN L,WU W J,LI Y Q,MENG H J,WANG G X,DONG Z B,WANG L,WU G L. Re-sequencing and transcriptomic analysis reveal differential expression patterns and sequence variation in glucosyltransferase gene related to anthocyanin biosynthesis in walnut (Juglans regia L.)[J]. Scientia Horticulturae,2023,317:112077.

[15] 李愷睿,史慶瑤,樊銘璽,譚浩然,陳曉峰. 應用STR熒光標記分析煙臺地區草莓種質資源遺傳多樣性[J]. 山東農業科學,2024,56(1):43-49.

LI Kairui,SHI Qingyao,FAN Mingxi,TAN Haoran,CHEN Xiaofeng. Genetic diversity analysis of strawberry germplasm resources in Yantai Region using STR fluorescent markers[J]. Shandong Agricultural Sciences,2024,56(1):43-49.

[16] MARRANO A,BRITTON M,ZAINI P A,ZIMIN A V,WORKMAN R E,PUIU D,BIANCO L,PIERRO E A D,ALLEN B J,CHAKRABORTY S,TROGGIO M,LESLIE C A,TIMP W,DANDEKAR A,SALZBERG S L,NEALE D B. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome[J]. GigaScience,2020,9(5):giaa050.

[17] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCt method[J]. Methods,2001,25(4):402-408.

[18] WANG C H,GAO G,CAO S X,XIE Q J,QI H Y. Isolation and functional validation of the CmLOX08 promoter associated with signalling molecule and abiotic stress responses in oriental melon,Cucumis melo var. makuwa Makino[J]. BMC Plant Biology,2019,19(1):75.

[19] ALABD A,AHMAD M,ZHANG X,GAO Y H,PENG L,ZHANG L,NI J B,BAI S L,TENG Y W. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear[J]. Horticulture Research,2022,9:uhac199.

[20] KIM D H,LEE J,RHEE J,LEE J Y,LIM S H. Loss of the R2R3 MYB transcription factor RsMYB1 shapes anthocyanin biosynthesis and accumulation in Raphanus sativus[J]. International Journal of Molecular Sciences,2021,22(20):10927.

[21] KHOO H E,AZLAN A,TANG S T,LIM S M. Anthocyanidins and anthocyanins:colored pigments as food,pharmaceutical ingredients,and the potential health benefits[J]. Food amp; Nutrition Research,2017,61(1):1361779.

[22] 萬東璞,于卓,吳燕民,丁夢琦,李金博,周美亮. 花青素代謝調控植物彩葉研究進展[J]. 中國農業科技導報,2020,22(2):30-38.

WAN Dongpu,YU Zhuo,WU Yanmin,DING Mengqi,LI Jinbo,ZHOU Meiliang. Regulation of anthocyanin metabolism on colored leaves of plants[J]. Journal of Agricultural Science and Technology,2020,22(2):30-38.

[23] 李文飛,寇萍,陳春玲,解鴻磊,黃玉吉. 紅皮香蕉CHS基因的克隆和表達模式分析[J]. 分子植物育種,2023,21(3):697-707.

LI Wenfei,KOU Ping,CHEN Chunling,XIE Honglei,HUANG Yuji. Cloning and expression pattern analysis of CHS gene in Musa acuminata ‘Red Green’(AAA)[J]. Molecular Plant Breeding,2023,21(3):697-707.

[24] 何銳杰,方庭,余偉軍,張夢媛,饒婭,梁釩,魏秀清,曾黎輝. 西番蓮查爾酮合成酶(CHS)基因家族全基因組鑒定及表達模式[J]. 應用與環境生物學報,2022,28(4):1066-1075.

HE Ruijie,FANG Ting,YU Weijun,ZHANG Mengyuan,RAO Ya,LIANG Fan,WEI Xiuqing,ZENG Lihui. Genome-wide identification and expression analysis of the CHS gene family in passion fruit[J]. Chinese Journal of Applied and Environmental Biology,2022,28(4):1066-1075.

[25] 徐靖,朱家紅,王效寧,韓義勝,唐力瓊,朱紅林. 甘薯查爾酮合成酶基因IbCHS1的克隆和表達分析[J]. 分子植物育種,2018,16(6):1752-1757.

XU Jing,ZHU Jiahong,WANG Xiaoning,HAN Yisheng,TANG Liqiong,ZHU Honglin. Cloning and expression analysis of Chalcone synthase gene IbCHS1 in Ipomoea batatas[J]. Molecular Plant Breeding,2018,16(6):1752-1757.

[26] 徐獻斌,李慧,耿曉月,鄭煥,陶建敏. ABA信號通路對葡萄果皮花青苷生物合成的調控機制研究[J]. 西北植物學報,2021,41(3):406-415.

XU Xianbin,LI Hui,GENG Xiaoyue,ZHENG Huan,TAO Jianmin. Regulation mechanism of ABA pathway genes on anthocyanin biosynthesis in grape skins[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(3):406-415.

[27] 孫玉帥,王菲,管雪強,郗慧茹,姚玉新. ABA和乙烯互作調控葡萄VlMybA1和VlMybA2表達并促進果皮著色[J]. 園藝學報,2023,50(11):2323-2336.

SUN Yushuai,WANG Fei,GUAN Xueqiang,CHI Huiru,YAO Yuxin. ABA and ethylene enhance the expression VlMybA1 and VlMybA2 and promote pigmentation in the berry skin via their interaction[J]. Acta Horticulturae Sinica,2023,50(11):2323-2336.

[28] NARDI C F,VILLARREAL N M,OPAZO M C,MARTíNEZ G A,MOYA-LEóN M A,CIVELLO P M. Expression of FaXTH1 and FaXTH2 genes in strawberry fruit. Cloning of promoter regions and effect of plant growth regulators[J]. Scientia Horticulturae,2014,165:111-122.

[29] 郭晉艷,鄭曉瑜,鄒翠霞,李秋莉. 植物非生物脅迫誘導啟動子順式元件及轉錄因子研究進展[J]. 生物技術通報,2011,27(4):16-20.

GUO Jinyan,ZHENG Xiaoyu,ZOU Cuixia,LI Qiuli. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors[J]. Biotechnology Bulletin,2011,27(4):16-20.

[30] 彭亞麗,高倩,董文,熊安平,秦玉芝,林原,熊興耀,胡新喜. MYB轉錄因子調控蔬菜花青素生物合成的研究進展[J]. 中國瓜菜,2020,33(12):1-7.

PENG Yali,GAO Qian,DONG Wen,XIONG Anping,QIN Yuzhi,LIN Yuan,XIONG Xingyao,HU Xinxi. Advances of MYB transcription factors regulating vegetable anthocyanins biosynthesis[J]. China Cucurbits and Vegetables,2020,33(12):1-7.

[31] LAI B,DU L N,LIU R,HU B,SU W B,QIN Y H,ZHAO J T,WANG H C,HU G B. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,2016,7:166.

[32] AN J P,LI H H,SONG L Q,SU L,LIU X,YOU C X,WANG X F,HAO Y J. The molecular cloning and functional characterization of MdMYC2,a bHLH transcription factor in apple[J]. Plant Physiology and Biochemistry,2016,108:24-31.

[33] 王華,李茂福,楊媛,金萬梅. 果實花青素生物合成分子機制研究進展[J]. 植物生理學報,2015,51(1):29-43.

WANG Hua,LI Maofu,YANG Yuan,JIN Wanmei. Recent advances on the molecular mechanisms of anthocyanin synthesis in fruits[J]. Plant Physiology Journal,2015,51(1):29-43.

[34] ZHANG Z N,QU P Y,HAO S Y,LI R D,ZHANG Y Y,ZHAO Q,WEN P F,CHENG C Z. Characterization and functional analysis of Chalcone synthase genes in highbush blueberry (Vaccinium corymbosum)[J]. International Journal of Molecular Sciences,2023,24(18):13882.

[35] CHAGNé D,KUI L W,ESPLEY R V,VOLZ R K,HOW N M,ROUSE S,BRENDOLISE C,CARLISLE C M,KUMAR S,DE SILVA N,MICHELETTI D,MCGHIE T,CROWHURST R N,STOREY R D,VELASCO R,HELLENS R P,GARDINER S E,ALLAN A C. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J]. Plant Physiology,2013,161(1):225-239.

[36] YAO G F,MING M L,ALLAN A C,GU C,LI L T,WU X,WANG R Z,CHANG Y J,QI K J,ZHANG S L,WU J. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis[J]. Plant Journal,2017,92(3):437-451.

[37] 王文靜. 馬鈴薯CHS基因家族鑒定及功能解析[D]. 合肥:安徽農業大學,2023.

WANG Wenjing. Genome-wide identification and functional analysis of CHS gene family in Solanum tuberosum[D]. Hefei:Anhui Agricultural University,2023.

主站蜘蛛池模板: 国产呦精品一区二区三区下载| 制服丝袜亚洲| 自拍中文字幕| 永久免费精品视频| 国产精品手机视频一区二区| 夜夜操天天摸| 精品国产三级在线观看| 婷婷六月激情综合一区| 免费A∨中文乱码专区| 狠狠色综合网| 尤物成AV人片在线观看| 亚洲无码一区在线观看| 国产成人精品视频一区二区电影 | 日韩小视频在线观看| 国产福利在线免费观看| 国产成人精品18| YW尤物AV无码国产在线观看| 91精品国产91欠久久久久| AV网站中文| 欧美在线三级| 亚洲日韩AV无码一区二区三区人| 好吊日免费视频| 久久a毛片| 自拍偷拍欧美日韩| 日韩东京热无码人妻| 久久综合亚洲鲁鲁九月天| 国产手机在线观看| 亚洲欧美精品日韩欧美| 亚洲人免费视频| 久久伊人色| 国产欧美精品午夜在线播放| 99久视频| 丁香婷婷综合激情| 欧美人人干| 福利小视频在线播放| 亚洲高清无在码在线无弹窗| 亚洲精品777| 久久狠狠色噜噜狠狠狠狠97视色 | 青青热久免费精品视频6| 91高清在线视频| 国产精品久久久久久久久久久久| 免费A级毛片无码免费视频| 午夜福利在线观看入口| 欧美黄网在线| 91久久夜色精品| 成人在线综合| 久久精品最新免费国产成人| 国产成人1024精品| 午夜毛片免费看| 精品一区二区三区中文字幕| 欧美午夜在线播放| av大片在线无码免费| 找国产毛片看| 一级毛片基地| 国产免费福利网站| 久久精品电影| 1024国产在线| 国产精品第| 亚洲福利一区二区三区| 在线无码av一区二区三区| 一级毛片免费不卡在线| 最近最新中文字幕免费的一页| 久久国产热| 国产午夜福利片在线观看| 好吊色妇女免费视频免费| 午夜国产理论| 日韩东京热无码人妻| 国产精品一区二区无码免费看片| 妇女自拍偷自拍亚洲精品| 亚洲成人在线免费观看| 欧洲熟妇精品视频| 99热这里只有成人精品国产| 国产精品大白天新婚身材| 久久国产精品国产自线拍| 99在线视频精品| 国产嫖妓91东北老熟女久久一| 永久在线播放| 国产美女在线观看| 国产综合欧美| 日韩国产黄色网站| 色婷婷色丁香| 久久 午夜福利 张柏芝|