








摘" " 要:【目的】外生菌根是板栗獲取土壤氮素的重要途徑,但目前外生菌根對提高板栗氮素吸收和利用的分子機制尚不明確。探明板栗外生菌根誘導上調的硝酸鹽轉運蛋白基因CmNRT3的序列特征、表達模式及相關功能,將為外生菌根促氮吸收提供理論依據。【方法】通過轉錄組數據分析、熒光定量PCR、瞬時轉化體系及酵母互補等方法研究CmNRT3基因的表達特征和生理功能。【結果】CmNRT3基因在板栗外生菌根中顯著上調表達。在未接種板栗及苜蓿轉基因根系的表皮細胞中檢測到CmNRT3啟動子驅動的GUS信號,而在苜蓿的叢枝菌根中,GUS信號主要存在于含有叢枝的皮層細胞中。亞細胞定位結果顯示CmNRT3定位于細胞膜及苜蓿含有叢枝的細胞膜上。酵母互補試驗表明,CmNRT3轉運蛋白不能互補硝酸鹽轉運缺陷型酵母的功能。【結論】CmNRT3受外生菌根誘導表達,定位于細胞膜上。CmNRT3啟動子驅動的GUS信號在含叢枝的苜蓿根系皮層細胞中強烈表達,但不具備硝酸鹽吸收或轉運功能。該研究為進一步揭示板栗外生菌根促氮吸收提供了理論基礎。
關鍵詞:板栗;外生菌根;CmNRT3;硝酸鹽吸收轉運;基因功能
中圖分類號:S664.2 文獻標志碼:A 文章編號:1009-9980(2024)10-2014-11
Expression and function of ectomycorrhizal induced gene CmNRT3 in Chinese chestnut
REN Yanyan, LI Ziping, HE Yuji, ZHANG Haolin, WANG Yunqing, ZHANG Qing, XIAO Tingting, LI Huchen, CAO Qingqin*
(College of Plant Science and Technology, Beijing University of Agriculture/Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China)
Abstract: 【Objective】 Ectomycorrhizae is an important microbial that enables chestnut trees to obtain limited soil nutrients, such as nitrogen. The molecular mechanism involved in nitrogen absorption and utilization by ectomycorrhizae has not yet been clarified in chestnut. In this study, the highly induced nitrate transporter gene CmNRT3 of Chinese chestnut in response to ectomycorrhizal symbiosis was identified and its spatial expression pattern and protein function were further analyzed. 【Methods】 The plant materials used were Chinese chestnut Jingshuhong, which produced healthy, pest-free fruits, and Medicago truncatula ecotype A17 and Nicotiana benthamiana, which were propagated in our laboratory. The ectomycorrhizal fungus selected was Scleroderma citrinum, obtained by propagation on P20 medium. The arbuscular mycorrhizal fungus used was spores of Rhizophagus irregularis, provided by the arbuscular mycorrhizal fungi germplasm resource center of Beijing Academy of Agriculture and Forestry Sciences. △ynt-Leu- yeast lacking of nitrate transportation ability was provided by Yuan Lixing's research group (China Agricultural University), and cultured in YNB yeast medium. To investigate which chestnut NRTs were involved in ectomycorrhizal symbiosis, the excavation and expression analysis of Chinese chestnut NRT gene family in both control and ectomycorrhizae colonized roots were conducted. The CmNRTs were identified using protein sequence BLAST of Arabidopsis and rice NRTs against the chestnut genome, and MEGA7.0.14 software for gene sequence alignment and evolutionary analysis was employed. The high induction of CmNRT3 in chestnut ectomycorrhizal roots was confirmed using quantitative real-time PCR (BIO-RAD, USA). Primers used were designed by Primer 3 (v.0.4.0) (http://bioinfo.ut.ee/primer3-0.4.0/). Primer sequences of CmNRT3 were CmNRT3-F: 5'- GTCTAGCTGTAACTTGTTATGGA-3', CmNRT3-R: 5'-CTGGCAAACTCTGGTTTAGA-3'. Primer sequences of CmACTIN as a reference gene were CmACTIN-F: 5'-GTGGCGGTTCAACCATGTTC-3', CmACTIN-R: 5'- GGATGGACCACTCTCATCGT-3'. Further, a 1.6 kb promoter of CmNRT3 was cloned, and the CmNRT3 promoter-GUS construct was generated and transgenic roots expressing this reporter by performing hairy root transformation were obtained. Additionally, this construct was introduced into Medicago through hairy root transformation as well, and then the transgenic roots were inoculated with R. irregularis. The transgenic roots underwent GUS staining, plastic embedding, and sectioning with a microtome (Leica). The sections were counterstained with ruthenium red and observed under a light microscope (Leica 5500). In this way the spatial expression pattern of CmNRT3 was studied in chestnut control roots, and heterozygously analyzed in Medicago arbuscular mycorrhizal roots. To further identify the CmNRT3’s subcellular localization, 35S::CmNRT3::GFP and CmNRT3pro::CmNRT3::GFP fusion constructs were generated and transiently expressed in N. benthamiana leaves and Medicago roots, respectively. Here, plasma membrane-tagged protein pm-rb CD3-1008 expression vectors were used as a marker, and a laser confocal microscope (Leica STELLARIS 5) was used for protein expression observation. To test whether this CmNRT3 function is a nitrate transporter, CmNRT3-pDR-F1-GW vector by using pENTR-TOPO-CmNRT3 vector (with stop codon) through LR recombination reaction was generated. Subsequently, yeast functional complementation experiments by expressing the aforementioned vector in △ynt-Leu- yeast were conducted. 【Results】 60 putative nitrate transporter (NRT) gene family members in chestnut genome were characterized, and divided into three subfamilies, NRT1, NRT2 and NRT3. In NRT3 subfamily, Cm06G00423 was the only member and therefore named as CmNRT3. Based on transcriptome data analyses of Chinese chestnut control and ectomycorrhizal roots, CmNRT3 was induced by 8 folds in 2 months old ectomycorrhizal roots. Meanwhile, through quantitative real-time PCR the expression level of CmNRT3 gene was up-regulated by 3.13 folds in 1 month old ECM, compared with the control roots. A 1.6 kb CmNRT3 promoter-driven GUS signal was mainly detected in the epidermis and weakly in the cortex in chestnut and Medicago control roots. However, the GUS signal was predominantly present in arbuscule containing cells upon arbuscular mycorrhizal symbiosis in Medicago roots. The subcellular localization analysis by using 35S::CmNRT3::GFP construct indicated that CmNRT3 was localized on the cell membrane, marked by the plasma membrane pm-rb CD3-1008 reporter in N. benthamiana leaves. In Medicago arbuscular mycorrhizal roots expressing CmNRT3pro::CmNRT3::GFP fusion vectors, CmNRT3 protein was mainly localized in arbuscule containing cells and specifically on the peri-arbuscular membrane, an interface between plants and arbuscular mycorrhizal fungi. Through yeast complementation assay, the nitrate transportation defective yeast expressing CmNRT3 failed to recover the growth in Leu-deficient medium. In contrast, the growth could be restored by adding Leu in the medium. 【Conclusion】 This analysis indicated that CmNRT3 is a unique gene within NRT3 subfamily in Chinese chestnut, indicating this gene has a specific function. CmNRT3 is highly expressed in both early and late stages of ectomycorrhizal symbiosis, suggesting it is required during the whole process of symbiotic interaction. This expression pattern seems conserved in different plant species. CmNRT3 is localized on membranes particularly in arbuscular plasma membrane. It might function as a membrane co-transporter. This study underscored the role of ectomycorrhiza in promoting nitrogen absorption and utilization in Chinese chestnut.
Key words: Chinese chestnut; Ectomycorrhiza; CmNRT3; Nitrate absorption and transport; Gene function
菌根是自然界中普遍存在的一種共生現象,是由土壤中的菌根真菌與高等植物根系形成的共生關系[1]。研究表明,菌根真菌所獲取的氮和磷可占植物根系吸收的80%[2]。外生菌根是菌根中的一種主要類型,主要在木本植物中形成,如板栗、楊樹和松樹等。與叢枝菌根真菌入侵植物根系皮層細胞形成細胞內叢枝結構不同,外生菌根具有典型的結構特征,真菌菌絲在根尖外層形成菌套,在根表皮細胞之間形成哈蒂氏網以及根外形成外延菌絲[3- 4]。外生菌根真菌的外延菌絲從土壤中吸收水分及礦質營養元素通過遠距離運輸給菌根,然后通過相關轉運蛋白轉運至共生界面提供給宿主植物。
氮素是植物生長發育過程中必不可少的營養元素[5]。在自然界中,植物根系吸收氮的主要形式是硝酸鹽(NO3-)和銨鹽(NH4+)[6-8]。在好氧土壤條件下,NO3-是大多數植物吸收氮的主要形式[9]。為了適應土壤中硝酸鹽的濃度變化,高等植物發展出了兩種不同的硝酸鹽吸收系統,分別為高親和力運輸系統(HATs)及低親和力運輸系統(LATs)[10]。
在植物根系中,NO3-的吸收及運輸主要由硝酸鹽轉運蛋白家族(nitrate transporter,NRT)負責。NRTs包含了3個基因家族:NRT1家族[又稱PTR(peptide transporter)基因家族或NPF(NRT1 PTR FAMILY)基因家族][11]、NRT2家族及NRT3家族(又稱NAR家族)[9]。NRT1基因家族十分龐大,除轉運NO3-外,還能轉運NO2-、多肽和氨基酸等物質,大多數NRT1家族成員主要在LATs中起作用[12-14]。NRT2家族主要在HATs系統中起作用,他們往往需要NRT3家族作為伴侶蛋白共同促進植物在低氮水平下對硝酸鹽的吸收[15]。在番茄[16]、苜蓿[17]和水稻[18]中均發現了受叢枝菌根誘導表達的硝酸鹽轉運蛋白基因,其中水稻OsNPF4.5在叢枝菌根中的轉錄水平比對照組升高了500倍以上;當以硝酸鹽作為唯一氮源時,該基因在氮吸收中的貢獻可占菌根氮吸收貢獻的45%[18]。目前部分叢枝菌根植物共生途徑的硝酸鹽轉運已得到證實,但外生菌根誘導的硝酸鹽轉運的研究相對較少,其轉運機制尚未明確。有研究表明,外生菌根真菌與楊樹共生后,楊樹PcNRT1.1和PcNRT2.1基因轉錄水平明顯高于對照組[19]。
板栗(Castanea mollissima)為殼斗科栗屬植物,屬于堅果類喬木經濟植物的一種,具有極高的營養價值,有著“木本糧食”、“干果之王”的美稱[20],大多生長在土壤貧瘠、干旱的地區[21]。板栗抗旱,耐瘠薄,與其能夠形成外生菌根的能力密切相關。板栗可與多種外生菌根真菌共生[22],外生菌根形成后,顯著促進板栗對土壤水分、養分的吸收,增強植物對干旱、鹽堿、重金屬脅迫的耐受性,以及對病蟲害的抗性,滿足了板栗植株正常生長的需求[23]。
筆者通過同源序列比對,在板栗基因組中鑒定出60個CmNRT基因,進化分析表明,他們分布于3個進化支,其中CmNRT3為NRT3進化支中僅有的成員,前期研究發現該基因受外生菌根響應后上調表達[24]。筆者在本研究中進一步對板栗CmNRT3基因開展了時空表達定位及相關功能等方面的研究,以期為板栗外生菌根促氮吸收提供科學依據。
1 材料和方法
1.1 試驗材料
試驗于2021—2022年在北京農學院農業應用新技術北京市重點實驗室進行。本研究用到的植物材料包括板栗(C. mollissima)京暑紅、蒺藜苜蓿A17(Medicago truncatula)及本氏煙草(Nicotiana benthamiana)。板栗種子果實飽滿、無病蟲害,蒺藜苜蓿A17種子、本氏煙草種子均為實驗室擴繁所得。外生菌根真菌橙黃硬皮馬勃菌(Scleroderma citrinum,Sc)為筆者實驗室分離培養,叢枝菌根真菌異形根孢囊霉(Rhizophagus irregularis,Ri)由北京農林科學院叢枝菌根真菌種質資源庫提供。
1.2 外生菌根真菌培養
配制P20固體培養基(0.5 g·L-1 Di-NH4-tartrat、1 g·L-1磷酸二氫鉀、0.5 g·L-1七水合硫酸鎂、1 g·L-1葡萄糖、Kanieltra 1000×母液1 mL、100 mg·L-1 Thiamine 母液1 mL、18 g·L-1瓊脂、氫氧化鉀調節pH至5.5),用于培養外生菌根真菌橙黃硬皮馬勃菌。將繼代培養的馬勃菌絲切割成5 mm× 5 mm的方塊,倒置于P20固體培養基上,隨后將培養基正置于25 ℃培養箱中,黑暗培養15 ~ 20 d即可獲得菌絲活力較強的真菌。
1.3 板栗外生菌根土盆共生
在干凈的生長缽中放入2/3無菌蛭石,將板栗幼苗放置于生長缽中央,自來水澆透。利用固態橙黃硬皮馬勃菌接種板栗根系,每株板栗苗接種3個3 cm×3 cm的固態橙黃硬皮馬勃菌菌塊。同時,用保鮮膜封住生長缽,一周后,逐步揭開保鮮膜。隔周分別澆灌水和營養液,2個月左右即可觀察到外生菌根的形成。
1.4 CmNRT3序列克隆及載體構建
利用Omega植物RNA提取試劑盒對板栗菌根及未接種根系進行RNA提取,反轉錄獲得cDNA。根據CmNRT3序列設計引物CmNRT3-ORF-F(5'-ATGGCAGCACGTGGAATTCTCT-3')/CmNRT3-ORF-R(5'-TCACTTCTTCTGAGACTGTTTTGCCCTTC-3')和CmNRT3-PRO-F(5'- TCGGGCAGAGTGGAATCTGAATAC-3')/CmNRT3-PRO-R(5'- TTGCTGCTCTGAGTTGTTGCCA-3'),分別擴增CmNRT3 ORF序列及起始密碼子上游1.8 kb啟動子序列。將擴增產物連接到TOPO載體上,測序正確后,分別構建CmNRT3pro::GUS、35S::CmNRT3::GFP及CmNRT3pro::CmNRT3::GFP表達載體。
1.5 CmNRT3序列比對及進化分析
通過已知的擬南芥、水稻硝酸鹽轉運蛋白與板栗基因組進行BLASTp比對分析,并下載相應的板栗硝酸鹽轉運蛋白氨基酸序列;在NCBI數據庫(https://www.ncbi.nlm.nih.gov/)中下載擬南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、蒺藜苜蓿(M. truncatula)及毛果楊(Populus trichocarpa)等草本及木本植物NRT3家族蛋白序列。使用MEGA7.0.14軟件中的ClustalW功能進行序列比對,導入GeneDoc中標記跨膜結構域與保守結構域;使用MEGA7.0.14軟件中的NJ鄰接法構建進化樹,參數Bootstrap值設為1000。
1.6 CmNRT3的表達分析
分別取板栗未接種根系及外生菌根的樣品提取RNA,反轉錄獲得cDNA。所用引物通過Primer 3(v.0.4.0)進行設計(http://bioinfo.ut.ee/primer3-0.4.0/),并通過BioEdit進行特異性分析(引物序列為CmNRT3-F:5'-GTCTAGCTGTAACTTGTTATGGA-3';CmNRT3-R:5'-CTGGCAAACTCTGGTTTAGA-3')。利用CFX96 Touch熒光定量PCR檢測系統(BIO-RAD,美國)進行qRT-PCR反應,數據用2-△△CT算法進行處理,并通過SPSS軟件進行差異顯著性分析。所有試驗均設置3次重復,CmACTIN作為內參基因(引物序列為CmACTIN-F:5'-GTGGCGGTTCAACCATGTTC-3';CmACTIN-R:5'-GGATGGACCACTCTCATCGT-3')。
1.7 CmNRT3啟動子GUS分析
將CmNRT3pro::GUS表達載體轉化至發根農桿菌MSU440中,利用毛根轉化方法[24-25]獲得轉基因根系。板栗和苜蓿毛根轉化的外植體均是新長出的2~3 d的胚根。將含有轉基因根系的板栗/苜蓿植株分別與外生菌根真菌橙黃硬皮馬勃菌/叢枝菌根真菌異形根孢囊霉進行共生,獲得轉基因菌根。取板栗/苜蓿轉基因的菌根與未接種根系放入含有GUS染液的離心管中,避光抽真空1~2 h后放入37 ℃培養箱,避光反應40 h左右,將根段進行樹脂包埋和切片處理。切片完成后,采用0.1%釕紅染色15 min,即可使用顯微鏡觀察切片。
1.8 CmNRT3蛋白亞細胞定位
將35S::CmNRT3::GFP及Marker質膜標記蛋白pm-rb CD3-1008表達載體轉入根癌農桿菌GV3101中,并制備侵染液。選擇狀態較好的煙草,吸取侵染液注射煙草葉片下表皮。過夜暗培養后,光照培養2~3 d。將侵染后的煙草葉片剪成小塊放置于載玻片上(下表皮朝上),蓋上蓋玻片,利用激光共聚焦顯微鏡(Leica,STELLARIS 5)觀察拍照。
利用發根農桿菌介導的毛根轉化方法,將含有CmNRT3pro::CmNRT3::GFP表達載體的發根農桿菌MSU440侵染苜蓿,獲得轉基因根系,進而與異形根孢囊霉共生獲得轉基因叢枝菌根。將菌根放置于體視顯微鏡下用雙面刀片從中間切成兩部分,使用激光共聚焦顯微鏡觀察。由于轉基因材料帶有GFP融合蛋白及DsRed紅色熒光蛋白,因此可通過GFP(激發光為489 nm,接收光為495~560 nm)和DsRed(激發光為561 nm,接收光為565~680 nm)雙激發光,于40倍水鏡下觀察拍照。
1.9 酵母功能互補
利用 Invitrogen 公司 Gateway? LR ClonaseTM II 重組酶及其試劑盒,將已構建好的pENTR-TOPO-CmNRT3載體(含終止密碼子TGA)與酵母表達載體pDR-F1-GW進行LR重組反應,獲得CmNRT3-pDR-F1-GW表達載體。將試驗組CmNRT3-pDR-F1-GW表達載體及對照組pDR-F1-GW載體轉入硝酸鹽缺陷型的多形漢遜酵母菌株(△ynt-Leu-)中[26-27]。配制不同硝酸鹽濃度的選擇培養基,以培養基中加入亮氨酸作為陽性對照。選擇PCR鑒定為陽性的重組酵母單菌落進行活化(PCR鑒定引物為pDR-F:5'-ATTATGACCGGTGACGAAACGTG-3'和CmNRT3-ORF-R:5'-TCACTTCTTCTGAGACTGTTTTGCCCTTC-3'),3000 r·min-1離心5 min,無菌水清洗2次后再用無菌水重懸,調整酵母OD600為1.0,最后用無菌水稀釋10倍。在不同硝酸鹽濃度的培養基上吸取2 μL菌液點接。37 ℃倒置培養,2 d后觀察。
2 結果與分析
2.1 板栗NRT基因家族成員CmNRT3的鑒定
為鑒定板栗基因組中的硝酸鹽轉運蛋白成員,利用擬南芥、水稻硝酸鹽轉運蛋白對板栗基因組進行BLASTp篩選,共鑒定出60個NRT家族成員。進化樹分析表明,NRT1家族成員56個,NRT2家族成員3個,NRT3家族成員1個(圖1)。在NRT3基因家族中,只有1個板栗基因(Cm06G00423),命名為CmNRT3。對板栗、擬南芥、水稻、苜蓿和楊樹NRT3家族成員的進化樹分析表明,這些物種分別存在1、2、2、2和3個NRT3基因,因此利用板栗研究NRT3基因的功能可以避免同源基因功能的冗余性。
蛋白序列比對結果(圖2)表明,前述5個物種的NRT3中均含有NAR2(high-affinity nitrate transporter)保守結構域及兩個跨膜結構域。在水稻中NAR2結構域參與了硝酸鹽的信號轉導[28];而跨膜結構域則參與硝酸鹽的吸收及運輸。這些結果預示了CmNRT3可能參與板栗根系氮素利用的生物學功能。
2.2 CmNRT3在外生菌根中誘導上調表達
對板栗60個NRT家族成員進行轉錄組數據分析[29],發現與對照組相比,共有14個基因在外生菌根中極顯著上調表達,且上調倍數大于2倍(圖3)。其中Cm06G00423(CmNRT3)在外生菌根中高度表達,與對照組相比上調了8倍。為研究CmNRT3是否在外生菌根中具有作用,qRT-PCR結果表明,與未接種的對照根相比,該基因在外生菌根中的表達量上調了3.13倍,因此該基因為外生菌根誘導上調表達的基因(圖4),可能在外生菌根共生中發揮作用。
2.3 CmNRT3基因啟動子在板栗根中的表達定位
為明確CmNRT3基因的表達定位,構建了由CmNRT3起始密碼子上游1.8 kb啟動子序列驅動的GUS表達載體CmNRT3pro::GUS,將該表達載體瞬時轉化至板栗根系中。對含有轉基因根的板栗苗接種橙黃硬皮馬勃菌或不接菌處理(對照組)。但與真菌互作一個月后,所有的轉基因根均未能形成外生菌根(n=6)。將對照組及真菌互作組的轉基因根進行GUS染色,并利用半薄塑料切片觀察。如圖5所示,對照組的板栗轉基因根中(n=6),GUS信號在其表皮細胞中強烈表達,在皮層細胞中也有部分表達。真菌互作組中未形成外生菌根的轉基因根也有GUS信號,其表達模式與對照組一致。
2.4 CmNRT3基因啟動子在苜蓿根中的表達定位
在未接種叢枝菌根真菌的苜蓿轉基因對照根中,GUS活性在苜蓿轉基因根系各個組織中均有表達,其中表皮細胞中的表達量最高(圖6-A),這與板栗中的表達模式一致,推測不同物種中CmNRT3表達模式較為保守。轉基因苜蓿根系接種叢枝菌根真菌后,CmNRT3基因在表皮細胞和未形成叢枝的細胞中表達微弱,其主要表達于叢枝細胞。同時,在成熟叢枝的細胞中,GUS信號最為強烈(圖6-B,紅箭頭指示的細胞類型),而在衰退叢枝的細胞中GUS信號減弱(圖6-B,黑箭頭指示的細胞類型),表明CmNRT3的表達與叢枝菌根的發育階段具有相關性。CmNRT3基因在成熟叢枝細胞中表達量高預示其參與了叢枝的功能,推測該基因介導了叢枝細胞中氮信號轉導或硝酸鹽的運輸。
2.5 CmNRT3蛋白亞細胞定位
為準確定位CmNRT3所編碼的蛋白發揮功能的位置,構建了35S::CmNRT3::GFP表達載體并進行煙草葉片亞細胞定位分析。觀察發現,CmNRT3-GFP融合蛋白與Marker質膜標記蛋白pm-rb CD3-1008共定位(圖7),說明CmNRT3蛋白定位在細胞膜上,是膜轉運蛋白,與其具有兩個跨膜結構域一致(圖2)。
為進一步探究CmNRT3在菌根共生中的功能,利用苜蓿叢枝菌根體系研究CmNRT3在苜蓿叢枝中的亞細胞定位。首先利用CmNRT3起始密碼子上游1.8 kb的啟動子構建了CmNRT3pro::CmNRT3::GFP融合表達載體,瞬時轉化獲得苜蓿轉基因根后,接種叢枝菌根真菌異形根孢囊霉或不進行接種(對照組),4周后利用激光掃描共聚焦顯微鏡對GFP信號進行定位觀察。在對照根中,CmNRT3蛋白定位于細胞膜上(圖8),與煙草中的觀察結果一致;在苜蓿的叢枝菌根中觀察到菌絲分支及叢枝主干被GFP包圍,該部位類似于叢枝圍膜,推測CmNRT3蛋白定位于叢枝圍膜上(圖8)。
2.6 酵母功能互補
為了研究CmNRT3是否具有硝酸鹽轉運功能,構建了CmNRT3-pDR-F1-GW酵母表達載體以開展同源互補試驗,分別將上述載體與空載分別轉化酵母突變體。在Leu缺陷培養基中,CmNRT3基因及空載轉化的缺陷型酵母突變體均不能正常生長(圖9-A)。向酵母培養基中添加Leu后,恢復了缺陷型酵母體內的氨基酸合成途徑,缺陷型酵母及轉基因酵母生長狀況良好(圖9-B)。由此可以推斷,CmNRT3基因編碼的蛋白不具有硝酸鹽吸收或轉運的能力。
3 討 論
目前由于板栗轉基因效率低及轉基因根系共生難等原因,難以獲得板栗轉基因外生菌根。與板栗不同,其親緣支中豆目豆科的苜蓿轉基因效率高,常用來作為研究叢枝菌根共生機制的模式材料,且有研究表明,外生菌根與叢枝菌根的進化共生機制具有一定的相似性和保守性[30-31]。因此筆者利用菌根模式材料苜蓿來研究CmNRT3基因的表達模式,從而推測其相關功能。
CmNRT3受外生菌根信號響應上調表達,推測可能介導了板栗外生菌根的硝酸鹽途徑。試驗結果表明,CmNRT3pro::GUS表達載體分別轉化苜蓿和板栗后,在未接種轉基因根系中,兩者均表現出在根表皮組織中表達信號強烈,而在皮層組織中表達相對較弱的現象,推測NRT3在板栗與苜蓿的空間表達模式上具有高度的進化保守性。當苜蓿與叢枝菌根真菌共生后,發現GUS信號在含有成熟叢枝的皮層細胞中表達強烈,而在含有衰退叢枝的細胞中表達較弱,這與水稻OsNPF4.5的表達模式基本一致[18]。此外,前人報道大豆GmAMT4.1[6]、高粱SbAMT3.1[32]均在叢枝中特異表達,且定位于叢枝周膜中,負責將NH4+從叢枝交換界面運輸到宿主植物中,證明了這些基因在叢枝菌根促氮吸收中起關鍵作用。筆者通過構建CmNRT3pro::CmNRT3::GFP表達載體并轉化苜蓿,發現CmNRT3蛋白定位于苜蓿叢枝菌根的叢枝上。基于CmNRT3在外生菌根中顯著上調表達,且叢枝菌根與外生菌根具有一定的進化保守性,猜測CmNRT3基因在外生菌根共生途徑中具有重要功能。
CmNRT3可能作為氮信號分子參與外生菌根途徑中的硝酸鹽運輸。在擬南芥中,酵母雙雜和擬南芥原生質體試驗表明,所有NRT2(除AtNRT2.7外)基因均與AtNAR2.1(AtNRT3.1)基因相互作用[33]。同樣地,水稻NRT2家族成員中的OsNRT2.1、2.2和2.3a也需要在OsNAR2.1(OsNRT3.1)的協助下吸收硝酸鹽[34]。此外,許多硝酸鹽轉運蛋白除運輸硝酸鹽外,還常常充當硝態氮的信號分子感受器,介導相關信號的傳遞工作[35]。AtNPF6.3/AtNRT1.1突變后不再具有轉運硝酸鹽的能力,但仍具有傳遞硝酸鹽信號的作用,表明其同時具有信號分子的功能[36]。酵母功能互補結果表明,CmNRT3不能直接參與吸收或轉運硝酸鹽,推測其可能以氮信號分子感受器的形式參與外生菌根硝酸鹽吸收。在未接種的對照根中表皮細胞的根毛往往是根感受氮信號以及硝酸鹽吸收的主要部位,qRT-PCR結果以及啟動子分析分別證明了CmNRT3在未接種的板栗對照根中有表達,且在表皮細胞表達量最高。在形成菌根后,植物氮吸收途徑不再局限于根毛,CmNRT3在苜蓿未接種根系及叢枝菌根中的表達模式也發生了相應的改變。在苜蓿叢枝菌根研究中,感受磷信號的SPX1和SPX3在未接種的對照根和叢枝菌根中的表達模式也發生了變化,在未接種的對照根中均勻表達,但在形成叢枝菌根后在叢枝細胞中特異表達[37],這與本研究的結果一致。
4 結 論
筆者通過轉錄組數據分析及實時熒光定量PCR驗證篩選出了在外生菌根中高度表達的硝酸鹽轉運蛋白基因CmNRT3。通過組織學定位發現,板栗、苜蓿非菌根的表皮細胞中檢測到CmNRT3啟動子的GUS信號;在苜蓿菌根中,CmNRT3僅在含叢枝的細胞中特異性表達。亞細胞定位結果表明,CmNRT3在煙草葉片的細胞膜上具有活性,是膜轉運蛋白;在苜蓿中主要在含叢枝的細胞中表達并定位于叢枝圍膜上。酵母功能互補驗證表明,轉化CmNRT3基因的缺陷型多形漢遜酵母突變體仍不能生長,說明該基因不具備運輸NO3-的能力。
參考文獻References:
[1] SHI J C,WANG X L,WANG E T. Mycorrhizal symbiosis in plant growth and stress adaptation:From genes to ecosystems[J]. Annual Review of Plant Biology,2023,74:569-607.
[2] VAN DER HEIJDEN M G A,MARTIN F M,SELOSSE M A,SANDERS I R. Mycorrhizal ecology and evolution:The past,the present,and the future[J]. New Phytologist,2015,205(4):1406-1423.
[3] BONFANTE P,GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nature Communications,2010,1:48.
[4] TEDERSOO L,BAHRAM M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes[J]. Biological Reviews of the Cambridge Philosophical Society,2019,94(5):1857-1880.
[5] KUMAR S,KUMAR S,MOHAPATRA T. Interaction between macro- and micro-nutrients in plants[J]. Frontiers in Plant Science,2021,12:665583.
[6] KOEGEL S,AIT LAHMIDI N,ARNOULD C,CHATAGNIER O,WALDER F,INEICHEN K,BOLLER T,WIPF D,WIEMKEN A,COURTY P E. The family of ammonium transporters (AMT) in Sorghum bicolor:Two AMT members are induced locally,but not systemically in roots colonized by arbuscular mycorrhizal fungi[J]. New Phytologist,2013,198(3):853-865.
[7] CHEN A Q,GU M,WANG S S,CHEN J D,XU G H. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis[J]. Seminars in Cell amp; Developmental Biology,2018,74:80-88.
[8] HESTRIN R,HAMMER E C,MUELLER C W,LEHMANN J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition[J]. Communications Biology,2019,2:233.
[9] WANG Y Y,CHENG Y H,CHEN K E,TSAY Y F. Nitrate transport,signaling,and use efficiency[J]. Annual Review of Plant Biology,2018,69:85-122.
[10] FAN X R,NAZ M,FAN X R,XUAN W,MILLER A J,XU G H. Plant nitrate transporters:From gene function to application[J]. Journal of Experimental Botany,2017,68(10):2463-2475.
[11] LéRAN S,VARALA K,BOYER J C,CHIURAZZI M,CRAWFORD N,DANIEL-VEDELE F,DAVID L,DICKSTEIN R,FERNANDEZ E,FORDE B,GASSMANN W,GEIGER D,GOJON A,GONG J M,HALKIER B A,HARRIS J M,HEDRICH R,LIMAMI A M,RENTSCH D,SEO M,TSAY Y F,ZHANG M Y,CORUZZI G,LACOMBE B. A unified nomenclature of nitrate transporter 1/peptide transporter family members in plants[J]. Trends in Plant Science,2014,19(1):5-9.
[12] SUGIURA M,GEORGESCU M N,TAKAHASHI M. A nitrite transporter associated with nitrite uptake by higher plant chloroplasts[J]. Plant amp; Cell Physiology,2007,48(7):1022-1035.
[13] KOMAROVA N Y,THOR K,GUBLER A,MEIER S,DIETRICH D,WEICHERT A,SUTER GROTEMEYER M,TEGEDER M,RENTSCH D. AtPTR1 and AtPTR5 transport dipeptides in planta[J]. Plant Physiology,2008,148(2):856-869.
[14] VON WITTGENSTEIN N J J B,LE C H,HAWKINS B J,EHLTING J. Evolutionary classification of ammonium,nitrate,and peptide transporters in land plants[J]. BMC Evolutionary Biology,2014,14:11.
[15] 李贏. 大麥NRT2/3基因家族分析及其功能驗證[D]. 揚州:揚州大學,2019.
LI Ying. Genome-wide analysis and functional identification of NRT2/3 gene family in barley[D]. Yangzhou:Yangzhou University,2019.
[16] HILDEBRANDT U,SCHMELZER E,BOTHE H. Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus[J]. Physiologia Plantarum,2002,115(1):125-136.
[17] HOHNJEC N,VIEWEG M F,PüHLER A,BECKER A,KüSTER H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza[J]. Plant Physiology,2005,137(4):1283-1301.
[18] WANG S S,CHEN A Q,XIE K,YANG X F,LUO Z Z,CHEN J D,ZENG D C,REN Y H,YANG C F,WANG L X,FENG H M,LóPEZ-ARREDONDO D L,HERRERA-ESTRELLA L R,XU G H. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(28):16649-16659.
[19] SA G,YAO J,DENG C,LIU J,ZHANG Y N,ZHU Z M,ZHANG Y H,MA X J,ZHAO R,LIN S Z,LU C F,POLLE A,CHEN S L. Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net[J]. New Phytologist,2019,222(4):1951-1964.
[20] 劉帥,陳良珂,房克鳳,楊瑞,邢宇,曹慶芹,秦嶺. 板栗種子淀粉體發育的掃描電鏡觀察[J]. 電子顯微學報,2015,34(4):346-350.
LIU Shuai,CHEN Liangke,FANG Kefeng,YANG Rui,XING Yu,CAO Qingqin,QIN Ling. Observation of amyloplast development in chestnut seed by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society,2015,34(4):346-350.
[21] 趙彥華. 板栗良種資源[J]. 果樹資源學報,2020,1(6):91-94.
ZHAO Yanhua. Chestnut seed resources[J]. Journal of Fruit Resources,2020,1(6):91-94.
[22] 秦嶺,徐踐,馬萱,苑虎,鄭來友,王有智. 板栗共生菌根真菌種類及其發生規律的研究[J]. 北京農學院學報,1995,10(1):71-76.
QIN Ling,XU Jian,MA Xuan,YUAN Hu,ZHENG Laiyou,WANG Youzhi. Research on symbiotical fungi species and ectomycorrhizae occurrence of chestnut (Castanea mollissima BL.)[J]. Journal of Beijing University of Agriculture,1995,10(1):71-76.
[23] 王騰. 板栗兩種菌根形態的鑒定及Pht1家族基因的挖掘與表達分析[D]. 北京:北京農學院,2017.
WANG Teng. Identification of two types of mycorrhizas and expression profiles of Pht1 gene family in mycorrhizal Castanea mollissima Blume.[D]. Beijing:Beijing University of Agriculture,2017.
[24] 李光棟. 板栗田間外生菌根轉錄組分析及共生相關轉運蛋白基因挖掘[D]. 北京:北京農學院,2020.
LI Guangdong. Transcriptome analysis on ectomycorrhiza of Castanea mollissima revealed symbiotic related nutrient transporters[D]. Beijing:Beijing University of Agriculture,2020.
[25] 安劍勇. 柑橘菌根比較轉錄組學分析及菌根共生寄主糖輸出轉運蛋白SWEET1b的功能鑒定[D]. 武漢:華中農業大學,2018.
AN Jianyong. Comparative transcriptome analysis of citrus AM symbiosis and functional characterization of AM-host plant sugar efflux transporter SWEET1b[D]. Wuhan:Huazhong Agricultural University,2018.
[26] MACHíN F,MEDINA B,NAVARRO F J,PéREZ M D,VEENHUIS M,TEJERA P,LORENZO H,LANCHA A N,SIVERIO J M. The role of Ynt1 in nitrate and nitrite transport in the yeast Hansenula polymorpha[J]. Yeast,2004,21(3):265-276.
[27] SIVERIO J M. Assimilation of nitrate by yeasts[J]. FEMS Microbiology Reviews,2002,26(3):277-284.
[28] 張辰明. 水稻OsNAR2.1參與硝酸鹽調控根系生長的機制[D]. 南京:南京農業大學,2011.
ZHANG Chenming. The rice OsNAR2.1 participates the regulating root growth by nitrate[D]. Nanjing:Nanjing Agricultural University,2011.
[29] LI H C,GE Y Y,ZHANG Z Y,ZHANG H L,WANG Y Y,WANG M D,ZHAO X,YAN J D,LI Q,QIN L,CAO Q Q,BISSELING T. Arbuscular mycorrhizal conserved genes are recruited for ectomycorrhizal symbiosis[J]. New Phytologist,2024,242(5):1860-1864.
[30] LOTH-PEREDA V,ORSINI E,COURTY P E,LOTA F,KOHLER A,DISS L,BLAUDEZ D,CHALOT M,NEHLS U,BUCHER M,MARTIN F. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa[J]. Plant Physiology,2011,156(4):2141-2154.
[31] HARRISON M J,DEWBRE G R,LIU J Y. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi[J]. The Plant Cell,2002,14(10):2413-2429.
[32] KOBAE Y,TAMURA Y,TAKAI S,BANBA M R,HATA S. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean[J]. Plant amp; Cell Physiology,2010,51(9):1411-1415.
[33] KOTUR Z,MACKENZIE N,RAMESH S,TYERMAN S D,KAISER B N,GLASS A D M. Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1[J]. New Phytologist,2012,194(3):724-731.
[34] YAN M,FAN X R,FENG H M,MILLER A J,SHEN Q R,XU G H. Rice OsNAR2.1 interacts with OsNRT2.1,OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges[J]. Plant,Cell amp; Environment,2011,34(8):1360-1372.
[35] XU G H,FAN X R,MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology,2012,63:153-182.
[36] HO C H,LIN S H,HU H C,TSAY Y F. CHL1 functions as a nitrate sensor in plants[J]. Cell,2009,138(6):1184-1194.
[37] WANG P,SNIJDERS R,KOHLEN W,LIU J Y,BISSELING T,LIMPENS E. Medicago SPX1 and SPX3 regulate phosphate homeostasis,mycorrhizal colonization,and arbuscule degradation[J]. The Plant Cell,2021,33(11):3470-3486.