










摘" " 要:【目的】同源結構域-亮氨酸拉鏈(HD-Zip)轉錄因子參與多種植物的非生物脅迫響應過程。然而,在枇杷中,HD-Zip I基因家族尚未被鑒定。【方法】利用生物信息學方法對全基因組范圍內枇杷HD-Zip I基因家族成員進行鑒定和綜合分析,通過qRT-PCR法分析基因家族成員在枇杷不同組織和干旱脅迫下的表達特征。【結果】在枇杷基因組中篩選出20個HD-Zip I家族成員。共線性分析結果發現了3對串聯復制序列和22對片段復制序列,表明串聯復制和片段復制可能促進了枇杷HD-Zip I基因家族的擴張。蛋白序列比對分析表明,所有的HD-Zip I家族成員均具有高度保守的HD和Zip結構域。系統發育分析表明,枇杷HD-Zip I家族可以分為7個分支。HD-Zip I各基因在枇杷不同組織中的表達模式有所差異。啟動子序列分析表明,HD-Zip I家族成員的啟動子上含有多個與干旱脅迫和脅迫相關激素信號響應的順式作用元件。干旱處理能夠誘導EjHB9、EjHB10、EjHB17、EjHB18和EjHB20在葉片中的表達顯著上調,預示著這些基因參與枇杷對干旱脅迫的響應。【結論】鑒定出5個受干旱脅迫顯著誘導表達的枇杷HD-Zip I基因,為進一步研究HD-Zip I基因在響應枇杷干旱脅迫中的分子功能提供理論依據。
關鍵詞:枇杷;HD-Zip I轉錄因子;全基因組鑒定;表達分析
中圖分類號:S667.3 文獻標志碼:A 文章編號:1009-9980(2024)10-2025-13
Genome-wide identification and expression pattern analysis of HD-Zip Ⅰ transcription factor family in loquat
ZHAO Shuang1, 2, ZHU Jingwen1, CHEN Tiantian1, WANG Pengkai1, QI Hongli2, WANG Huakun2, YOU Weizhong2*
(1Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, Jiangsu, China; 2Jiangsu Taihu Evergreen Fruit Tree Technology Promotion Center, Suzhou, 215107, Jiangsu, China)
Abstract: 【Objective】 Homologous structural domain-leucine zip (HD-Zip) transcription factors are involved in a variety of plant abiotic stress response processes. However, the HD-Zip I gene family has not been identified in loquat. 【Methods】 A genome-wide identification and analysis of the loquat HD-Zip Ⅰ transcription factor were carried out using bioinformatic methods for identification. The expression patterns of HD-Zip I family members in different tissues and by various drought treatments were examined by qPCR. 【Results】 A total of 20 putative loquat HD-Zip I family members were identified by searching the Big Seven Stars loquat genome database. The HD-Zip I members were further named EjHB1-EjHB20 according to their positions on 10 different chromosomes. We performed covariance analysis within the loquat genome and found 25 duplicate gene pairs in the HD-Zip I family, including 3 tandem duplicate gene pairs and 22 fragment duplicate gene pairs. The nucleotide sequence identity of the HD-Zip I duplicate pairs ranged from 42.04% to 93.71%, and the Ka/Ks ratios ranged from 0.08 to 0.43. To further investigate the phylogenetic relationships among HD-Zip I family members in different plant species, phylogenetic trees were constructed for HD-Zip I protein sequences in loquat, apple, Arabidopsis thaliana and rice. The HD-Zip I proteins were classified into nine clades, namely α, β1, β2, γ, δ, ε, φ1, φ2 and ζ. Among them, the φ1 and ζ clades contained only the family members of Arabidopsis thaliana and rice, respectively, and were not clustered with the HD-Zip I genes of apple and loquat. The members of the loquat HD-Zip I clades clustered closer to the apple homologues and further away from the rice homologues. In addition, loquat, apple, Arabidopsis and rice had the most members in the α clade, followed by the γ clade. Multiple sequence comparison of 20 loquat HD-Zip I proteins using DNAMAN software revealed that all HD-Zip I proteins had HD and Zip conserved structural domains. To further investigate the relationship between loquat HD-Zip I proteins, we constructed a phylogenetic tree of all loquat HD-Zip I protein sequences and analysed their gene structures and motifs. Similar to the results of the phylogenetic analysis described above, the loquat HD-Zip I gene family was divided into seven clades: α, β1, β2, γ, δ, ε and φ2. Since the intron-exon structure of genes played a crucial role in the evolution of multigene families, we examined the intron-exon structures of 20 loquat HD-Zip I genes to better understand their structural evolution. The γ clade members had one intron, the β1 clade members had three introns, and the other branch members contained two introns. Combined with phylogenetic analysis, we found that genes in the same branch had similar intron-exon structures, whereas the intron-exon structures of different branches differed. To gain insight into the differences and functions of the loquat HD-Zip I protein, we used the MEME programme to identify its motifs. We identified 10 motifs ranging from 20 to 50 residues in length. All predicted motifs were identified only once in each HD-Zip I protein. Except for motif 1, which was present in all HD-Zip I proteins, the remaining nine motifs were only present in certain branches. Tissue expression analysis showed that HD-Zip Ⅰ was found in loquat roots, stems, leaves, flowers and fruits. The results showed that EjHB3, EjHB6, EjHB8, EjHB15 and EjHB20 were mainly expressed in leaves, and EjHB9, EjHB16 and EjHB18 were mainly expressed in roots. Most members had high expression levels in stems and low expression levels in fruits. In addition, EjHB11, EjHB12 and EjHB13 were expressed at higher levels in flowers than in other tissues, while other members were also generally expressed at lower levels in flowers. Cis-acting element analysis revealed that most HD-Zip I promoters contained ABRE elements, which were normally involved in ABA-related responses. And HD-Zip I promoters contained drought-inducible elements (MBS), as well as defence and stress-responsive elements (TC-rich repeats). In addition, there were a number of cis-elements associated with stress response and stress-related hormone signalling, such as MYB, MYC, SA and MeJA. The HD-Zip I family contained cis-acting elements associated with drought stress. To identify the role of HD-Zip I in the regulation of drought tolerance in loquat, we analysed the expression of 20 HD-Zip I genes under drought stress. It was shown that the expression levels of EjHB9, EjHB10, EjHB17 and EjHB18 in the γ-clade and EjHB20 in the ε-branch significantly increased after drought treatment, whereas EjHB2 and EjHB19 in the β2-branch were significantly down-regulated by drought. 【Conclusion】 In this study, 20 members of the HD-Zip I transcription factor family were identified from the complete loquat protein sequence, and promoter prediction analysis indicated that they responded to drought stress. Expression analysis after drought treatment also confirmed that loquat HD-Zip I transcription factors may play an important role in drought stress response. The present study may provide a reference for the future analysis of the mechanism of loquat HD-Zip I genes and the development of drought-resistant breeding in loquat.
Key words: Loquat; HD-Zip I transcription factor; Genome-wide identification; Expression analysis
干旱脅迫是最嚴重的環境限制因素之一,影響植物的地理分布和生長,極大地限制了作物的產量[1]。轉錄因子(TF)在植物響應逆境脅迫過程中發揮著重要的調控作用,被認為是作物耐旱性遺傳改良的靶標[2-3]。同源結構域-亮氨酸拉鏈(HD-Zip)轉錄因子是植物中所特有的,在植物逆境信號轉導及適應中發揮著重要作用[4-6]。所有HD-Zip轉錄因子都含有2個結構域,HD同源結構域和Zip結構域,根據其基因結構和功能可將其分為4個亞家族[5]。很多證據表明,HD-Zip I轉錄因子廣泛參與植物對干旱脅迫的響應[6-8],在番茄中過表達HD-Zip I轉錄因子ATHB7可提高轉基因番茄的耐旱性[9];過表達玉米HD-Zip I基因ZmHDZ4和ZmHDZ10可降低轉基因水稻的相對電導率(REL)和丙二醛(MDA)含量,從而提高轉基因水稻的抗旱性[10-11];此外,HD-Zip I轉錄因子ZmHDZ9通過調控脫落酸和木質素積累來提高玉米的抗旱性[12]。
枇杷(Eriobotrya japonica)是多年生常綠小喬木,秋冬開花,初夏成熟,果實酸甜適度,風味獨特,是中國重要的亞熱帶水果之一[13]。但枇杷根系分布淺,須根稀少,對水分要求較高,而中國的枇杷園大多建在灌溉條件差的山坡上,特別容易受干旱危害,因此,季節性干旱嚴重影響了枇杷的生長發育、果實產量和品質[14-16]。目前有關枇杷耐旱性的研究相對較少,且針對枇杷HD-Zip I轉錄因子的系統研究更是鮮見報道。鑒于HD-Zip I轉錄因子在植物中的重要意義,筆者在本研究中利用Jiang等[17]發布的大七星枇杷參考基因組,對枇杷HD-Zip I轉錄因子家族的基因結構、蛋白結構域、共線性關系及系統發育進行分析,并通過qPCR檢測該家族成員在不同組織中及干旱處理下的表達模式,為進一步研究其在干旱下的生理功能與作用機制奠定基礎,從而為開展枇杷抗旱基因工程育種提供參考。
1 材料和方法
1.1 植物材料及試驗處理
試驗所用植物材料的生長地點位于江蘇省蘇州市蘇州農業職業技術學院東山校區(120°40′ E,31°08′ N)。干旱處理所用材料來源于江蘇省珍稀樹種白沙枇杷種質資源保護與培育長期科研基地的2年生白玉枇杷嫁接苗。將長勢一致且種植在具有相同質量營養基質的2年生白玉枇杷苗,置于蘇州農業職業技術學院東山校區的玻璃溫室中進行干旱處理。干旱處理開始前,對枇杷植株充分灌溉。澆水后計為干旱處理第0天,并收集枇杷葉片樣品,然后中止澆水,于處理第3、6、9和12天收集枇杷葉片樣品,并用于枇杷HD-Zip I基因干旱處理下的表達分析。正常澆水的組培生根多年生冠玉枇杷的側根、莖、成熟葉片、花和成熟的果實樣品用于枇杷HD-Zip I基因組織特異性表達分析。采收的樣品用液氮速凍,儲存在-80 ℃的冰箱,然后用于提取RNA。
1.2 RNA提取和cDNA合成
根據制造商的試劑盒說明書,使用RNAprep Pure多糖多酚植物總RNA提取試劑盒(TIANGEN)提取枇杷葉片的總RNA。根據制造商的試劑盒說明書,使用PrimeScript第一鏈cDNA合成試劑盒(TaKaRa,日本)反轉錄合成單鏈cDNA。
1.3 枇杷HD-Zip Ⅰ家族成員的序列篩選
從TAIR網站(http://www.arabidopsis.org/)下載擬南芥中HD-Zip I基因序列。擬南芥中的HD-Zip I蛋白被用作大七星枇杷基因組數據庫進行BLASTP檢索的查詢對象。將屬于枇杷中HD-Zip I基因家族的最佳檢索結果提交到保守結構域數據庫(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)和SMART(http://smart. emblheidelberg.de/),以檢查HD-Zip結構域的存在和完整性。
1.4 枇杷HD-Zip I基因序列比對、基因結構和保守基序分析
利用DNAMAN軟件對枇杷HD-Zip I家族成員的氨基酸序列進行多序列比對。利用在線Gene Structure Display Server(GSDS,http://gsds.cbi.pku.edu.ch)程序構建HD-Zip I基因家族的外顯子-內含子的結構。利用MEME程序(http://meme-suite.org/tools/meme)預測出枇杷HD-Zip I蛋白的保守基序(Motif),最優基序寬度設置為6~50個氨基酸,程序設置為搜索10個Motif。
1.5 共線性和系統發育分析
使用MCScanX對HD-Zip I家族成員進行共線性分析,并使用TBtools對HD-Zip I基因的共線性關系進行可視化[18-19]。利用TBtools軟件計算Ks(同義替換率)和Ka(非同義替代率)。使用鄰接法在MEGA 10版本中構建系統發育樹,bootstrap值1000。
1.6 啟動子中的順式作用元件分析
為了檢測枇杷HD-Zip I基因啟動子中可能存在的順式作用元件,筆者根據枇杷基因組序列下載基因起始密碼子上游2000 bp的序列。利用Plant CARE(http://bioinformatics.psb.ugent.be/beg/tools/plantcare)預測枇杷HD-Zip I基因啟動子中潛在的順式作用元件。
1.7 基因的表達分析
根據枇杷HD-Zip I基因的預測序列設計了特定引物(表1),用于表達分析。通過熒光實時定量PCR(qRT-PCR)方法檢測枇杷HD-Zip I基因在不同組織中和干旱處理下的表達情況,所用儀器為:Bio-Rad CFX Opus 96(Bio-Rad),qRT-PCR的反應體系和反應程序根據熒光實時定量染料說明書進行設置。EjActin被用作內源對照基因來計算目的基因的△Ct值[20]。使用2???CT方法計算相對表達量[21]。使用熔解曲線確定擴增片段的特異性。
1.8 數據分析
使用IBM SPSS Statistics 17.0軟件中的單因素方差分析(one-way analysis of variance,ANOVA)進行試驗數據的統計分析。枇杷HD-Zip I在不同組織中的相對表達量采用Tukey多重比較分析法分析(p<0.05)。
2 結果與分析
2.1 枇杷HD-Zip I家族成員鑒定
通過對大七星枇杷基因組數據庫的搜索,共鑒定到20個假定枇杷HD-Zip I家族成員,檢測了這些候選蛋白序列中HD和Zip結合結構域的存在和完整性,共有20個基因被確認為HD-Zip I家族成員,并根據HD-Zip I成員在染色體上的位置對其進行命名(表2)。HD-Zip I蛋白的長度在215~333個氨基酸(aa)之間,分子質量在24.82~37.50 kDa之間,理論等電點為4.51~7.93。
2.2 枇杷HD-Zip I基因的共線性和系統發育分析
如圖1所示,HD-Zip I家族基因在枇杷10條染色體上隨機分布。4個HD-Zip Ⅰ家族成員位于第3條染色體上,3個HD-Zip I家族成員位于第16條染色體上,2個HD-Zip I家族成員位于第7、8、10、11和13染色體上,1個HD-Zip I家族成員位于第14、15、和17染色體上。筆者在枇杷基因組內進行了共線性分析,發現HD-Zip I家族中存在25個重復基因對,其中3對串聯復制基因和22對片段復制基因(圖1)。HD-Zip I重復對的核苷酸序列一致性在38.11%~93.71%之間,Ka/Ks比值在0.08~0.43之間(表3)。這些結果表明,不同基因之間的差異主要是由純化選擇驅動的。重復對的Ks值變化范圍為0.13~2.30 (表3),表明基因對兩兩之間的進化速率不同。
表3" " 枇杷HD-Zip I家族中鑒定的基因對
Table 3" " HD-Zip Ⅰ duplicates identified in loquat
[重復對
Duplicate pair 一致性
Identity/% 非同義
替代率
Ka 同義替
換率
Ks 非同義替代
率/同義替換率
Ka/Ks EjHB1/EjHB16 87.64 0.05 0.22 0.24 EjHB2/EjHB19 88.18 0.05 0.35 0.15 EjHB4/EjHB5 49.40 0.34 2.02 0.17 EjHB4/EjHB7 50.15 0.34 2.16 0.16 EjHB4/EjHB15 90.43 0.05 0.16 0.32 EjHB5/EjHB7 87.69 0.05 0.25 0.19 EjHB5/EjHB15 50.60 0.33 1.98 0.17 EjHB6/EjHB8 93.71 0.02 0.23 0.08 EjHB6/EjHB12 53.70 0.25 2.18 0.12 EjHB6/EjHB13 53.99 0.25 1.91 0.13 EjHB7/EjHB15 51.03 0.33 2.22 0.15 EjHB8/EjHB12 53.33 0.26 2.25 0.11 EjHB8/EjHB13 51.58 0.25 2.02 0.13 EjHB9/EjHB10 38.11 0.47 2.30 0.20 EjHB9/EjHB17 38.27 0.46 1.47 0.31 EjHB9/EjHB18 87.24 0.06 0.13 0.43 EjHB10/EjHB17 86.44 0.06 0.26 0.22 EjHB10/EjHB18 40.65 0.46 2.26 0.20 EjHB11/EjHB14 89.55 0.04 0.19 0.24 EjHB12/EjHB13 93.11 0.03 0.20 0.13 EjHB17/EjHB18 42.04 0.46 2.17 0.21 ]
為了進一步研究不同植物物種中HD-Zip I家族成員之間的系統發育關系,對枇杷、蘋果、擬南芥和水稻中的HD-Zip I蛋白序列構建了系統發育樹(圖2)。HD-Zip I蛋白被分為9個分支,分別是α,β1,β2,γ,δ,ε,φ1,φ2和ζ,其中φ1分支和ζ分支分別只含有擬南芥和水稻的家族成員,與蘋果、枇杷的HD-Zip I基因不聚在一起。枇杷HD-Zip I各分支成員與蘋果的同系物聚集更近,與水稻的同系物相距較遠。另外,枇杷、蘋果、擬南芥和水稻在α分支的成員最多,其次是γ分支。
2.3 枇杷HD-Zip I蛋白的多重序列比對、基因結構和Motif分析
如圖3所示,使用DNAMAN軟件對枇杷20個HD-Zip Ⅰ蛋白進行多重序列比對,發現所有的HD-Zip I蛋白都具有HD和Zip保守結構域。為了進一步研究枇杷HD-Zip I蛋白之間的關系,構建了所有枇杷HD-Zip Ⅰ蛋白序列的系統發育樹,并分析了他們的基因結構和Motif(圖4)。與上述系統發育分析的結果相似,枇杷HD-Zip I基因家族被分為7個分支:α,β1,β2,γ,δ,ε和φ2(圖4-A)。由于基因的內含子-外顯子結構在多基因家族的進化中起至關重要的作用[22],筆者研究了20個枇杷HD-Zip I基因的內含子-外顯子結構,以更好地了解其結構進化。γ分支成員有1個內含子,β1分支成員有3個內含子,其他分支成員含有2個內含子(圖4-B)。結合系統進化分析,筆者發現同一分支的基因具有相似的內含子-外顯子結構,而不同分支的內含子-外顯子結構存在差異。這一結果表明,基因結構是枇杷HD-Zip I家族基因進化的重要組成部分。
為了深入了解枇杷HD-Zip I蛋白的差異和功能,筆者對其Motif進行了鑒定。筆者鑒定了10個Motif,寬度從20到50個殘基不等(表4)。所有預測的Motif在每個HD-Zip I蛋白中僅識別一次(圖4-C)。除Motif 1在所有HD-Zip I蛋白中都存在外,其余9個Motif只存在于特定的分支中。例如,Motif 4只存在于α分支中,Motif 10只存在于β1分支中。這與枇杷HD-Zip I蛋白的系統發育一致,表明來自同一分支的HD-Zip I具有相似的氨基酸序列和相似的Motif,暗示他們也具有相似的功能。
2.4 枇杷HD-Zip I家族成員在不同組織中的表達
為了研究HD-Zip I家族成員在枇杷不同組織中的表達模式,對HD-Zip Ⅰ在枇杷根、莖、葉、花和果實中的表達進行分析。結果表明,EjHB3、EjHB6、EjHB8、EjHB15和EjHB20主要在葉中表達,EjHB9、EjHB16和EjHB18主要在根中表達。多數成員在莖中具有較高的表達水平,在果實中具有較低的表達水平。此外,EjHB10、EjHB11、EjHB12、EjHB13、EjHB14和EjHB17在花中的表達量高于其他組織,而其他成員在花中的表達量也普遍較低(圖5)。
2.5 枇杷HD-Zip I家族成員啟動子分析和在干旱處理下的表達分析
啟動子順式調控元件對調控基因表達具有重要意義。通過PlantCARE數據庫(圖6)鑒定了HD-Zip I啟動子中推定的順式元件(從假定翻譯起始位點上游<2 kb),并鑒定了與脅迫和激素反應相關的順式作用元件。大多數HD-Zip I啟動子含有ABRE元件,該元件通常參與ABA相關的反應。啟動子中還含有干旱誘導元件(MBS)、防御和脅迫響應元件(TC-rich repeats)。此外,還有許多順式元件與脅迫和脅迫相關激素信號的響應有關,如MYB、MYC、SA、MeJA。MBS和ABRE等干旱響應相關順式元件的存在,表明HD-Zip I可能在枇杷干旱脅迫響應中發揮重要作用。
HD-Zip I家族包含與干旱脅迫相關的順式作用元件。為了鑒定HD-Zip I在枇杷抗旱性調控中發揮的作用,筆者分析了干旱脅迫下20個HD-Zip I基因的表達情況(圖7)。研究表明,干旱處理后,γ分支的EjHB9、EjHB10、EjHB17、EjHB18和ε分支的EjHB20的表達水平大幅度升高,β2分支的EjHB2和EjHB19受干旱影響顯著下調。
3 討 論
HD-Zip I家族的鑒定和全基因組分析已經在各種物種中進行,并且HD-Zip I基因的數量在物種間差異顯著。在番茄[23]、梨[24]、葡萄[25]、毛竹[26]、木薯[27]、水稻[28]和小麥[29]中分別鑒定出22、18、11、17、23、14和20個HD-Zip I基因。筆者在本研究中對枇杷中的HD-Zip I基因進行了全基因組普查,共鑒定出20個HD-Zip I家族基因,包括7個分支。與擬南芥等其他植物相比,HD-Zip I家族成員在枇杷中較為豐富。
串聯復制和片段復制是基因家族擴張的主要機制。基因復制事件在不同物種中產生了許多旁系同源基因對,因此在基因家族的快速擴張和進化中發揮了重要作用[30]。本研究結果表明,片段重復是枇杷HD-Zip I家族擴張的主要方式。此外,22對HD-Zip I重復對的Ka/Ks比值表明,枇杷HD-Zip I基因家族在進化過程中主要經歷了純化選擇。
研究表明,擬南芥中的HD-Zip I基因被劃分為8個分支(α,β1,β2,γ,δ,ε,φ1和φ2)[28],在水稻、玉米、大豆和小麥中還含有ζ分支[28-29]。在本研究中,系統發育分析表明,枇杷的20個HD-Zip I蛋白被分為7個分支,不含有φ1和ζ分支,表明枇杷在進化過程中失去了這兩個分支的成員。相同的分支擁有相似的內含子-外顯子組織結構。結合系統發育樹,內含子-外顯子結構分析使筆者能夠進一步區分屬于不同分支的基因。但保守基序分析發現,β2和φ2分支中的成員的保守基序存在一定差異。
植物通過誘導脅迫相關基因表達來適應環境脅迫,如干旱,許多HD-Zip I家族基因的表達已被證明受干旱脅迫調控,并在干旱脅迫響應中扮演重要的角色[31]。筆者對枇杷HD-Zip I家族基因的啟動子順式作用元件的分析發現,枇杷HD-Zip I基因的啟動子中含有多個與干旱脅迫相關的順式作用元件,因此筆者研究了枇杷HD-Zip I基因在干旱脅迫響應中的表達模式。結果表明,大多數枇杷HD-Zip I基因響應干旱脅迫,且γ分支成員在干旱脅迫下被強烈誘導,這一結果與擬南芥、小麥、桑樹和蘋果中該家族基因的研究結果相同[32-34]。研究發現,HD-Zip I轉錄因子γ分支成員AtHB12受干旱脅迫誘導表達[32],且AtHB12過表達增強了轉基因擬南芥對干旱脅迫的耐受性[35]。HD-Zip I轉錄因子γ分支成員MdHB-7和MdHB7-like通過調節蘋果的氣孔密度提高了轉基因蘋果植株對干旱的適應性和水分利用效率[36-37]。這表明該分支的成員可能在干旱脅迫響應中發揮重要作用。
4 結 論
首次從枇杷全基因組中鑒定了HD-Zip I轉錄因子,啟動子預測分析表明HD-Zip I轉錄因子響應干旱脅迫。對HD-Zip I家族基因在干旱處理后的表達進行了分析,結果表明,EjHB9、EjHB10、EjHB17、EjHB18和EjHB20在干旱脅迫下表達量均顯著上調,因此推測這些基因可能在干旱脅迫響應中發揮重要作用。
參考文獻 References:
[1] QIN T,TIAN Q Z,WANG G F,XIONG L M. LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-domain ABA-related proteins in Arabidopsis[J]. Molecular Plant,2019,12(9):1243-1258.
[2] CENTURY K,REUBER T L,RATCLIFFE O J. Regulating the regulators:The future prospects for transcription-factor-based agricultural biotechnology products[J]. Plant Physiology,2008,147(1):20-29.
[3] MAO H D,LI S M,WANG Z X,CHENG X X,LI F F,MEI F M,CHEN N,KANG Z S. Regulatory changes in TaSNAC8-6A are associated with drought tolerance in wheat seedlings[J]. Plant Biotechnology Journal,2020,18(4):1078-1092.
[4] SCHENA M,DAVIS R W. HD-Zip proteins:Members of an Arabidopsis homeodomain protein superfamily[J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(9):3894-3898.
[5] ARIEL F D,MANAVELLA P A,DEZAR C A,CHAN R L. The true story of the HD-Zip family[J]. Trends in Plant Science,2007,12(9):419-426.
[6] GONG S H,DING Y F,HU S S,DING L H,CHEN Z X,ZHU C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses[J]. Physiologia Plantarum,2019,167(4):516-525.
[7] 郝陸洋,張曉靜,高晨曦,張登峰,李永祥,李春輝,宋燕春,石云素,王天宇,劉旭洋,黎裕. 玉米HD-Zip轉錄因子基因Zmhdz6的克隆與功能分析[J]. 植物遺傳資源學報,2022,23(3):823-831.
HAO Luyang,ZHANG Xiaojing,GAO Chenxi,ZHANG Dengfeng,LI Yongxiang,LI Chunhui,SONG Yanchun,SHI Yunsu,WANG Tianyu,LIU Xuyang,LI Yu. Cloning and functional analysis of HD-Zip transcription factor gene Zmhdz6 in maize[J]. Journal of Plant Genetic Resources,2022,23(3):823-831.
[8] 胡景濤,李彥杰,段艷艷,阮宇,顧欣,肖國生. 桑樹HD-Zip Ⅰ亞家族基因的鑒定及表達分析[J]. 林業科學研究,2022,35(4):130-142.
HU Jingtao,LI Yanjie,DUAN Yanyan,RUAN Yu,GU Xin,XIAO Guosheng. Identification and expression analysis of the HD-Zip Ⅰ subfamily genes in mulberry[J]. Forest Research,2022,35(4):130-142.
[9] MISHRA K B,IANNACONE R,PETROZZA A,MISHRA A,ARMENTANO N,LA VECCHIA G,TRTíLEK M,CELLINI F,NEDBAL L. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission[J]. Plant Science,2012,182:79-86.
[10] ZHAO Y,MA Q,JIN X L,PENG X J,LIU J Y,DENG L,YAN H W,SHENG L,JIANG H Y,CHENG B J. A novel maize homeodomain-leucine zipper (HD-Zip) I gene,Zmhdz10,positively regulates drought and salt tolerance in both rice and Arabidopsis[J]. Plant amp; Cell Physiology,2014,55(6):1142-1156.
[11] WU J D,ZHOU W,GONG X F,CHENG B J. Expression of ZmHDZ4,a maize homeodomain-leucine zipper I gene,confers tolerance to drought stress in transgenic rice[J]. Plant Molecular Biology Reporter,2016,34(4):845-853.
[12] JIAO P,JIANG Z Z,MIAO M,WEI X T,WANG C L,LIU S Y,GUAN S Y,MA Y Y. Zmhdz9,an HD-Zip transcription factor,promotes drought stress resistance in maize by modulating ABA and lignin accumulation[J]. International Journal of Biological Macromolecules,2024,258:128849.
[13] 趙雙,尤偉忠,黃穎宏,郄紅麗. 基于主成分分析綜合評價23個白沙枇杷品種果實品質[J]. 中國南方果樹,2023,52(6):114-118.
ZHAO Shuang,YOU Weizhong,HUANG Yinghong,QIE Hongli. Comprehensive evaluation of fruit quality of 23 white flesh loquats based on principal component analysis[J]. South China Fruits,2023,52(6):114-118.
[14] 羅華建,劉星輝. 干旱對枇杷生長的影響[J]. 中國南方果樹,2004,33(3):26-27.
LUO Huajian,LIU Xinghui. The impact of drought on loquat growth[J]. South China Fruits,2004,33(3):26-27.
[15] 王劍毛,郭亞端,劉進平,王一迪,張燕. 干旱脅迫對“早鐘6號” 枇杷幼苗生長及生理特性的影響[J]. 中國南方果樹,2018,47(6):34-38.
WANG Jianmao,GUO Yaduan,LIU Jinping,WANG Yidi,ZHANG Yan. The effects of drought stress on the growth and physiological characteristics of “Zaozhong 6” loquat seedlings[J]. South China Fruits,2018,47(6):34-38.
[16] WANG D,CHEN Q Y,CHEN W W,GUO Q G,XIA Y,WANG S M,JING D L,LIANG G L. Physiological and transcription analyses reveal the regulatory mechanism of melatonin in inducing drought resistance in loquat (Eriobotrya japonica Lindl.) seedlings[J]. Environmental and Experimental Botany,2021,181:104291.
[17] JIANG S,AN H S,XU F J,ZHANG X Y. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome[J]. GigaScience,2020,9(3):giaa015.
[18] WANG Y P,TANG H B,DEBARRY J D,TAN X,LI J P,WANG X Y,LEE T H,JIN H Z,MARLER B,GUO H,KISSINGER J C,PATERSON A H. MCScanX:A toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research,2012,40(7):e49.
[19] ZHAO S,GAO H B,LUO J W,WANG H B,DONG Q L,WANG Y P,YANG K Y,MAO K,MA F W. Genome-wide analysis of the light-harvesting chlorophyll a/b-binding gene family in apple (Malus domestica) and functional characterization of MdLhcb4.3,which confers tolerance to drought and osmotic stress[J]. Plant Physiology and Biochemistry,2020,154:517-529.
[20] 李曉穎,徐紅霞,陳俊偉. 枇杷WRKY轉錄因子鑒定與表達分析[J]. 園藝學報,2019,46(5):939-954.
LI Xiaoying,XU Hongxia,CHEN Junwei. Identification and expression analysis of WRKY transcription factors in Eriobotrya japonica[J]. Acta Horticulturae Sinica,2019,46(5):939-954.
[21] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2???CT method[J]. Methods,2001,25(4):402-408.
[22] XU G X,GUO C C,SHAN H Y,KONG H Z. Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(4):1187-1192.
[23] ZHANG Z Z,CHEN X L,GUAN X,LIU Y,CHEN H Y,WANG T T,MOUEKOUBA L D O,LI J F,WANG A X. A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato[J]. Bioscience,Biotechnology,and Biochemistry,2014,78(8):1337-1349.
[24] WANG H,LIN J,LI X G,CHANG Y H. Genome-wide identification of pear HD-Zip gene family and expression patterns under stress induced by drought,salinity,and pathogen[J]. Acta Physiologiae Plantarum,2015,37(9):189.
[25] JIANG H Y,JIN J,LIU H,DONG Q,YAN H W,GAN D F,ZHANG W,ZHU S W. Genome-wide analysis of HD-Zip genes in grape (Vitis vinifera)[J]. Tree Genetics amp; Genomes,2014,11(1):827.
[26] CHEN D M,CHEN Z,WU M,WANG Y,WANG Y J,YAN H W,XIANG Y. Genome-wide identification and expression analysis of the HD-zip gene family in moso bamboo (Phyllostachys edulis)[J]. Journal of Plant Growth Regulation,2017,36(2):323-337.
[27] DING Z H,FU L L,YAN Y,TIE W W,XIA Z Q,WANG W Q,PENG M,HU W,ZHANG J M. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava[J]. PLoS One,2017,12(3):e0173043.
[28] AGALOU A,PURWANTOMO S,OVERN?S E,JOHANNESSON H,ZHU X Y,ESTIATI A,DE KAM R J,ENGSTR?M P,SLAMET-LOEDIN I H,ZHU Z,WANG M,XIONG L Z,MEIJER A H,OUWERKERK P B F. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant Molecular Biology,2008,66(1/2):87-103.
[29] YUE H,SHU D T,WANG M,XING G W,ZHAN H S,DU X H,SONG W N,NIE X J. Genome-wide identification and expression analysis of the HD-Zip gene family in wheat (Triticum aestivum L.)[J]. Genes,2018,9(2):70.
[30] CANNON S B,MITRA A,BAUMGARTEN A,YOUNG N D,MAY G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biology,2004,4:10.
[31] 關淑艷,魏小童,焦鵬,蔣振忠,曲靜,劉思言,馬義勇. HD-Zip Ⅰ轉錄因子在植物非生物脅迫中的研究進展[J]. 吉林農業大學學報,2022,44(2):127-134.
GUAN Shuyan,WEI Xiaotong,JIAO Peng,JIANG Zhenzhong,QU Jing,LIU Siyan,MA Yiyong. HD-Zip Ⅰ transcription factors in plant abiotic stress[J]. Journal of Jilin Agricultural University,2022,44(2):127-134.
[32] Ré D A,CAPELLA M,BONAVENTURE G,CHAN R L. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress[J]. BMC Plant Biology,2014,14:150.
[33] HARRIS J C,SORNARAJ P,TAYLOR M,BAZANOVA N,BAUMANN U,LOVELL B,LANGRIDGE P,LOPATO S,HRMOVA M. Molecular interactions of the γ-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit[J]. Plant Molecular Biology,2016,90(4/5):435-452.
[34] ZHAO S,GAO H B,JIA X M,WANG H B,KE M,MA F W. The HD-Zip I transcription factor MdHB-7 regulates drought tolerance in transgenic apple (Malus domestica)[J]. Environmental and Experimental Botany,2020,180:104246.
[35] ROMANI F,RIBONE P A,CAPELLA M,MIGUEL V N,CHAN R L. A matter of quantity:Common features in the drought response of transgenic plants overexpressing HD-Zip I transcription factors[J]. Plant Science,2016,251:139-154.
[36] ZHAO S,GAO H B,JIA X M,WEI J T,MAO K,MA F W. MdHB-7 regulates water use efficiency in transgenic apple (Malus domestica) under long-term moderate water deficit[J]. Frontiers in Plant Science,2021,12:740492.
[37] ZHAO S,GAO H B,JIA X M,ZHOU K,WANG H B,MAO K,MA F W. MdHB7-like confers drought tolerance and improves water-use efficiency through modulating stomatal density in apple (Malus domestica)[J]. Scientia Horticulturae,2022,294:110758.