






摘要: 考慮一類具強吸收項的擬線性拋物方程Cauchy問題, 由于強吸收項的作用, 該問題的解可以在有限時刻具有緊支集和發生熄滅. 首先, 利用比較原理, 通過構造合適的上解證明
該問題的解在某個時刻后具有一致的緊支集, 甚至還可以在任意正時刻后都具有一致的緊支集. 其次, 在一定條件下, 利用該問題的解在不同時刻的L1范數估計, 證明其在有限時刻發生熄滅.
關鍵詞: 擬線性拋物方程; 強吸收項; 緊支集; 熄滅
中圖分類號: O175.29 "文獻標志碼: A "文章編號: 1671-5489(2025)01-0001-08
Compact Supports and Extinction of Solutions to QuasilinearParabolic Equations with Strong Absorption Terms
LI Yanan, WANG Chunpeng
(College of Mathematics, Jilin University, Changchun 130012, China)
Abstract: We considered" the Cauchy problem of a class of quasilinear parabolic equations with strong absorption terms. Due to the effect of the strong absorption term,
the solution to the problem could" possess compact support and extinguish" at a finite time. Firstly, by using" the comparison principle and constructing suitable supersolutions,
it was proven that the solution possessed a uniform compact support after a certain time and even after any positive time. Secondly, under some conditions, it was proven that the solution extinguished at a finite time
by using the L1 norm estimates of the solution to the problem at different times.
Keywords: quasilinear parabolic equation; strong absorption term; compact support; extinction
收稿日期: 2024-12-06.
第一作者簡介: 李亞楠(1999—), 女, 漢族, 碩士研究生, 從事非線性擴散方程的研究, E-mail: yanan22@mails.jlu.edu.cn.
通信作者簡介: 王春朋(1975—), 男, 漢族, 博士, 教授, 博士生導師, 從事退化和混合型偏微分方程的研究, E-mail: wangcp@jlu.edu.cn.
基金項目: 吉林省自然科學基金面上項目(批準號: 20230101001JC).
0 引 言
參考文獻
[1] KAMIN S, PELETIER L A. Large Time Behaviour of Solutions of the Porous Media-Equation with Absorption [J]. Israel J Math, 1986, 55(2): 129-146.
[2] KAMIN S, UGHI M. On the Behaviour as t→∞ of the Solutions of the Cauchy
Problem for Certain Nonlinear Parabolic Equations [J]. J Math Anal Appl, 1987, 128(2): 456-469.
[3] KAMIN S, VéRON L. Existence and Uniqueness of the Very Singular Solution of
the Porous Media Equation with Absorption [J]. J Analyse Math, 1988, 51(1): 245-258.
[4] KAMIN S, PELETIER L A, VáZQUEZ J L. Classification of Singular Solutions of a Nonlinear Heat Equation[J]. Duke Math J, 1989, 58(3): 601-615.
[5] KWAK M. A Porous Media Equation with Absorption.Ⅰ.Long Time Behaviour [J]. J Math Anal Appl, 1998, 223(1): 96-110.
[6] LEONI G. On Very Singular Self-similar Solutions for the Porous Media Equation with Absorption [J]. Differential Integral Equations, 1997, 10(6): 1123-1140.
[7] PELETIER L A, TERMAN D. A Very Singular Solution of the Porous Media Equation with Absorption [J]. J Differential Equations, 1986, 65(3): 396-410.
[8] CHAVES M, VáZQUEZ J L, WALIAS M. Optimal Existence and Uniqueness in a Nonli
near Diffusion-Absorption Equation with Critical Exponents [J]. Proc Roy Soc Edinburgh: Sect A, 1997, 127(2): 217-242.
[9] MCLEOD J B, PELETIER L A, VáZQUEZ J L. Solutions
of a Nonlinear ODE Appearing in the Theory of Diffusion with Absorption [J]. Differential Integral Equations, 1991, 4(1): 1-14.
[10] KALASHNIKOV A S. The Propagation of Disturbances in Problems of Non-linear Hea
t Conduction with Absorption [J]. USSR Comput Math Math Phys, 1974, 14(4): 70-85.
[11] KALASHNIKOV A S. On the Dependence of Properties of Solutions of Parabolic Equat
ions in Unbounded Domains on the Behavior of the Coefficients at Infinity [J]. Math USSR Sb, 1986, 53(2): 399-410.
[12] ABDULLAEV U G. Instantaneous Shrinking of the Support
of Solutions to a Nonlinear Degenerate Parabolic Equation [J]. Mat Zametki, 1998, 63(3): 323-331.
[13] EVANS L C, KNERR B F. Instantaneous Shrinking of the
Support of Nonnegative Solutions to Certain Nonlinear Parabolic Equations and Variational Inequalities [J]. Illinois J Math, 1979, 23(1): 153-166.
[14] BELAUD Y. Time-Vanishing Properties of Solutions of
Some Degenerate Parabolic Equations with Strong Absorption [J]. Adv Nonlinear Stu, 2001, 1(2): 117-152.
[15] BELAUD Y, HELFFER B, VéRON L. Long-Time Vanishing Properties of Solutions of
Some Semilinear Parabolic Equations [J]. Ann Inst H Poincaré C Anal Non Linéaire, 2001, 18(1): 43-68.
[16] BELAUD Y, SHISHKOV A. Long-Time Extinction of Solutions of Some Semilinear Pa
rabolic Equations [J]. J Differential Equations, 2007, 238(1): 64-86.
[17] BELAUD Y, DíAZ J I. Abstract Results on the Finite Extinction Time Property:
Application to a Singular Parabolic Equation [J]. J Convex Anal, 2010, 17(3/4): 827-860.
[18] BELAUD Y, SHISHKOV A. Extinction in a Finite Time for Solutions of a Class of
Quasilinear Parabolic Equations [J]. Asymptot Anal, 2022, 127(1/2): 97-119.
[19] KONDRATIEV V A, VéRON L. Asymptotic Behaviour of Sol
utions of Some Nonlinear Parabolic or Elliptic Equations [J]. Asymptot Anal, 1997, 14(2): 117-156.
[20] IAGAR R G, LAUREN?OT Ph. Finite Time Extinction for a Diffusion Equation w
ith Spatially Inhomogeneous Strong Absorption [J]. Differential Integral Equations, 2023, 36(11/12): 1005-1016.
[21] IAGAR R G, LAUREN?OT Ph, SáNCHEZ A. Self-similar Shrinking of Supports and Non-extinction for a Nonlinear Diffusion Equatio
n with Spatially Inhomogeneous Strong Absorption [J]. Commun Contemp Math, 2024, 26(6): 2350028-1-2350028-42.
[22] VáZQUEZ J L. Smoothing and Decay Estimates for Nonlinear Diffusion Equations
. Equations of Porous Medium Type [M]. Oxford: Oxford University Press, 2006: 25.
[23] 伍卓群, 尹景學, 王春朋. 橢圓與拋物方程引論 [M]. 北京: 科學出版社, 2003: 77-
78. (WU Z Q, YIN J X, WANG C P. Introduction to Elliptic and Parabolic Equations [M]. Beijing: Science Press, 2003: 77-78.)
(責任編輯: 趙立芹)