





摘要: 考慮一類具Kirchhoff項的非局部波動方程解的衰減速率. 首先, 通過對解Sobolev范數建立加權估計, 克服超臨界阻尼項帶來經典乘子法失效的困難. 其次, 利
用加權乘子法證明當阻尼項為超臨界阻尼時, 所研究問題能量泛函為對數衰減, 完全不同于線性阻尼的指數衰減和次臨界阻尼的多項式衰減.
關鍵詞: 非局部方程; 加權乘子法; 衰減估計
中圖分類號: O175.27" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0009-06
Effect of Superlinear Damping Term andKirchhoff Term to" Decay Rate of Solutions
LI Zhongqing1, GUO Bin2, GAO Wenjie2
(1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, China;
2. College of Mathematics, Jilin University, Changchun 130012, China)
Abstract: We considered" the decay rate of solutions to a class of nonlocal wave equations with" Kirchhoff term. Firstly, by establishing weighted estimates of the Sobolev norm,
the difficulty of classical multiplier method failure caused by" supercritical damping term could be overcome. Secondly, by using" the weighted multiplier method to prove that the energy functional of the
studied" problem decayed" logarithmically when" the damping term was supercritical damping," which was" totally different from both exponential decay of linear damping and polynomial decay of subcritical damping.
Keywords: nonlocal equation; weighted multiplier method; decay estimate
收稿日期: 2024-12-02.
第一作者簡介: 李仲慶(1984—), 男, 漢族, 博士, 副教授, 從事偏微分方程的研究, E-mail: zqli_jlu@163.com. 通信作者簡介: 郭 斌
(1983—), 男, 漢族, 博士, 教授, 博士生導師, 從事偏微分方程的研究, E-mail: bguo@jlu.edu.cn; 高文杰(1956—), 男, 漢族, 博士, 教授, 博士生導師, 從事偏微分方程及其應用的研究, E-mail: wjgao@jlu.edu.cn.
基金項目: 吉林省科技廳發展計劃項目(批準號: 2015020458NY).
1 引言與預備知識
參考文獻
[1] KIRCHHOFF G. Vorlesungen über Mathematische Physik [M]." Leipzig:" Teubner, 1883: 1-466.
[2] WU S T, TSAI L Y. On Global Existence and Blow-Up of Solutions for an In
tegro-Differential Equation with Strong Damping [J]. Taiwanese J Math, 2006, 10(4): 979-1014.
[3] WU S T, TSAI L Y. Blow-Up of Positive-Initial-Energy Solutions for an Int
egro-Differential Equation with Nonlinear Damping [J]. Taiwanese J Math, 2010, 14(5): 2043-2058.
[4] YANG Z F, GONG Z G. Blow-Up of Solutions for Viscoelastic Equations of Kirchh
off Type with Arbitrary Positive Initial Energy [J]. Electron J Differential Equations, 2016, 2016: 332-1-332-8.
[5] 王雪, 郭悅, 祖閣. 一類具超臨界源非線性雙曲方程解的爆破時間下界估計 [J]. 吉林
大學學報(理學版), 2019, 57(3): 567-570. (WANG X, GUO Y, ZU G. Lower Bound Estimate of Blow-Up Time for Solutions to Nonlinear Hyperbolic Equations with Sup
ercritical Sources [J]. Journal of Jilin University (Science Edition), 2019, 57(3): 567-570.)
[6] WU S T. Blow-Up of Solutions for a System of Nonlinear Wave Equations with No
nlinear Damping [J]. Electron J Differential Equations, 2009, 2009: 105-1-105-11.
[7] YE Y. Global Existence and Nonexistence of Solutions
for Coupled Nonlinear Wave Equations with Damping and Source Terms [J]. Bull Korean Math Soc, 2014, 51(6): 1697-1710.
[8] LIAO M L, TAN Z. Blow-Up and Energy Decay for a Clas
s of Wave Equations with Nonlocal Kirchhoff-Type Diffusion and Weak Damping [J]. Math Meth Appl Sci, 2024, 47(1): 516-534.
[9] PAN N, PUCCI P, ZHANG B L. Degenerate Kirchhoff-Type Hyperbolic Problems Inv
olving the Fractional Laplacian [J]. J Evol Equ, 2018, 18(2): 385-409.
[10] LIN Q, TIAN X T, XU R Z, et al. Blow Up and Blow Up Time for Degenerate Kirchhoff-Type Wave Problems Involving the Fractional Laplacian with Arbitr
ary Positive Initial Energy [J]. Discrete Contin Dyn Syst Ser S, 2020, 13(7): 2095-2107.
[11] SERVADEI R, VALDINOCI E. Mountain Pass Solutions for Non-local Elliptic Operators [J]. J Math Anal Appl, 2012, 389(2): 887-898.
[12] MARTINEZ P. A New Method to Obtain Decay Rate Estimates
for Dissipative Systems with Localized [J]. ESAIM Control Optim Calc Var, 1999, 4: 419-444.
(責任編輯: 李 琦)