















摘要: 隨著化石燃料的迅速消耗和污染的日益嚴重, 開發和利用清潔能源越來越重要. 將太陽能轉化為清潔氫能的光催化技術是一種有效的解決方案. 由于受水分解電極電位的限制, 需解決光催化劑帶隙與太陽光強度之間的矛盾, 因此, 開發和利用具有可見光響應能力的光催化劑具有重要意義. 綜述光催化劑的發展和光催化原理, 討論其巨大的發展潛力, 并介紹最常見的幾種光催化劑和現階段的研究進展.
關鍵詞:" 光催化; 氫氣; 水分解
中圖分類號: O643.36" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0160-13
Research Advance" of Photocatalysts
for Water Splitting to Generate Hydrogen
GUO Pengyu," ZHANG Baining," YOU Chuanxu," ZHANG Zongtao
(College of Chemistry, Jilin University, Changchun 130012, China)
Abstract:""" With the rapid depletion of fossil fuels and increasing pollution," the development and utilization" of clean energy are becoming increasingly important. Photocatalytic technology that" converts solar energy into clean hydrogen energy" is" an effective solution. It is necessary to solve the contradiction between" the bandgap of photocatalysts and the intensity of sunlight" due to limitations in water splitting electrode potential. Therefore," it is highly significant to develop and utilize photocatalysts with visible light" response capability. We review" the development and principles of photocatalysts," discuss their immense potential for advancement, and introduce the most" common photocatalysts and" current research progress.
Keywords: photocatalysis;" hydrogen;" water splitting
目前, 人們對能源的需求不斷增長, 對環境保護意識日益增強, 因此開發利用清潔和可再生能源已引起人們廣泛關注. 光催化分解水制取氫氣作為一種環境友好的再生能源制備技術是解決能源和環境問題的最佳途徑之一. 基于此, 本文對異質結光催化劑分解水制取氫氣的研究進展進行綜述.
1 光催化的起源和發展
光催化技術作為一種將太陽能轉化為化學能的技術方法, 可追溯至1967年,
藤島昭通過實驗發現, 在紫外燈照射下, 置于水中的TiO2光電極會使水分解為氧和氫兩種元素," 并揭示了TiO2具有較強的的抗菌、 空氣凈化、 水凈化和防污能力, 在受光照射后具有較高活性和親水性質, 該成果被稱為“本多藤島效應”[1].
光催化技術的核心是光催化材料, 其中TiO2是最早被發現并廣泛應用的一種具有優異光催化活性和穩定性的材料. 在引入新型材料如石墨烯和金屬有機框架后進一步提高了光催化效率[2].
此外, 為深入研究和應用光催化技術, 研究人員設計了一種光化學反應裝置(光催化反應儀, 圖1).
該設備可模擬不同類型光源(如紫外線、 可見光等)對氣相和液相介質中光化學反應產生的影響, 并為相關過程提供有力工具.
光催化技術在環境保護、 能源轉換以及有機合成等領域應用廣泛[3-4]. 在環境保護方面, 可利用光催化技術降解有機污染物、 凈化水體和空氣[5-8]. 在水污染治理方面, 采用光催化降解技術可有效去除水中存在的農藥、 染料和抗生素等有害有機物以及重金屬離子, 并顯著改善水質[9-11]. 通過優化光催化劑的性能和結構, 研究人員不斷提高降解效率和穩定性, 為水資源的可持續利用提供了有力支持[12-15]. 光催化技術在有機廢物處理領域應用廣泛, 該技術能加速有機廢物的分解和礦化過程, 減少廢物體積并降低環境負荷[16-18], 如可應用在廚余垃圾和污水處理廠污泥的處理中. 空氣中存在的揮發性有機物(VOCs)、 氮氧化物(NOx)和二氧化硫(SO2)等污染物對人體健康構成嚴重威脅, 當受到光照刺激時," 光催化技術利用涂覆在建筑表面或空氣凈化器中的光催化劑可將空氣中污染物分解為無害物質, 從而改善空氣質量. 此外, 光催化技術還可應用于能源轉換領域, 實現光電轉換和水光解制取氫等過程, 為應對能源危機提供了新思路. 在有機合成方面, 該技術具有高效和選擇性的特點, 為化學工業發展注入了新活力[19].
2 光催化分解水制氫的基本原理
利用太陽能將H2O分解為H2是實現清潔和可再生能源的有效方法之一. 光催化分解水制氫是利用光催化劑在光照條件下吸收光子能量, 激發電子從價帶躍遷至導帶, 形成光生電子-空穴對. 光生電子和光生空穴分別遷移至光催化劑表面, 與水分子發生還原反應生成氫氣, 同時還發生氧化反應生成氧氣.
從半導體光化學的角度來看, 光催化作用是在輻照半導體的情況下開啟或提高特定的還原和氧化(氧化還原)反應效率. 當入射光子的能量等于或高于帶隙時, 即可發生光吸收現象, 以及電子-空穴對的光激發[20-21]. 在半導體催化劑中, 導帶(CB)電子相對于一般氫電極(NHE)具有+0.5~-1.5 V的化學勢, 因此它們可以作為還原劑. 介帶(VB)空穴相對于NHE表現出+1.0~+3.5 V的強氧化勢[22].
反應開始時, 半導體中儲存了光激發產生的入射光子能量," 經過一系列電子轉移過程和表面/界面反應, 將其轉化為化學形式的能量. 與傳統的催化反應相比, 光催化不僅推進可自發的反應進程(ΔGlt;0), 而且可推動非自發反應(ΔG≥0). 在前一種情況下, 輸入能量用于降低化學反應所需的活化能, 從而以更高速率推動光催化; 在后一種情況下, 部分輸入能量直接轉換為化學能, 并積累在反應的產物中.
通常, 半導體光催化循環包括3個步驟(圖2)[23]: 首先, 通過光照使價帶中的光生電子發生躍遷移動到導帶中, 并留下相同數量的光生空穴; 其次, 激發的電子和空穴移動到光催化劑表面; 最后, 在第二步中吸收的電子給體(D)和電子受體(A)分別與存在于半導體表面負載助催化劑如Pt,Pd,NiO和RuO2等物質形成異質結構進行反應. 為避免發生復合現象并加速載流子遷移過程, 通常加入上述助催化劑. 此外, 這些助催化劑具有更好的導電性能、 較低的過渡態活化能以及更高的催化活性, 是光催化反應中理想的活性位點.
3 光催化分解水制氫材料的研究進展
3.1 二氧化鈦
目前, TiO2是廣泛應用于光催化產氫的一種催化劑. 它具有優異的光催化活性、 穩定性和可再生性, 但僅能在紫外光區域進行光解反應, 光利用率較低. 為提高TiO2的光催化效率, 研究人員通過摻雜金屬/非金屬元素或制備半導體復合材料等方法對其進行改良, 以擴大其吸收范圍.
Yue等[24]用磷化鈷作為助催化劑, 與TiO2形成新型混合結構, 以提高電子在氧化還原反應中的利用率, 從而增強光催化產氫活性. 經過優化后, CoP/TiO2顯著提高了光催化產氫速率(8 350 μmol/(h·g)), 是原始TiO2產氫速率的11倍. 該工作推動了合成類似新型功能系統的研究, 為實現更高效且穩定地將太陽能轉換為可供于化學領域使用的能源提供了新思路(圖3).
Yue等[25]開發出一種良好控制的合成策略制備Mo2C/TiO2異質納米結構, 其中 TiO2的3D分級結構負載高度分散的Mo2C納米粒子. 這種異質結構的催化活性為39.4 mmol/(h·g), 比原始TiO2的催化速率高25倍. 此外, 該光催化劑具有長期耐久性(gt;20 h). Mo2C/TiO2優異的光催化H2活性表明其具有良好的電荷載流子動力學, 這由光致發光、 時間分辨光致發光、 表面光電壓和開路電位衰減曲線的結果決定, 為設計具有優異產氫活性的新型功能材料提供了依據(圖4)[25].
目前, 研究人員已研究了具有納米結構的功能材料的構造, 這些材料具有高效的電荷分離和傳輸特性, 可用于制造太陽能驅動的水還原制氫催化劑." Yue等[26]在空心 TiO2微球(HTM)表面加載W2C@C結構(其中每個W2C納米粒子(NP)均被碳殼包裹), 通過在W2C@C/HTMs復合結構中建立內部電場增強光生電子-空穴對的分離, 并充當水還原的反應活性位點. 優化的W2C@C/HTMs結構在模擬太陽光照射下具有較高的光催化H2生成速率, 為6.91 mmol/(h·g), 比HTMs的產H2速率高20多倍. Yue等[26]基于一系列表征技術, 從光化學和光物理的角度研究其潛在機制," 結果表明, W2C@C可有效控制電荷動力學, 最大限度實現電荷載體的分離(圖5).
Zhang等[27]研究表明, 構建有利的納米結構可充分利用激發電荷, 這是提高半導體催化劑光催化性能的一種可行方法. 高度分散的鉑類助催化劑可提供足夠多的反應位點, 并加速電荷轉移. Zhang等[27]開發出一種原位方法, 在花狀TiO2表面覆蓋碳化鉬/碳層, 最終形成分級TiO2@Mo2C/C光催化劑, 所得異質結構的光催化活性為10.21 mmol/(h·g), 比普通TiO2增強了21倍, 并保持超過16 h的高穩定性. 通過對光致發光和表面光電壓等進一步分析表明, 這種增強活性是由于快速電荷分離和利用效果更好所致. 理論計算結果表明, 花狀TiO2在共暴露活性面方面具有優勢, 這種獨特的原位構建方法有助于獲得功能集成催化劑, 用于質子耦合電子轉移型光催化反應(圖6)[27].
TiO2異相光催化研究經歷了各種與發展相關的能源問題和環境問題, 如TiO2直接在太陽光下將空氣中的污染物和低濃度H2O分解[28-30]. 盡管TiO2的異相光催化已取得了較多研究成果, 但仍有許多未解之處[31-32]. 通常, TiO2光催化中的典型光催化反應過程包含許多基本反應單元, 包括載流子的產生、 分離、 弛豫、 捕獲、 轉移、 復合和運輸以及鍵的斷裂/形成[33-35]. 更好地理解TiO2光催化需清楚辨別所有的基本反應單元, 這對新光催化劑的開發、 合成和表征至關重要.
3.2 氮化碳材料
除經典的半導體材料外, 聚合物氮化碳(C3N4)是一種新型的可見光催化劑, C3N4在水中利用可見光可產生氫氣. 石墨碳氮化物(g-C3N4)是一種具有聚合特性的半導體材料, 可作為優質基底支撐單個金屬原子. 由于存在富含孤對電子的N原子, 因此g-C3N4成為出色的“配位基團”, 從而促進其與具有空軌道或部分空軌道的奇異原子結合.
Li等[36]證明金屬-配體電荷轉移(MLCT)過程可發生在Mn+(M=Pt,Cu)和g-C3N4之間的配位結構中(圖7), 這在寬光吸收范圍內的Raman光譜中發揮了重要作用. g-C3N4的光吸收被拓寬, 可覆蓋460~900 nm的額外光譜范圍, 并具有由g-C3N4-Pt2+配位導致的足夠大橫截面積. 由于Pt2+與C3N4芳環的最高占據分子軌道(HOMO)雜交形成了一個新狀態, 該狀態位于純g-C3N4的原始HOMO狀態上方1.2 eV處. 與原始純g-C3N4相比, g-C3N4-Pt2+配合物的最低未占分子軌道(LUMO)水平上移了0.3 eV, 因此MLCT轉變將吸收能量高于1.8 eV的量子, 對應于混合狀態和增加LUMO間的能差. 由于MLCT誘導的光激發本質上是由Femi水平以下的Pt2+中受激電子轉移到Femi水平以上的C3N4軌道所致," 因此g-C3N4-Pt2+配合物在太陽能寬光譜照射下的光催化效率大幅度增強. 該反應機制也適配于g-C3N4與非貴金屬Cu+的配位, 可進一步降低材料成本[37].
對于太陽能驅動的光催化水分解, 設計和制備不含貴金屬的光催化劑具有重要意義. Yue等[38]研究了一種混合光催化劑體系, 該體系由生長在g-C3N4表面的CdS納米晶體和Ni@NiO納米粒子組成, 在可見光下能高效產生氫氣. 當用三乙醇胺作為犧牲電子給體時, 該混合體系在可見光照射下的產氫率可達1 258.7 μmol/(h·g). 通過研究協同催化機理、 光伏特性和光致發光性質等結果可知, 從g-C3N4到CdS納米晶體再到Ni@NiO混合材料實現了有效的電子轉移(圖8)[38].
制備氮化碳納米片是提高氮化碳光催化效率的一種有效方法, 而傳統自上而下的剝離工藝費時、 復雜且成本高. 因此, Liu等[39]研究了一種簡單、 廉價、 無毒、 環境友好的自下而上制備卷曲g-C3N4納米片(NS-C3N4)的方法, 并在低溫常壓條件下進行實驗. 在水溶液中, 三聚氰胺和氰尿酸先通過共聚形成共聚物, 再通過熱擴散將甘油插入到預聚物分子層之間, 最后經熱剝離和縮聚得到高質量和高產率的卷曲NS-C3N4. NS-C3N4的光催化產氫速率為4 061.8 mmol/(h·g), 比體相C3N4(B-C3N4)的產氫速率提高了37.5倍. 此外, NS-C3N4的比表面積達60.962 m2/g. 為深入研究其光催化機理," 研究人員對其紫外可見吸收光譜、 穩態和時間分辨光致發光以及光電化學測試進行了研究(圖9)[39].
設計高效催化劑的關鍵是調控納米結構和優化異質界面. 增加催化劑間的接觸面積可獲得額外反應位點, 促進電荷載體更快地轉移和反應. Liu等[40]在低沸點溶劑插層后碳化前驅體, 成功制備了二維Mo2C, 并利用自組裝技術將其與二維g-C3N4合成了優化結構的復合催化劑Mo2C/g-C3N4. 在最佳配比下, 該光催化劑產氫速率為675.27 μmol/(h·g), 比單純使用二維g-C3N4的性能好. 實驗結果表明, 在含質量分數為79%的B/2D Mo2C/g-C3N4光催化劑中, 產氫速率是含0.5%質量分數Pt/g-C3N4光催化劑性能的5.1倍. 這種提升主要歸因于助催化劑Mo2C可迅速將g-C3N4生成的光生電子轉移到其表面, 并且由于二維到二維結構增加了較多的反應位點, 因此有效防止了光生電子和空穴發生復合作用. 該研究為開發類鉑數量級助催化劑以及優化納米結構提供了新思路和技術(圖10)[40].
由于太陽能轉化反應的集成光催化劑有重要作用, 因此需獲得高度連貫的混合催化劑. 在光催化反應中, 異質界面狀態非常重要, 可用于探索不同組分間發生的光生電荷傳輸. Zhang等[41]用Mo-多巴胺制備出集成型g-C3N4@MoS2/C納米片. 該納米片光催化產氫性能優異, 可達712.90 μmol/(h·g), 并在20 h內幾乎未降解. 主要原因是由g-C3N4具有較大表面積、 高分散MoS2助催化劑作用、 碳結構導電途徑以及整個電荷轉移過程中協同作用所致. 該研究表明了配位系統在設計催化劑界面時的優勢, 并提供了一種普適策略構建多功能光催化劑(圖11)[41].
具有二維結構和原子厚度的無金屬石墨相氮化碳因其比表面積較大、 能帶結構易于調節且載流子遷移長度較短等優點, 研究人員將其作為構建異質結的候選材料[42-43]. 將CN與其他材料結合可極大增強光吸收并改善電荷分離[44-45]. 由于構建具有大界面面積的二維異質結具有豐富的電荷轉移通道, 可實現快速電荷遷移, 因此所有這些因素對提高光催化性能都至關重要[46-48].
3.3 硫化物
金屬硫化物是一種具有狹窄能隙和適宜帶邊電位的材料, 當硫化物作為光催化劑時, 光生電子和空穴之間容易發生復合反應, 從而限制了光催化性能進一步提升的可能性. 為解決該問題, 研究人員通過調控材料結構和表面特性增強載流子分離效果, 并減少復合反應發生. 如可利用納米結構、 異質結構或修飾表面等方法增加活性位點數量, 提高載流子傳輸速率. 此外, 還可引入共催化劑或添加助劑優化硫化物光催化系統. 共催化劑可促進水分子在陽極上的吸附和解離過程, 并提供額外的活性位點以增強產氫反應速率. 助劑可調節溶液的pH值、 抑制復合反應或在改變界面特性等方面起輔助作用.
Yue等[49]研發了一種簡捷高效的化學還原法, 用于合成NixCo1-x/Zn0.75Cd0.25S納米雜化光催化劑. 在模擬太陽光照射下, 該材料的產氫速率達0.21 mol/(h·g), 并且在365 nm處的表觀量子效率(AQE)可達10%以上. 與其他類似半導體光催化劑相比, 該催化劑的產氫速率顯著提高. 經20 h以上的測試表明, NixCo1-x/Zn0.75Cd0.25S光催化劑穩定性良好. 非貴金屬Ni和Co存在顯著的協同效應, 有效提高了光生電子空穴對的傳輸和分離效率, Yue等[49]提出并探討了這種協同催化機制(圖12).
Guo等[50]用溫和水熱法成功合成了具有雙異質結協同結構和較大比表面積的Zn-Cd-Mo-S四元金屬硫化物介孔納米球. 這些納米球可用作光催化劑促進產氫反應. 四元催化劑ZCM5S最大的產氫速率高達23.32 mmol/(h·g), 比二元(CdS)和三元(ZnCdS)金屬硫化物的產氫速率分別提高了53倍和11倍, 在20 h內該催化劑仍保持較高的穩定性. 通過原位自組裝方法制備介孔納米球具有優異的光吸收能力, 其雙異質結協同結構可有效促進電荷轉移過程, 從而增強光催化活性. 此外, 較大比表面積也為反應物分子吸附提供了更多機會, 進一步提高了反應速率. 未來可基于該工作繼續改進材料設計和合成方法, 以實現更高效、 經濟可行的光催化產氫系統(圖13)[50].
異質結工程通過促進載流子高效分離和傳輸提升了光催化性能并抑制了光腐蝕. Guo等[51]在體系中合成了具有較大比表面積和多級串聯異質結的爆米花狀ZnCdS-MoS2@Co3O4納米球. 該材料利用MoS2作為電子收集器, 實現高度均勻分散, 并利用Co3O4作為由光生載流子驅動的空穴收集器, 在空穴富集位置進行精確沉積. 這種材料在水中展現出高效的可見光催化制氫性能. 與ZnCdS相比, 經優化后的ZCS-M@0.5C可見光驅動制氫效率提高了50倍, 達18.73 mmol/(h·g), 并且在20 h循環測試后仍保持穩定. 實驗結果以及差分電荷密度分析證明類鉑MoS2誘導電子分離和傳輸能力的有效性, 其中p型半導體Co3O4通過p-n結累積空穴. 理論模擬和實驗結果均表明雙內電場對雙向電荷分離和快速轉移非常有益. 此外, 采用多級串聯異質結也顯著改善了光催化性能, 這是因為不同異質界面之間存在協同效應所致. 該研究制備了具有多個異質結并呈高效催化活性的光催化劑(圖14)[51].
研究表明, 采用雙體系的光催化氧化還原反應可有效促進水光催化分解產生氫氣. 該方法不僅解決了水分解速度緩慢的問題, 還可與生物質轉化相結合以生產高價值的化學品. Zhang等[52]構建了一種三維全光譜響應材料P-M-Z-2, 并通過硫空位調控和S型異質結提升其光催化性能(圖15).
該材料可見光下在苯甲醛高效氧化產氫實驗中H2產出效率為3 763.2 μmol/(h·g), 比純ZnIn2S4的產氫速率約提高9倍; 在模擬太陽光照射條件下, 經優化其H2產量為31 423.6 μmol/(h·g), 苯甲醛生成量為31 297.7 μmol/(h·g). 此外, 通過構建S型異質結使催化劑保持較高氧化還原電位并提升其氧化還原能力, 從而增強了其光催化性能; 同時異質結有利于光生載流子分離和傳輸. 該研究提供了一種新思路——通過調節硫空位和構建S型異質結提升光催化性能, 并為有效利用生物質平臺合成物質進行了探索[52].
3.4 新型光催化劑
金屬有機骨架 (MOF) 納米粒子也稱為多孔配位聚合物, 是納米材料科學的重要組成部分, 它們在催化中的作用日益重要[53-55]. MOF結構的異常多變性和豐富性為金屬節點、 功能連接體、 封裝基材以及納米粒子之間的工程協同作用提供了條件, 從而在這些基于MOF 的納米催化劑中實現了多種選擇性異質相互作用和活化[56-57]. MOF納米粒子復合材料的熱解可形成高度多孔的 N 或 P 摻雜石墨化 MOF 衍生納米材料, 這些材料越來越多地用作高效催化劑, 尤其在光催化中使用MOF從 H2O 中釋放氫氣[56], 還有一些基于MOF的光催化劑可用于從儲氫無機材料(如氨硼烷和甲酸)中釋放H2.
三維中空多孔結構材料因其在光催化反應中具有顯著優勢而備受關注." Zhang等[58]通過MOF模板法合成了外觀華麗、 性能卓越的三維ZnIn2S4-In2S3中空分級多孔納米管, 該材料可作為高效催化劑用于水中光催化產氫. In-MIL-68內部塌陷與附著于外緣的ZnIn2S4晶體生長之間的動態過程形成一種新方法, 可原位制備中空ZnIn2S4-In2S3異質結催化劑.
In-MIL-68還引導形成了具有超薄納米片的ZnIn2S4-In2S3分級異質結和中空多孔納米管. 通過調整雙組分異質結相對組成, 提高了最佳光催化效率, 在經過優化處理后, 無需輔助催化劑即可實現可見光下5.01 mmol/(h·g)的氫解效率, 在420 nm處的表觀量子效率為16.23%, 明顯優于單組分兩步合成的In2S3-ZnIn2S4光催化效果. 理論和實驗結果均證明了異質結構建和中空多孔納米管形成可增強對可見光的吸收能力, 并促進光生載流子有效分離和轉移, 從而提高制備材料的光活性能力. 同時, 該方法制備的光催化劑在穩定性和可重復使用方面也表現良好, 為開發基于MOF基底和具有中空分級特征的新型光催化劑提供了全新途徑(圖16)[58].
4 光催化分解水制氫技術的應用及面臨的挑戰
4.1 應用領域
光催化分解水制氫技術已在太陽能利用、 氫能源生產以及環境保護等領域廣泛應用, 為實現太陽能的高效利用和清潔生產氫氣提供了全新途徑, 為解決能源危機和環境污染問題開辟了新前景.
4.2 面臨的挑戰
盡管光催化分解水制氫技術具有廣闊的應用前景, 但仍面臨很多問題: 首先, 提高光催化材料的穩定性和催化效率是亟待解決的問題; 其次, 光催化系統的轉化效率和制氫速率仍需進一步提高; 第三, 光催化材料的制備成本較高, 限制了其規模化應用.
以下是光催化分解水制氫面臨的一些主要挑戰.
1) 在材料方面, 目前大部分光催化劑只能將太陽光譜中能量較高部分的光子進行有效利用, 如紫外光和可見光譜的短波長部分, 僅利用了到達地球大氣層太陽總照射量的約4%. 若要更充分合理地利用太陽能, 則需擴寬對太陽能光譜的利用范圍, 即利用可見光中的能量. 由于光催化材料的反應環境是在水電解質溶液中, 因此需水溶液具備一定的穩定性. 減少材料中的缺陷結構, 提高材料的結晶度和導電能力, 會使光催化材料的性能更好. 通過對合成方法和條件細微調整會改變整個材料的結晶度以及顆粒大小, 這種變化對光催化劑的光催化產氫性能具有重要影響.
2) 在安全性和氫氣回收方面, 光催化分解水的產物是濕潤的氫氧混合氣體, 安全性以及氫氣回收仍是規模化應用的巨大挑戰.
3) 在進一步提升效率方面, 目前光電解水效率整體水平仍較低, 雖然太陽能制氫效率從0.5%提高到目前的1.5%, 但仍有很大的提升空間, 需優化捕光、 電荷分離和催化轉化3個方面.
目前光催化分解水的研究重點大多數是在光催化材料的合成和儀器設備工藝的優化上, 光生電荷動力學等研究相對薄弱, 重大科學問題尚未解決.
5 展 望
未來的光催化分解水制氫技術會繼續發展, 將在以下幾個方面取得進展.
1) 提高光催化材料的活性和穩定性. 通過改進材料的結構和組成, 優化其表面特性和能帶結構, 可增強光催化劑對太陽能的吸收并提高反應效率. 此外, 還需尋找更耐久且可持續使用的催化劑材料.
2) 降低制備材料所需成本. 由于許多先進材料制備過程復雜且昂貴, 限制了大規模應用的可能性. 因此, 在未來研究中需探索新型合成方法以替代原有生產工藝以降低成本, 并推動該技術走向商業化階段.
3) 探索新型光催化材料和反應機理. 雖然已開發出一些有效的催化劑用于水分解制氫反應, 但仍有很大潛力可挖掘. 研究人員將不斷尋找具有更好活性、 穩定性和可再生特性的新型催化劑, 并深入研究相關反應機理以指導設計更優秀的光催化系統.
綜上, 在科研創新與工程實踐共同推動下," 光催化分解水制氫技術將取得長足進步并為人類可持續發展做出更大貢獻, 該技術具有巨大潛力, 在清潔能源領域扮演著重要角色, 為邁向低碳環保社會提供了希望與可能.
參考文獻
[1] FUJISHIMA A," HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]." Nature," 1972," 238:" 37-38.
[2] BOYJOO Y," SUN H Q," LIU J," et al. A Review on Photocatalysis for Air Treatment:" From Catalyst Development to Reactor Design [J]." Chemical Engineering Journal," 2017," 310:" 537-559.
[3] HAN C C," GE L," CHEN C F," et al. Novel Visible Light Induced Co3O4-g-C3N4 Heterojunction Photocatalysts for Efficient Degradation of Methyl Orange [J]." Applied Catalysis B:" Environmental," 2014," 147:" 546-553.
[4] SHAO H X," ZHAO X," WANG Y B," et al. Synergetic Activation of Peroxymonosulfate by Co3O4 Modified g-C3N4 for Enhanced Degradation of Diclofenac Sodium under Visible Light Irradiation [J]." Applied Catalysis B:" Environmental," 2017," 218:" 810-818.
[5] HUANG D L," WEN M," ZHOU C Y," et al. ZnxCd1-xS Based Materials for Photocatalytic Hydrogen Evolution, "Pollutants Degradation and Carbon Dioxide Reduction [J]." Applied Catalysis B:" Environmental," 2020," 267:" 118651-1-118651-14.
[6] TANG M L," AO Y H," WANG C," et al. Facile Synthesis of Dual Z-Scheme g-C3N4/Ag3PO4/AgI Composite Photocatalysts with Enhanced Performance for the Degradation of a Typical Neonicotinoid Pesticide [J]." Applied Catalysis B:" Environmental," 2020," 268: 118395-1-118395-11.
[7] WEN X J," QIAN L," Lü X X," et al. Photocatalytic Degradation of Sulfamethazine Using a Direct Z-Scheme AgI/Bi4V2O11 Photocatalyst:" Mineralization Activity," Degradation Pathways and Promoted Charge Separation Mechanism [J]." Journal of Hazardous Materials," 2020," 385: 121508-1-121508-12.
[8] GUO J," SHEN C H," SUN J," et al. Highly Efficient Activation of Peroxymonosulfate by Co3O4/Bi2MoO6 p-n Heterostructure Composites for the Degradation of Norfloxacin under Visible Light Irradiation [J]." Separation and Purification Technology," 2021," 259: 118109-1-118109-11.
[9] LI X B," KANG B B," DONG F," et al. Enhanced Photocatalytic Degradation and H2/H2O2 Production Performance of S-pCN/WO2.72 S-Scheme Heterojunction with Appropriate Surface Oxygen Vacancies [J]." Nano Energy," 2021," 81: 105671-1-105671-11.
[10] FANG J F," XIE K L," KANG Q," et al. Facile Fabrication of g-C3N4/CdS Heterojunctions with Enhanced Visible-Light Photocatalytic Degradation Performances [J]." Journal of Science:" Advanced Materials and Devices," 2022," 7(1): 100409-1-100409-9.
[11] HOU L," LI W," WU Z," et al. Embedding ZnCdS@ZnIn2S4 into Thiazole-Modified g-C3N4 by Electrostatic Self-assembly to Build Dual Z-Scheme Heterojunction with Spatially Separated Active Centers for Photocatalytic H2 Evolution and Ofloxacin Degradation [J]." Separation and Purification Technology," 2022," 290: 120858-1-120858-14.
[12] HUSSAIN M K," KHALID N R," TANVEER M," et al. Fabrication of CuO/MoO3 p-n Heterojunction for Enhanced Dyes Degradation and Hydrogen Production from Water Splitting [J]." International Journal of Hydrogen Energy," 2022," 47(34):" 15491-15504.
[13] LIU C," MAO S," SHI M X," et al. Enhanced Photocatalytic Degradation Performance of BiVO4/BiOBr through Combining Fermi Level Alteration and Oxygen Defect Engineering [J]." Chemical Engineering Journal," 2022," 449: 137757-1-137757-13.
[14] SARKAR P," DE S," NEOGI S. Microwave Assisted Facile Fabrication of Dual Z-Scheme g-C3N4 /ZnFe2O4/Bi2S3 Photocatalyst for Peroxymonosulphate Mediated Degradation of 2,4,6-Trichlorophenol:" The Mechanistic Insights [J]." Applied Catalysis B:" Environment and Energy," 2022," 307: 121165-1-121165-17.
[15] WANG S," JIAO Y X," YIN J N," et al. Innovation Synthesis of NiS Quantum Dots Modified CdS/WO3 Heterostructures as High-Efficiency Bifunctional Photocatalysts for Construction of Visible Light Driven Z-Scheme Water-Splitting and Cr(Ⅵ) Degradation [J]." Applied Surface Science," 2022," 602: 154226-1-154226-9.
[16] XU F H," ZHAO W L," HU X D," et al. Sulfur Tuning Oxygen Vacancy of Ba2Bi1.4Ta0.6O6 for Boosted Photocatalytic Tetracycline Hydrochloride Degradation and Hydrogen Evolution [J]." Journal of Colloid and Interface Science," 2023," 636:" 470-479.
[17] ZHENG S," LI X J," ZHANG J Y," et al. One-Step Preparation of MoOx/ZnS/ZnO Composite and Its Excellent Performance in Piezocatalytic Degradation of Rhodamine B under Ultrasonic Vibration [J]." Journal of Environmental Sciences," 2023," 125:" 1-13.
[18] ZHAI T J," WANG J Y," MIN R," et al. CoFe2O4/BiFeO3 Z-Scheme Heterojunction under Rotating Magnetic Field:" Enhanced Photocatalytic Degradation of Berberine Hydrochloride [J]." Journal of Alloys and Compounds," 2024," 981: 173712-1-173712-12.
[19] MARZO L," PAGIRE S K," REISER O," et al. Visible-Light Photocatalysis:" Does It Make a Difference in Organic Synthesis? [J]." Angewandte Chemie-International Edition," 2018," 57(32):" 10034-10072.
[20] HAGFELDT A," GRAETZEL M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]." Chemical Reviews," 1995," 95(1):" 49-68.
[21] FOX M A," DULAY M T. Heterogeneous Photocatalysis [J]." Chemical Reviews," 1993," 93(1):" 341-357.
[22] HOFFMANN M R," MARTIN S T," CHOI W Y," et al. Environmental Applications of Semiconductor Photocatalysis [J]." Chemical Reviews," 1995," 95(1):" 69-96.
[23] TONG H," OUYANG S X," BI Y P," et al. Nano-photocatalytic Materials:" Possibilities and Challenges [J]." Advanced Materials," 2012," 24(2):" 229-251.
[24] YUE X Z," YI S S," WANG R W," et al. Cobalt Phosphide Modified Titanium Oxide Nanophotocatalysts with Significantly Enhanced Photocatalytic Hydrogen Evolution from Water Splitting [J]." Small," 2017," 13(14): 1603301-1-1603301-9.
[25] YUE X Z," YI S S," WANG R W," et al. A Novel Architecture of Dandelion-Like Mo2C/TiO2 Heterojunction Photocatalysts towards High-Performance Photocatalytic Hydrogen Production from Water Splitting [J]." Journal of Materials Chemistry A," 2017," 5(21):" 10591-10598.
[26] YUE X Z," LI C Q," LIU Z Y," et al. Steering Charge Kinetics in W2C@C/TiO2 Heterojunction Architecture:" Efficient Solar-Light-Driven Hydrogen Generation [J]." Applied Catalysis B:" Environmental," 2019," 255: 117760-1-117760-9.
[27] ZHANG D G," LIU W B," WANG R W," et al. Interface Engineering of Hierarchical Photocatalyst for Enhancing Photoinduced Charge Transfers [J]." Applied Catalysis B:" Environmental," 2021," 283:" 119632-1-119632-8.
[28] NIU Z L," YI S S," LI C Q," et al. Supporting Bimetallic Sulfide on 3D TiO2 Hollow Shells to Boost Photocatalytic Activity [J]." Chemical Engineering Journal," 2020," 390: 124602-1-124602-9.
[29] GUO Q," ZHOU C Y," MA Z B," et al. Fundamentals of TiO2 Photocatalysis:" Concepts," Mechanisms," and Challenges [J]." Advanced Materials," 2019," 31(50):" 1901997-1-1901997-26.
[30] XIONG H L," WU L L," LIU Y," et al. Controllable Synthesis of Mesoporous TiO2 Polymorphs with Tunable Crystal Structure for Enhanced Photocatalytic H2 Production [J]." Advanced Energy Materials," 2019," 9(31): 1901634-1-1901634-9.
[31] MUNAWAR T," MUKHTAR F," NADEEM M S," et al. Fabrication of Dual Z-Scheme TiO2-WO3-CeO2 Heterostructured Nanocomposite with Enhanced Photocatalysis," Antibacterial," and Electrochemical Performance [J]." Journal of Alloys and Compounds," 2022," 898: 162779-1-162779-15.
[32] GAO D D," XU J C," CHEN F," et al. Unsaturated Selenium-Enriched MoSe2+x Amorphous Nanoclusters:" One-Step Photoinduced Co-reduction Route and Its Boosted Photocatalytic H2-Evolution Activity for TiO2 [J]." Applied Catalysis B:" Environmental," 2022," 305: 121053-1-121053-12.
[33] LI Z Z," LI H Z," WANG S J," et al. Mesoporous Black TiO2/MoS2/Cu2S Hierarchical Tandem Heterojunctions toward Optimized Photothermal-Photocatalytic Fuel Production [J]." Chemical Engineering Journal," 2022," 427: 131830-1-131830-8.
[34] LIU J N," SUN X M," FAN Y Y," et al. P-N Heterojunction Embedded CuS/TiO2 Bifunctional Photocatalyst for Synchronous Hydrogen Production and Benzylamine Conversion [J]." Small," 2023," 20(10): 2306344-1-2306344-12.
[35] LU E J," TAO J Q," YANG C," et al. Carbon-Encapsulated Pd/TiO2 for Photocatalytic H2 Evolution Integrated with Photodehydrogenative Coupling of Amines to Imines [J]." Acta Physico-Chimica Sinica," 2023," 39(4): 2211029-1-2211029-11.
[36] LI Y R," WANG Z W," XIA T," et al. Implementing Metal-to-Ligand Charge Transfer in Organic Semiconductor for Improved Visible-Near-Infrared Photocatalysis [J]." Advanced Materials," 2016," 28(32):" 6959-6965.
[37] GAO C," WANG J," XU H X," et al. Coordination Chemistry in the Design of Heterogeneous Photocatalysts [J]." Chemical Society Reviews," 2017," 46(10):" 2799-2823.
[38] YUE X Z," YI S S," WANG R W," et al. Cadmium Sulfide and Nickel Synergetic Co-catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution [J]." Scientific Reports," 2016," 6:nbsp; 22268-1-22268-9.
[39] LIU W B," ZHANG Z D," ZHANG D G," et al. Synthesis of Narrow-Band Curled Carbon Nitride Nanosheets with High Specific Surface Area for Hydrogen Evolution from Water Splitting by Low-Temperature Aqueous Copolymerization to Form Copolymers [J]." RSC Advances," 2020," 10(48):" 28848-28858.
[40] LIU W B," ZHANG D G," WANG R W," et al. 2D/2D Interface Engineering Promotes Charge Separation of Mo2C/g-C3N4 Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution [J]." ACS Applied Materials amp; Interfaces," 2022," 14(28):" 31782-31791.
[41] ZHANG D G," LIU W B," GUO P Y," et al. Constructing MoS2-Coupled Carbon/g-C3N4 Heterointerface to Optimize Charge Delivery for Enhanced Photocatalytic Capacity [J]." Journal of Alloys and Compounds," 2023," 935: 168041-1-168041-8.
[42] TAN M X," MA Y," YU C Y," et al. Boosting Photocatalytic Hydrogen Production via Interfacial Engineering on 2D Ultrathin Z-Scheme ZnIn2S4 /g-C3N4 Heterojunction [J]." Advanced Functional Materials," 2021," 32(14): 2111740-1-2111740-8.
[43] LIU X Y," LIU H," WANG Y J," et al. Nitrogen-Rich g-C3N4@Agpd Mott-Schottky Heterojunction Boosts Photocatalytic Hydrogen Production from Water and Tandem Reduction of NO-3 and NO-2 [J]." Journal of Colloid and Interface Science," 2021," 581:" 619-626.
[44] ZHAO J Z," JI M X," CHEN H L," et al. Interfacial Chemical Bond Modulated Bi19S27Br3/g-C3N4 Z-Scheme Heterojunction for Enhanced Photocatalytic CO2 Conversion [J]." Applied Catalysis B:" Environment and Energy," 2022," 307: 121162-1-121162-9.
[45] LI R J," LI H X," ZHANG X D," et al. S-Scheme g-C3N4/CdS Heterostructures Grafting Single Pd Atoms for Ultrafast Charge Transport and Efficient Visible-Light-Driven H2 Evolution [J]." Advanced Functional Materials," 2024," 34(38):" 2402797-1-2402797-14.
[46] XU M L," LIU L W," WANG K," et al. Hierarchical-Metal-Organic Framework-Templated Cu0.5Zn0.5In2S4-rGo-g-C3N4:" Flexible Synthesis and Enhanced Photocatalytic Activity [J]." Journal of Materials Chemistry A," 2020," 8(42):" 22124-22133.
[47] JI X Y," GUO R T," TANG J Y," et al. Fabrication of a Ternary NiS/ZnIn2S4/g-C3N4 Photocatalyst with Dual Charge Transfer Channels towards Efficient H2 Evolution [J]." Journal of Colloid and Interface Science," 2022," 618:" 300-310.
[48] HUANG Y," MEI F F," ZHANG J F," et al. Construction of 1D/2D W18O49 Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic H2 Evolution [J]." Acta Physico-Chimica Sinica," 2021," 38(7):" 2108028-1-2108028-9.
[49] YUE X Z," YI S S," WANG R W," et al. Synergistic Effect Based NixCo1-x Architected Zn0.75Cd0.25S Nanocrystals:" An Ultrahigh and Stable Photocatalysts for Hydrogen Evolution from Water Splitting [J]." Applied Catalysis B:" Environmental," 2018," 224:" 17-26.
[50] GUO P Y," ZHANG D G," LIU X Y," et al. In Situ Self-assembly of Mesoporous Zn-Cd-Mo-S Quaternary Metal Sulfides with Double Heterojunction Synergistic Charge Transfer for Boosting Photocatalytic Hydrogen Production [J]." Journal of Alloys and Compounds," 2022," 921: 166066-1-166066-10.
[51] GUO P Y," LIU X Y," ZHANG P," et al. Popcorn-Like Zncds-Based Nanospheres with Hierarchical Tandem Heterojunctions Synergy for Efficient Photocatalytic Performance [J]." Separation and Purification Technology," 2023," 323: 124482-1-124482-9.
[52] ZHANG P," GUO P Y," ZHANG M S," et al. Full-Spectrum Responsive Dual-defect Mediated S-Scheme Heterojunction for Cooperative Benzyl Alcohol Conversion and H2 Evolution [J]." Chemical Engineering Journal," 2024," 479: 147265-1-147265-11.
[53] ZHANG T X," MENG F L," GAO M M," et al. Porous Host-Guest MOF-Semiconductor Hybrid with Multisites Heterojunctions and Modulable Electronic Band for Selective Photocatalytic CO2 Conversion and H2 Evolution [J]." Small," 2023," 19(39):" 2301121-1-2301121-10.
[54] ZHU Y X," JIANG X," LIN L," et al. Fabrication of ZnS/CdS Heterojunction by Using Bimetallic MOFs Template for Photocatalytic Hydrogen Generation [J]." Chemical Research in Chinese Universities," 2020," 36(6):" 1032-1038.
[55] SHI J Y," YANG L," ZHANG J," et al. Dual MOF-Derived MoS2/CdS Photocatalysts with Rich Sulfur Vacancies for Efficient Hydrogen Evolution Reaction [J]." Chemistry," 2022," 28(64):" 202202019-1-202202019-10.
[56] WANG Q," ASTRUC D. State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis [J]." Chemical Reviews," 2020," 120(2):" 1438-1511.
[57] ZHANG S Y," DU M," XING Z P," et al. Defect-Rich and Electron-Rich Mesoporous Ti-MOFs Based NH2-MIL-125(Ti)@ZnIn2S4/CdS Hierarchical Tandem Heterojunctions with Improved Charge Separation and Enhanced Solar-Driven Photocatalytic Performance [J]. "Applied Catalysis B:" Environmental," 2020," 262: 118202-1-118202-11.
[58] ZHANG P," YIN X," ZHANG D," et al. MOF Templated to Construct Hierarchical ZnIn2S4-In2S3 Hollow Nanotube for Enhancing Photocatalytic Performance [J]." Chemical Engineering Journal," 2023," 458: 141394-1-141394-10.
(責任編輯: 單 凝)