999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

纖維素材料在水溶液中吸附凈化的研究進展

2025-02-06 00:00:00劉冠成張喆龍鑫楊柏
吉林大學學報(理學版) 2025年1期

摘要: 纖維素材料作為一種新型吸附劑, 具有優異的機械性能和化學穩定性, 通過化學改性可顯著提升其吸附性能, 在去除水溶液中的污染物方面展現出對重金屬離子、 有機小分子和微塑料等污染物的良好吸附能力, 也可作為血液凈化吸附劑用于治療血液疾病. 綜述纖維素材料在水溶液凈化中的應用, 并總結纖維素材料作為吸附劑的研究進展.

關鍵詞:" 纖維素; 化學改性; 水凈化; 血液凈化

中圖分類號: O63" 文獻標志碼: A" 文章編號: 1671-5489(2025)01-0173-09

Research Progress of Adsorption Purification for Cellulose

Materials in Aqueous Solutions

LIU Guancheng," ZHANG Zhe," LONG Xin," YANG Bai

(State Key Laboratory of Supramolecular Structure and Materials," Jilin University,

Changchun 130012," China)

Abstract:" Cellulose materials as a novel class of adsorbents," it has excellent mechanical properties and chemical stability,"" their adsorption performance can be significantly enhanced through chemical modification. In the context of removing pollutants from aqueous solutions," cellulose materials show good adsorption capabilities for contaminants such as heavy metal ions," organic small molecules," and microplastics,"" they can also be used as" blood purification adsorbent for the treatment of blood-related diseases. We review the application of cellulose materials in the purification of aqueous solutions,"" and" summarize the research process of cellulose materials as adsorbents.

Keywords: cellulose;" chemical modification;" water purification;" blood purification

近年來, 隨著工業化的快速發展和環境污染的日益加劇, 探索如何有效去除水中有害污染物的方法已成為當務之急. 因此, 開發有效的吸附凈化技術對維護良好的生態環境至關重要. 該技術要求使用低成本且環保的吸附劑, 這些吸附劑應具有可大規模生產和應用的潛力, 并且不會導致二次污染[1]. 在可用于吸附的材料中, 纖維素材料具有生物降解性、 經濟性和可再生性, 是一種理想的天然高分子吸附劑[2]. 由于其獨特的結晶性和氫鍵特性, 纖維素不溶于大多數溶劑, 因此適合在多數溶劑尤其是水溶液中的凈化. 此外, 纖維素材料表現出良好的血液相容性[3-4], 使其能有效應用于體內水溶液的凈化, 具有治療血液疾病的潛力, 從而保障人類生活質量.

本文綜述纖維素材料作為吸附劑在水溶液凈化中的應用, 分析并討論相關的關鍵挑戰與未來發展前景, 為纖維素材料吸附劑的設計與應用策略提供有益參考.

1 纖維素材料

纖維素是地球上含量最豐富的天然高分子, 主要來源于木材和棉花, 也可從其他植物的不同部位中提取. 它具有綠色、 良好的生物降解性、 生物相容性、 天然豐度和可持續性等特點, 是吸附材料的優良載體, 它本身也是一類有效的吸附材料. 纖維素的分子式為多糖, 是由β-(1,4)-糖苷鍵連接的 D-脫水吡喃葡萄糖單元整合的聚合物(圖1)[2].

由于沒有側鏈或支鏈, 纖維素鏈以有序結構存在. 因此, 纖維素是一種半結晶聚合物, 它同時包含結晶相和非晶相. 雖然它是一種線性聚合物, 且包含的伯羥基和仲羥基均為親水性, 但由于纖維素鏈之間的強氫鍵, 因此它不溶于水和普通有機溶劑. 纖維素鏈之間的氫鍵和葡萄糖單元之間的范德華力導致纖維素中形成結晶區域[5].

纖維素材料主要由纖維素及其衍生物組成. 纖維素一般分為4種晶體類型: 纖維素Ⅰ型、 Ⅱ型、 Ⅲ型和Ⅳ型. 其中, 纖維素Ⅰ型為天然纖維素, 纖維素Ⅱ型是具有反平行排列鏈的再生纖維素, 由纖維素Ⅰ型經堿液處理和重結晶制成. 再生纖維素與天然纖維素的不同之處在于其相對分子質量較小、 結晶度和聚合度較低, 以及分子纏結較少. 纖維素Ⅲ型由纖維素Ⅰ型或纖維素Ⅱ型經液氨處理制成, 纖維素Ⅳ型可通過纖維素Ⅲ型通過熱處理形成[6].

纖維素衍生物主要通過纖維素上的羥基引入不同取代基制備. 纖維素分子上的羥基可發生氧化、 酯化、 醚化和接枝共聚等反應[6-8]. 通過調節纖維素分子的相對分子質量和取代官能團的分布可得到纖維素衍生物, 主要產品有甲基纖維素(MC)、 乙基纖維素(EC)、 羥乙基纖維素(HEC)、 羥丙基纖維素(HPC)、 醋酸纖維素(CA)和羧甲基纖維素(CMC)等衍生物[6].

2 纖維素作為吸附材料的化學改性

近年來, 纖維素材料被廣泛應用于吸附凈化領域, 但纖維素的吸附性能較單一且其吸附能力有限, 需通過化學改性方式提高纖維素的吸附性能, 從而拓寬纖維素材料在吸附領域的應用. 主要化學改性方法包括以下幾方面.

2.1 酯 化

纖維素的每個重復單元有3個羥基, 能與羧基進行酯化反應. 在酯化過程中引入羧基, 增加纖維素材料的羧基含量, 從而可增強其靜電吸附作用或羧基螯合作用. 如Geay等[9]用丁二酸酐改性木漿, 對水溶液中Cd(Ⅱ)的吸附容量為 168.0 mg/g, 通過控制羧基含量實現了吸附性能的調控.

2.2 醚 化

纖維素可通過在堿性條件下與有機鹵化物以及環氧乙烷反應而醚化. 與酯鍵相比, 醚鍵的優勢在于它們在水性體系中的穩定性, 即使在低/高 pH 值下也能穩定存在. 纖維素材料最常用的醚化改性方法是用氯乙酸進行羧甲基化, 從而引入帶有負電荷的羧基, 可用于吸附陽離子[10]. 纖維素也可與六甲基二硅氧烷反應生成硅烷醚, 從而極大提高其表面的疏水性[11].

2.3 氧 化

纖維素材料常用的氧化方式有兩種: 1) 用 NaIO4 氧化, 常用于活化纖維素材料, 該氧化反應導致纖維素重復單元中無水葡萄糖環的 C2—C3 鍵選擇性裂解, 產生2個醛基[12-14]; 2) 纖維素的伯羥基可通過哌啶氧銨鹽(TEMPO)介導的氧化選擇性轉化為 6-脫氧-6-羧基纖維素[15-18], 所得纖維素材料吸附劑富含羧基, 可用于吸附金屬離子(圖2).

2.4 接枝共聚

在接枝共聚改性方法中, 可在纖維素材料上先接枝單體再實現共聚, 也可通過各種引發方式使纖維素骨架產生自由基與單體直接反應[19-23]. 在纖維素材料上實現接枝共聚改性的優勢在于改性能提高纖維素材料活性位點的密度, 從而提高纖維素材料的吸附性能, 但缺點是該方法對設備要求較高, 并對共聚反應的控制精確度要求較高.

3 纖維素材料在吸附凈化領域的應用

3.1 吸附重金屬離子

一些工業生產過程產生的廢水中含有大量重金屬離子, 這些有毒的重金屬離子對人類健康和生態環境均有危害. 許多纖維素材料可作為重金屬離子的吸附劑: 約含質量分數為40%纖維素的甘蔗渣可吸附制革廢水中的 Cr(Ⅲ) 和 Cr(Ⅵ) 離子[24]; Khoramzadeh等[25]用它進行生物吸附水溶液中的汞; 還可使用聚乙烯亞胺和 EDTA對甘蔗渣進行化學改性, 引入螯合劑以吸附重金屬離子[26-28]. Low 等[29]將檸檬酸轉化為檸檬酸酐, 然后與木漿中纖維素的—OH 基團反應, 形成酯鍵. 酯化過程提高了木纖維中羧酸的含量, —COOH基團被引入木漿中, 最終提高了天然木材對Cu(Ⅱ) 和 Pb(Ⅱ)離子的吸附能力. 也可將纖維素材料與有機鹵化物(環氧氯丙烷)反應, 得到具有反應性的環氧基團. 再通過接枝聚乙烯亞胺(PEI)實現功能化, 所得吸附劑Cell-PEI可吸附Hg, 其吸附容量為288 mg/g[30].

Saliba等[31]用酰胺肟基團通過丙烯腈和木屑的醚化反應對鋸末進行化學改性, 從而在纖維素的結構中添加氰基. 氰基的氨基酰化是通過將其與羥胺反應實現的[31]. 酰胺酰亞胺化鋸末對 Cr(Ⅲ)和Cu(Ⅱ)的吸附能力分別為202.8,240.6 mg/g. Godiya 等[32]用自由基聚合酰胺(AM)改性CMC制備了CMC/PAM復合水凝膠(圖3), 其對Cu(Ⅱ),Pb(Ⅱ)和Cd(Ⅱ)的吸附容量大幅度提升.

3.2 吸附有機小分子

除重金屬離子污染外, 在工業制造和農業生產過程中也會產生有機小分子類污染物, 如染料和農藥等. 纖維素材料作為吸附劑, 對這些有機小分子的吸附清除已有較多研究成果[33-35]. Tasri 等[36]通過纖維素的酸性水解合成了納米纖維素, 并將其與聚吡咯偶聯(NCPPY), 表面改性使羧基和羥基等活性功能團與染料和金屬離子相互作用, 可有效去除剛果紅染料(CR), 最大去除效率為85%(圖4).

Zhang等[37]將CMC和羧基化纖維素納米纖維(CNF-C)復合, 增加了羧基含量, 提高了對亞甲基藍(MB)染料的吸附(圖5). Zhao等[38]用聚乙烯亞胺(PEI)通過Schiff堿反應將戊二醛與膜上的酰胺鍵交聯, 增強了纖維素復合膜的性能, 通過靜電相互作用有效捕獲染料分子(剛果紅、 亞甲藍和孔雀石綠). Liu等[39]通過在纖維素上接枝丙烯酸和丙烯酰胺, 可有效增加其吸附位點, 成功去除陰離子染料酸性藍93(AB93)和陽離子染料亞甲基藍(MB).

3.3 吸附微塑料

微塑料(MPs)是指直徑為0.1 μm~1 mm 的塑料碎片和顆粒, 環境中已檢出聚對苯二甲酸乙二醇酯(PET)等聚合物[40]. 微塑料不易降解, 可通過水等多種途徑進入生物體內并穩定存在, 是影響生物健康風險的重要因素.

Zhuang等[41]以纖維素納米纖維(CNF)為基體材料, 以2,3-環氧丙基三甲基氯化銨(EPTMAC)為改性劑, 以聚乙烯醇(PVA)為交聯劑, 采用液氮冷凍法制備具有定向結構的改性纖維素納米纖維氣凝膠, 用于吸附水中小尺寸微塑料. 改性后的氣凝膠對小尺寸微塑料具有良好的吸附容量, 達146.38 mg/g. 此外, 還可用聚乙烯亞胺(PEI)對纖維素納米纖維(CNFs)進行改性, 并通過簡單的反應和冷凍干燥方法制備具有定向結構的改性氣凝膠(圖6)[42].

3.4 血液凈化

纖維素材料應用于生物大分子吸附, 主要體現在血液凈化領域. 血液凈化技術是一種利用膜分離或吸附分離原理清除病人血液中內源性和外源性毒素的治療技術, 在肝衰、 腎衰和膿毒血癥等危重病癥的治療中發揮關鍵作用[43-44]. 相對于水溶性小分子毒素, 對中大分子蛋白類血液毒素的有效清除是目前該領域的技術難點. 其中歸屬于血液凈化技術中的血液灌流技術, 主要是清除中大分子蛋白類血液毒素, 即將患者的血液引出體外, 與灌流器中的固態吸附材料接觸, 通過吸附清除血液毒素, 然后將凈化后的血液輸回給患者, 從而達到治療疾病的目的(圖7)[45-46]. 在血液灌流過程中, 吸附材料會與人體血液直接接觸, 所以高效生物相容性好的吸附材料是灌流技術研究的核心.

纖維素材料具有良好的生物相容性和生物活性, 適合作為血液灌流吸附劑載體(圖8), 尤其以纖維素微球作為血液灌流吸附劑的載體(圖7(B)). 目前, 纖維素及其衍生物已用于血液灌流清除毒素, 而且也有商業化的產品用于治療慢性腎臟病后期患者[47-50].

Tang 等[51]用疏水性烷基碳鏈(C18)修飾纖維素微球(圖9), 可有效吸附膽紅素," 膽紅素以單層形式吸附到纖維素微球的 C18 基團上, 治療黃疸疾病; Qiao等[4]用纖維素微球與碳納米管復合吸附膽紅素; Cao等[52]將多黏菌B交聯接枝到纖維素微球上, 可對體內毒素進行有效吸附; 商業化應用于治療疾病的Lixelle血液灌流柱通過將十六烷基胺接枝到纖維素微球上即可有效吸附清除β2-微球蛋白[53-57].

Fang等[58]研究了一種以纖維素微球為載體, 環氧氯丙烷為偶聯劑, 賴氨酸為配體的吸附劑, 通過帶正電的賴氨酸配體與內毒素分子上帶負電的磷酸基團相互作用實現對內毒素的吸附, 在兔子模型的體內研究中, 吸附劑在 2 h的血液灌流處理后血液中的血漿內皮素(ET)水平從(5.56±0.54)EU/mL降至(0.41±0.26)EU/mL(1 EU=1 IU=1 μmol/min); 多黏菌B是一種能與內毒素特異性結合的抗生素, 對內毒素有較好的清除能力, Cao等[52]以多黏菌B為配體, 纖維素微球為載體, 制備了一種在水溶液中吸附容量為3.605 EU/mg的內毒素吸附劑, 但以多黏菌B為配體的成本較高, 同時多黏菌B還會對腎臟和神經系統有損害, 存在潛在的健康風險;" Zhou等[59]通過聚多巴胺和聚乙烯亞胺修飾制備了一種有抗菌性和較強內毒素吸附及去除能力的CA 膜(PDCA膜), 這種膜具有良好的血液相容性且無細胞毒性, 在動態實驗條件下, PDCA 膜的內毒素吸附能力達(2 322.1±45.9)EU/g.

4 展 望

綜上所述," 本文討論了纖維素材料作為吸附劑在水溶液中凈化的應用, 以及纖維素材料提高其吸附性能的化學改性途徑. 通過化學改性可提高纖維素基吸附劑的吸附能力, 這是由于化學改性后纖維素材料上的活性結合位點增加所致. 盡管已有許多以纖維素材料為吸附劑進行水溶液吸附凈化處理的研究報道, 但大多數吸附研究僅限于小批量規模, 僅有少數能在中試和工業規模上開發用于實際水溶液的吸附凈化處理. 此外, 纖維素材料吸附劑的開發研究不應只局限在功能基團的選擇上, 而應該在纖維素材料上設計特定結構的功能基元, 從而增強纖維素吸附劑的吸附選擇性, 提高吸附劑的吸附效率. 纖維素材料也可作為吸附劑的基體材料, 在此基礎上設計構造出特定的多孔材料, 通過調控多孔材料的孔徑分布增強吸附劑對目標物質的清除效率.

參考文獻

[1] ASHORI A," CHIANI E," SHOKROLLAHZADEH S," et al. Cellulose-Based Aerogels for Sustainable Dye Removal:" Advances and Prospects [J]." Journal of Polymers and the Environment," 2024," 32(12):" 6149-6181.

[2] KAUSAR A," ZOHRA S T," IJAZ S," et al. Cellulose-Based Materials and Their Adsorptive Removal Efficiency for Dyes:" A Review [J]." International Journal of Biological Macromolecules," 2023," 224:" 1337-1355.

[3] XIE M," SUN J F," CHEN L. Procion Blue H-5R Functionalized Cellulose Membrane with Specific Removal of Bilirubin [J]." Cellulose," 2019," 26:" 8073-8085.

[4] QIAO L Z," LI Y L," LIU Y," et al. High-Strength," Blood-Compatible," and High-Capacity Bilirubin Adsorbent Based on Cellulose-Assisted High-Quality Dispersion of Carbon Nanotubes [J]." Journal of Chromatography A," 2020," 1634:" 461659-1-461659-9.

[5] MEDRONHO B," ROMANO A," MIGUEL M G," et al. Rationalizing Cellulose (in) Solubility:" Reviewing Basic Physicochemical Aspects and Role of Hydrophobic Interactions [J]." Cellulose," 2012," 19:" 581-587.

[6] SEDDIQI H," OLIAEI E," HONARKAR H," et al. Cellulose and Its Derivatives:" Towards Biomedical Applications [J]." Cellulose," 2021," 28(4):" 1893-1931.

[7] AZIZ T," FARID A," HAQ F," et al. A Review on the Modification of Cellulose and Its Applications [J]." Polymers," 2022," 14(15):" 3206-1-3206-34.

[8] YI T," ZHAO H Y," MO Q," et al. From Cellulose to Cellulose Nanofibrils: A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils [J]." Materials," 2020," 13(22):" 5062-1-5062-32.

[9] GEAY M," MARCHETTI V," CLéMENT A," et al. Decontamination of Synthetic Solutions Containing Heavy Metals Using Chemically Modified Sawdusts Bearing Polyacrylic Acid Chains [J]." Journal of Wood Science," 2000," 46:" 331-333.

[10] GERICKE M," TRYGG J," FARDIM P. Functional Cellulose Beads:" Preparation," Characterization," and Applications [J]." Chemical Reviews," 2013," 113(7):" 4812-4836.

[11] CERNY P," BARTOS P," KRIZ P," et al. Highly Hydrophobic Organosilane-Functionalized Cellulose:" A Promising Filler for Thermoplastic Composites [J]." Materials," 2021," 14(8):" 2005-1-2005-14.

[12] MELESE H," TSADE H. Cellulose Based Adsorbent for Cationic Methylene Blue Dye Removal [J]." Discover Applied Sciences," 2024," 6(2):" 46-1-46-15.

[13] KRAMAR A," IVANOVSKA A," KOSTIC′ M. Regenerated Cellulose Fiber Functionalization by Two-Step Oxidation Using Sodium Periodate and Sodium Chlorite: Impact on the Structure and Sorption Properties [J]." Fibers and Polymers," 2021," 22(8):" 2177-2186.

[14] LI Y," WANG F. Removal of Cu2+ from Aqueous Solution Using Three Alkyl-Amine-Modified Cellulose Absorbents Prepared via Schiff Base Grafting [J]." Desalination and Water Treatment," 2023," 282:" 146-154.

[15] LIU S S," LOW Z X," XIE Z L," et al. TEMPO-Oxidized Cellulose Nanofibers:" A Renewable Nanomaterial for Environmental and Energy Applications [J]." Advanced Materials Technologies," 2021," 6(7):" 2001180-1-2001180-23.

[16] YU H J," ZHENG L C," ZHANG T," et al. Adsorption Behavior of Cd(Ⅱ) on TEMPO-Oxidized Cellulose in Inorganic/Organic Complex Systems [J]." Environmental Research," 2021," 195:" 110848-1-110848-12.

[17] ABOU-ZEID R E," KAMAL K H," ABD EL-AZIZ M E," et al. Grafted TEMPO-Oxidized Cellulose Nanofiber Embedded with Modified Magnetite for Effective Adsorption of Lead Ions [J]." International Journal of Biological Macromolecules," 2021," 167:" 1091-1101.

[18] XING X Y," LI W Q," ZHANG J," et al. TEMPO-Oxidized Cellulose Hydrogel for Efficient Adsorption of Cu2+ and Pb2+ Modified by Polyethyleneimine [J]." Cellulose," 2021," 28(12):" 7953-7968.

[19] BHATTACHARYA A," MISRA B N. Grafting:" A Versatile Means to Modify Polymers:" Techniques," Factors and Applications [J]." Progress in Polymer Science," 2004," 29(8):" 767-814.

[20] GEORGOUVELAS D," ABDELHAMID H N," LI J," et al. All-Cellulose Functional Membranes for Water Treatment:" Adsorption of Metal Ions and Catalytic Decolorization of Dyes [J]." Carbohydrate Polymers," 2021," 264:" 118044-1-118044-10.

[21] BAYRAMOGLU G," ARICA M Y. Grafting of Regenerated Cellulose Films with Fibrous Polymer and Modified into Phosphate and Sulfate Groups:" Application for Removal of a Model Azo-Dye [J]." Colloids and Surfaces A:" Physicochemical and Engineering Aspects," 2021," 614:" 126173-1-126173-11.

[22] LI M," ZHANG S Q," CUI S Y," et al. Pre-grafting Effect on Improving Adsorption Efficiency of Cellulose Based Biosorbent for Hg (Ⅱ) Removal from Aqueous Solution [J]." Separation and Purification Technology," 2021," 277:" 119493-1-119493-12.

[23] LIU J T," CHEN Y C," JIANG S Y," et al. Rapid Removal of Cr (Ⅲ) from High-Salinity Wastewater by Cellulose-g-poly-(acrylamide-co-sulfonic acid) Polymeric Bio-adsorbent [J]." Carbohydrate Polymers," 2021," 270:" 118356-1-118356-10.

[24] ULLAH I," NADEEM R," IQBAL M," et al. Biosorption of Chromium onto Native and Immobilized Sugarcane Bagasse Waste Biomass [J]." Ecological Engineering," 2013," 60:" 99-107.

[25] KHORAMZADEH E," NASERNEJAD B," HALLADJ R. Mercury Biosorption from Aqueous Solutions by Sugarcane Bagasse [J]." Journal of the Taiwan Institute of Chemical Engineers," 2013," 44(2):" 266-269.

[26] ZHANG C Z," SU J J," ZHU H X," et al. The Removal of Heavy Metal Ions from Aqueous Solutions by Amine Functionalized Cellulose Pretreated with Microwave-H2O2[J]." RSC Advances," 2017," 7(54):" 34182-34191.

[27] GE H," HUANG H L," XU M," et al. Cellulose/Poly(ethylene imine) Composites as Efficient and Reusable Adsorbents for Heavy Metal Ions [J]." Cellulose," 2016," 23:" 2527-2537.

[28] HU T," HU X L," TANG C," et al. Adsorbent Grafted on Cellulose by in situ Synthesis of EDTA-Like Groups and Its Properties of Metal Ion Adsorption from Aqueous Solution [J]." Cellulose," 2022," 29(2):" 941-952.

[29] LOW K S," LEE C K," MAK S M. Sorption of Copper and Lead by Citric Acid Modified Wood [J]." Wood Science and Technology," 2004," 38:" 629-640.

[30] NAVARRO R R," SUMI K," FUJII N," et al. Mercury Removal from Wastewater Using Porous Cellulose Carrier Modified with Polyethyleneimine [J]." Water Research," 1996," 30(10):" 2488-2494.

[31] SALIBA R," GAUTHIER H," GAUTHIER R," et al. Adsorption of Copper(Ⅱ) and Chromium(Ⅲ) Ions onto Amidoximated Cellulose [J]." Journal of Applied Polymer Science," 2000," 75(13):" 1624-1631.

[32] GODIYA C B," CHENG X," LI D W," et al. Carboxymethyl Cellulose/Polyacrylamide Composite Hydrogel for Cascaded Treatment/Reuse of Heavy Metal Ions in Wastewater [J]." Journal of Hazardous Materials," 2019," 364:" 28-38.

[33] VARGHESE A G," PAUL S A," LATHA M S. Remediation of Heavy Metals and Dyes from Wastewater Using Cellulose-Based Adsorbents [J]." Environmental Chemistry Letters," 2019," 17:" 867-877.

[34] HAMIDON T S," ADNAN R," HAAFIZ M K M," et al. Cellulose-Based Beads for the Adsorptive Removal of Wastewater Effluents:" A Review [J]." Environmental Chemistry Letters," 2022," 20(3):" 1965-2017.

[35] GOEL N K," KUMAR V," MISRA N," et al. Cellulose Based Cationic Adsorbent Fabricated via Radiation Grafting Process for Treatment of Dyes Waste Water [J]." Carbohydrate Polymers," 2015," 132:" 444-451.

[36] TASRI S, MOHAMED M S, PADMANBAN V C, et al. Surface Modification of Nanocellulose Using Polypyrrole for the Adsorptive Removal of Congo Red Dye and Chromium in Binary Mixture [J]." International Journal of Biological Macromolecules," 2020," 151:" 322-332.

[37] ZHANG T J," XIAO S Y," FAN K H," et al. Preparation and Adsorption Properties of Green Cellulose-Based Composite Aerogel with Selective Adsorption of Methylene Blue [J]." Polymer," 2022," 258(14):" 125320-1-125320-13.

[38] ZHAO X Q," YANG M B," SHI Y C," et al. Multifunctional Bacterial Cellulose-Bentonite@Polyethylenimine Composite Membranes for Enhanced Water Treatment:" Sustainable Dyes and Metal Ions Adsorption and Antibacterial Properties [J]." Journal of Hazardous Materials," 2024," 477(15):" 135267-1-135267-17.

[39] LIU L," GAO Z Y," SU X P," et al. Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-Based Bioadsorbent [J]." ACS Sustainable Chemistry amp; Engineering," 2015," 3(3):" 432-442.

[40] WRIGHT S L," KELLY F J. Plastic and Human Health:" A Micro Issue? [J]." Environmental Science amp; Technology," 2017," 51(12):" 6634-6647.

[41] ZHUANG J," RONG N N," WANG X R," et al. Adsorption of Small Size Microplastics Based on Cellulose Nanofiber Aerogel Modified by Quaternary Ammonium Salt in Water [J]." Separation and Purification Technology," 2022," 293:" 121133-1-121133-11.

[42] ZHUANG J," PAN M Z," ZHANG Y H," et al. Rapid Adsorption of Directional Cellulose Nanofibers/3-Glycidoxypropyltrimethoxysilane/Polyethyleneimine Aerogels on Microplastics in Water [J]." International Journal of Biological Macromolecules," 2023," 235:" 123884-1-123884-10.

[43] YAO G S," JI F L," CHEN J W," et al. Nanobody-Functionalized Conduit with Built-in Static Mixer for Specific Elimination of Cytokines in Hemoperfusion [J]." Acta Biomaterialia," 2023," 172:" 260-271.

[44] LI M J," CHEN M M," YANG F C," et al. Protein/Polysaccharide Composite towards Multi-in-one Toxin Removal in Blood with Self-anticoagulation and Biocompatibility [J]." Advanced Healthcare Materials," 2023," 12(26):" 2300999-1-2300999-12.

[45] JU J," LIANG F X," ZHANG X X," et al. Advancement in Separation Materials for Blood Purification Therapy [J]." Chinese Journal of Chemical Engineering," 2019," 27(6):" 1383-1390.

[46] DOU W Y," WANG J," YAO Z K," et al. A Critical Review of Hemoperfusion Adsorbents:" Materials," Functionalization and Matrix Structure Selection [J]." Materials Advances," 2022," 3(2):" 918-930.

[47] WEBER V," ETTENAUER M," LINSBERGER I," et al. Functionalization and Application of Cellulose Microparticles as Adsorbents in Extracorporeal Blood Purification [J]."" Macromolecular Symposia," 2010," 294(2):" 90-95.

[48] KOBAYASHI A," NAKATANI M," FURUYOSHI S," et al. In vitro Evaluation of Dextran Sulfate Cellulose Beads for Whole Blood Infusion Low-Density Lipoprotein-Hemoperfusion [J]." Therapeutic Apheresis," 2002," 6(5):" 365-371.

[49] WANG Y J," YU Y T. In vitro and in vivo Evaluation of Amino Acid-Functionalized Cellulose Beads for Whole Blood Hemoperfusion [J]." Key Engineering Materials," 2005," 288:" 393-396.

[50] YAMAMOTO S," SATO M," SATO Y," et al. Adsorption of Protein-Bound Uremic Toxins through Direct Hemoperfusion with Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis [J]." Artificial Organs," 2018," 42(1):" 88-93.

[51] TANG W," YUAN Z T," SUN B," et al. Facile and Scalable Fabrication of Regenerated Cellulose Microspheres with High Strength and Porosity as a Potential Matrix for Hemoperfusion [J]." Journal of Macromolecular Science," 2024," 63(7):" 588-603.

[52] CAO X D," ZHU B Y," ZHANG X F," et al. Polymyxin B Immobilized on Cross-Linked Cellulose Microspheres for Endotoxin Adsorption [J]." Carbohydrate Polymers," 2016," 136:" 12-18.

[53] DHANDE O S," TEICHERT A," BROUMAND V," et al. Effects of Extracorporeal Blood Flow Rates on Patient Tolerance for LIXELLE Treatment during Outpatient Hemodialysis [J]." Blood Purification," 2024," 53(4):" 306-315.

[54] OHASHI A," NAKAI S," HORI H," et al. Suppression of Inflammation during Cell-Free Concentrated Ascites Reinfusion Therapy Using a Blood Purification Device [J]." Therapeutic Apheresis and Dialysis,nbsp; 2020," 54(5):" 511-515.

[55] TSUCHIDA K," YOSHIMURA R," NAKATANI T," et al. Blood Purification for Critical Illness:" Cytokines Adsorption Therapy [J]." Therapeutic Apheresis and Dialysis," 2006," 10(1):" 25-31.

[56] ODA Y," ISHIOKA K," OHTAKE T," et al. Dialysis-Related Amyloidosis Presenting as a Fever of Unknown Origin:" Symptoms and Management [J]." Internal Medicine," 2023," 62(24):" 3669-3677.

[57] ZHANG M J," LIU X J," ZHOU W," et al. Ordered Porous Materials for Blood Purification [J]." Separation and Purification Technology," 2023," 327(15): 124844-1-124844-16.

[58] FANG H," WEI J," YU Y T. In vivo Studies of Endotoxin Removal by Lysine-Cellulose Adsorbents [J]." Biomaterials," 2004," 25(23):" 5433-5440.

[59] ZHOU Y," ZHANG Q," XIA Z X," et al. Mixed-Charge Cellulose Nanocrystal Modified Cellulose Acetate Membrane with Endotoxin Scavenging Ability and Antibacterial Properties [J]." Journal of Applied Polymer Science," 2024," 141(33):" e55834-1-e55834-15.

(責任編輯: 單 凝)

主站蜘蛛池模板: 国产在线无码av完整版在线观看| 国产亚洲欧美在线视频| 欧美午夜一区| 在线色国产| 91精品国产一区自在线拍| 久久99国产乱子伦精品免| 成人欧美日韩| 久草青青在线视频| …亚洲 欧洲 另类 春色| 日本伊人色综合网| 亚洲福利网址| 国产熟女一级毛片| 国产一级小视频| 国产h视频免费观看| 久久免费视频播放| 久久久久久国产精品mv| 国产成人做受免费视频| yjizz视频最新网站在线| 亚洲清纯自偷自拍另类专区| 国产精品成人免费综合| 成人福利免费在线观看| 欧美激情视频二区| 成人在线亚洲| 香蕉99国内自产自拍视频| 国产成人综合亚洲欧美在| 国产sm重味一区二区三区| 精品伊人久久久香线蕉| 狠狠色婷婷丁香综合久久韩国| 男人的天堂久久精品激情| 久无码久无码av无码| 国产成年无码AⅤ片在线 | 欧美中文字幕在线二区| 91无码国产视频| 欧美中文字幕一区| 四虎精品免费久久| 精品人妻系列无码专区久久| 欧美不卡在线视频| 99久久精品免费看国产电影| 999精品视频在线| 日韩 欧美 国产 精品 综合| av一区二区三区高清久久| 尤物国产在线| 国内精品视频在线| 欧美亚洲一二三区| 一级毛片在线直接观看| 久久国产精品影院| 久久久久国产一级毛片高清板| 成人精品免费视频| 亚洲永久色| 伊人查蕉在线观看国产精品| 亚洲乱码在线视频| 91久久偷偷做嫩草影院电| 亚洲国产精品不卡在线| 国产超碰在线观看| 九九九九热精品视频| 人妻中文字幕无码久久一区| 中文字幕伦视频| 国产一级毛片网站| 国产精品偷伦视频免费观看国产| 国产精品妖精视频| 亚洲精品在线观看91| 97se亚洲综合在线韩国专区福利| 亚洲第一页在线观看| 色婷婷综合激情视频免费看| 国产精品尤物铁牛tv | 日本午夜网站| 久久久久青草线综合超碰| 亚洲欧美色中文字幕| JIZZ亚洲国产| 欧美三级视频在线播放| 91精品专区| 一级在线毛片| AV在线麻免费观看网站| 中文纯内无码H| 91蜜芽尤物福利在线观看| 日本免费一区视频| 日韩在线播放中文字幕| 成人另类稀缺在线观看| 亚洲啪啪网| 青草视频免费在线观看| 一级毛片中文字幕| 亚洲三级a|