




摘" " 要:【目的】鑒定梨新品種的S基因型可為合理配置授粉樹、雜交親本選配提供理論依據。【方法】為鑒定23個梨新品種的S基因型,設計新的特異引物FTQQYQ-B和anti-GIIWPN,對梨新品種的基因組DNA進行S基因特異擴增,并對擴增片段進行回收、克隆、測序,對各序列進行同源性搜索比對,最終確定各品種的S基因型。同時,對S基因出現頻率和各品種授粉親和性進行分析。【結果】確定23個梨新品種S基因型為:紅香酥S22S39;中梨1號S1S4;紅酥寶、早紅玉、紅瑪瑙、恬心和金香玉S3S39;丹霞紅、中梨秋香和六月香S4S39;紅酥蜜S4S22;中梨碧玉S5Sd;中梨蜜脆S4S5;中梨291 S12S28;陽光蜜露S12S22;早白蜜、T109和紅玉S5S12;紅酥脆、滿天紅和美人酥S4S12;中梨金福S5S39;秋月S3S4;庫爾勒香梨S22S28。統計發現S4和S39基因在新品種中出現頻率最高。【結論】研究鑒定出23個梨新品種的S基因型,為新品種商業化栽培配置適宜授粉樹提供了理論依據。
關鍵詞:梨;自交不親和;S基因型;特異性引物
中圖分類號:S661.2 文獻標志碼:A 文章編號:1009-9980(2025)03-0453-09
Identification and analysis of S-genotypes in 23 new pear cultivars
WANG Yanan1, 2, ZHANG Xiangzhan1, 2, 3, WANG Suke1, 2, SU Yanli1, 2, WANG Long1, 2, 3, XUE Huabai1, 2, 3*
(1National Key Laboratory for Germplasm Innovation amp; Utilization of Horticultural Crops/Zhengzhou Fruit Research Institute, Chinese Academy of Agriculture Sciences, Zhengzhou 450009, Henan, China; 2Zhongyuan Research Center, Chinese Academy of Agriculture Sciences, Xinxiang 453004, Henan, China; 3Chuxiong Yunfruit Industry Technology Research Institute, Chuxiong 675000, Yunnan, China)
Abstract: 【Objective】 Taxonomically, pear (Pyrus spp.) belongs to the Rosaceae family, Maloideae subfamily and Pyrus genus. It exhibits a typical gametophytic self-incompatibility (GSI) mechanism controlled by a single S-locus with multiple alleles. The S gene product within the style is a glycoprotein with ribonuclease (RNase) activity, known as S-RNase, which specifically regulates the recognition process between pollen and pistil. In commercial production, the rational configuration of pollinizer trees or the implementation of supplementary measures,like artificial pollination,is essential to ensure successful fruit set. China is endowed with a vast genetic resource of pear cultivars, comprising over 3000 varieties, which harbor a rich reservoir of S-gene alleles. Therefore, identifying the S-genotypes of pear cultivars and investigating the resources of S genes are of paramount importance for enhancing pear production and advancing genetic improvement through breeding. Recognizing the S-genotypes in new pear cultivars offers a theoretical foundation for the strategic planning of pollinizer tree arrangements and the judicious selection of hybridization parents. 【Methods】 DNA was extracted from the leaves of pear cultivars including Hongxiangsu, Zhongli No.1, Hongsubao, Zaohongyu, Hongmanao, Tianxin, Jinxiangyu, Danxiahong, Zhongliqiuxiang, Liuyuexiang, Hongsumi, Zhonglibiyu, Zhonglimicui, Zhongli 291, Yangguangmilu, Zaobaimi, T109, Hongyu, Hongsucui, Mantianhong, Meirensu, Zhonglijinfu, Akizuki and Kuerlexiangli pear. In this experiment, a total of three pairs of primers were designed. The first pair of primers was designed based on the primers reported. Specifically, the forward and reverse primers were selected from the highly conserved regions flanking the hypervariable region of the S gene, with high specificity. The forward primer was named FTQQYQ, with the sequence 5'-TTTACGCAGCAATATCAG-3', and the reverse primer was named anti-IWPNV, with the sequence 5'-AC(A/G)TTCGGCCAAATAATT-3'. The second pair of primers was designed using the DANMAN software to align the resequencing data of Hongxiangsu and other samples. The forward primer was named FTQQYQ-B, with the sequence 5'-TTTAC(C/G/T)CAGCAATATCAG-3', and the reverse primer was named anti-GIIWPN, with the sequence 5'-AC(A/G)TTCGGCCAAAT(A/T)AT-(G/T)(G/T)CC-3'. The third pair of primers was designed as specific ones for amplifying the S39-RNase gene. The forward primer was named S39-F, with the sequence 5'-TTTACTCAGCAATATCAG-3', and the reverse primer was named S39-R, with the sequence 5'-ACGTTCGGCCAAATAATG-3'. PCR amplification was carried out for genomic DNAs of twenty-four varieties. Amplified products were separated by electrophoresis on 1.8% agarose gels, stained with ethidium-bromide (0.5%), and photographed using the ?Bio-Rad GelDoc Go documentation system. A 50 bp DNA ladder was used for estimating the molecular sizes of the amplicons. Reproducible amplified target fragments were purified using a DH101-01 DNA gel extraction kit and cloned into the pEASY-Blunt Zero Cloning Vector, and then the recombinant vectors were transformed into Escherichia coli DH5α, identified by colony PCR, and then were bidirectionally sequenced. The obtained nucleotide sequences were searched against NCBI using BLAST to identify homologous genes and compared with the available pear sequences on GenBank. The frequency of S-genes and the pollination compatibility for each cultivar were also analyzed. 【Results】 Utilizing the DANMAN software to align the resequencing data, new polymorphic primers FTQQYQ-B and anti-GIIWPN were redesigned. Compared to the previous primers, FTQQYQ-B and anti-GIIWPN introduced an additional 1 and 3 polymorphic sites, respectively. This enhancement allowed the new primers to amplify a more diverse range of specific S-haplotype sequences. The S-genotypes of the 23 new pear cultivars were determined as follows: Hongxiangsu S22S39; Zhongli No. 1 S1S4; Hongsubao, Zaohongyu, Hongmanao, Tianxin and Jinxiangyu S3S39; Danxiahong, Zhongliqiuxiang and Liuyuexiang S4S39; Hongsumi S4S22; Zhonglibiyu S5Sd; Zhonglimicui S4S5; Zhongli291 S12S28; Yangguangmilu S12S22; Zaobaimi, T109 and Hongyu S5S12; Hongsucui, Mantianhong and Meirensu S4S12; Zhonglijinfu S5S39; Akizuki S3S4; and Kuerlexiangli pear S22S28. Statistical analysis revealed that the S4 and S39 alleles had the highest frequency among the new cultivars. The 24 pear cultivars identified in this study encompassed nine distinct S-genes, with S39 and S4 being the most frequent, each occurring in 10 out of the 48 alleles examined. The distribution of different S-genes among the tested pear cultivars was not uniform. Among the 23 new pear cultivars, 10 were found to possess the S39 genotype, indicating a relatively high proportion of the S39 genotype in the newly identified cultivars. Given that the previously identified genotype of Hongxiangsu was S22S39, specific primers for amplifying the S39 gene, namely S39-F and S39-R, were designed based on the resequencing data of Hongxiangsu. The primers S39-F and S39-R can specifically amplify the S39 genotype, providing a convenient and rapid method for the identification of the S39 genotype. Subsequently, an analysis of cross-pollination compatibility was conducted among the new cultivars. Based on the identified S-genotypes of the 23 pear varieties, it was found that the S-genotypes of Hongsubao, Zaohongyu, Hongmanao, Tianxin and Jinxiangyu were all S3S39; the S-genotypes of Danxiahong, Zhongliqiuxiang and Liuyuexiang were all S4S39; the S-genotypes of T109, Hongyu and Zaobaomi were all S5S12; and the S-genotypes of Hongsucui, Mantianhong and Meirensu were all S4S12. Since the four groups of varieties had completely identical S-genotypes, it was inferred that they cannot cross-pollinate with each other. If two varieties shared one identical S-gene, their cross-pollination may theoretically result in low fruit set or failure to bearing fruit. For example, the varieties Hongxiangsu, Hongsubao, Danxiahong, Zaohongyu, Hongmanao, Zhongliqiuxiang, Tianxin, Liuyuexiang, Jinxiangyu and Zhonglijinfu all contained the S39 gene. 【Conclusion】New S-genotype specific primers FTQQYQ-B and anti-GIIWPN were designed based on the resequencing data of Hongxiangsu and other varieties, which can amplify a more diverse range of specific S-haplotype sequences. Using PCR technology combined with DNA sequencing, the S-genotypes of 23 new pear varieties were identified. Additionally, it was found that the genes S4 and S39 had the highest frequency of occurrence among the new varieties.
Key words: Pear; Self-incompatibility; S-genotypes; Specific primer
自交不親和性(Self-incompatibility,SI)是顯花植物普遍存在的一種遺傳控制機制,即當自交不親和植物自花授粉時,雌蕊花柱可以識別并拒絕自己的花粉,使自己的花粉不能正常萌發生長,從而促進異交,提高異交重組率,避免近交衰退,保持物種的遺傳多樣性[1]。早期遺傳學發現,自交不親和性通常由一個單一的復等位S位點(S-locus)所調控[2]。S位點內通常包含著兩類緊密連鎖的基因,即花粉S基因和花柱S基因,這兩類基因構成的遺傳單元的不同變體稱為S單倍體型,它們之間的相互作用可以調控自交不親和性。自交不親和可以分為孢子體自交不親和與配子體自交不親和。絕大部分栽培果樹,包括梨屬均為配子體自交不親和[3],表現為自花授粉或相同S基因型品種間異花授粉不結實,其機制在于花柱內的S基因產物為具有核酸酶活性的糖蛋白S核酸酶(S-RNase),能夠特異地控制花粉和雌蕊識別過程[4]。因此,確定梨品種的S基因型可為大田科學配置授粉樹、雜交親本選配提供重要依據。
在梨的自交不親和性研究及S基因型鑒定方面,早期日本學者采用田間授粉試驗等傳統方法鑒定S基因型[5],隨后建立PCR-RFLP系統首先對亞洲梨自交不親和基因開展了研究并分離鑒定出9個S等位基因[6-7]。國內,最早是烏云塔娜[8]在中國白梨中分離鑒定7個新的S基因;隨后Tan等[9]、張妤艷等[10-11]、衡偉等[12-13]和陳慧等[14]利用PCR-RFLP檢測技術和核苷酸序列分析等方法分離鑒定出一些亞洲梨品種的S基因型及大量新的S基因。我國的梨自交不親和基因的分離鑒定雖開展得相對較晚,但取得了很大的成績。截至目前,我國梨品種中已分離鑒定出來的S基因有60個[15],極大豐富了梨的S基因型信息庫。
目前,梨品種S基因型的鑒定主要是根據雌性決定因子S核酸酶高變區(hyper variable region,HV)序列的差異來判別不同的S等位基因,采用梨S基因特異性引物FTQQYQ和anti-IWPNV[16-17]進行PCR擴增。但隨著種質資源的挖掘利用,經典的S等位基因引物FTQQYQ和anti-IIWPNV并不完全適用于所有梨品種S基因型的鑒定。筆者在本研究中根據重測序數據序列多態性比對結果,設計新的S基因簡并引物FTQQYQ-B和anti-GIIWPN。新的特異引物能夠擴增出更為豐富的特異性S單倍型序列,能夠準確鑒定出丹霞紅等23個新品種梨的S基因型,從而更有效地配置授粉品種,優化授粉策略,提高坐果率和果實品質,為品種遺傳改良和推廣應用奠定理論基礎。
1 材料和方法
1.1 試驗材料
供試梨新品種為紅香酥,中梨1號,紅酥寶,丹霞紅,紅酥蜜,早紅玉,紅瑪瑙,中梨碧玉,中梨秋香,中梨蜜脆,中梨291,陽光蜜露,恬心,六月香,金香玉,紅酥脆,滿天紅,美人酥,早白蜜,T109,紅玉,中梨金福,秋月;庫爾勒香梨為對照。以上試材均采自中國農業科學院鄭州果樹研究所梨種質資源圃(國家園藝種質資源庫鄭州梨分庫),于春季采集各品種幼嫩葉片,-80 ℃保存備用。
試劑材料:PrimeSTAR HS DNA Polymerase with GC Buffer 酶試劑盒(R044A)購自寶日醫生物技術(北京)有限公司(TaKaRa中國);瓊脂糖凝膠純化回收試劑盒(DH101-01)和DH5α感受態購自北京博邁德基因技術有限公司;CTAB植物基因組DNA快速提取試劑盒(DN14)購于北京艾德萊生物科技有限公司;核酸 Marker (M018 50 bp Ladder)購自康潤生物(GenStar);pEASY-Blunt Zero Cloning Kit (CB501)購自北京全式金生物技術 (TransGen Biotech)有限公司;其他藥品購自生工生物工程(上海)股份有限公司。測序委托生工生物工程(上海)股份有限公司完成。
1.2 試驗方法
1.2.1 梨葉片基因組DNA提取 使用CTAB植物基因組DNA快速提取試劑盒(DN14)提取80 μL梨葉片基因組DNA,取2 μL進行電泳后在紫外燈下檢測基因組DNA純度和完整性,取完整性高的DNA于-20 ℃保存備用。
1.2.2 PCR擴增S-RNase基因 本實驗共設計3對引物,第一對采用Ishiimizu等[16]所設引物,即上下游引物分別取S基因高變區兩側保守區序列中特異性較高的序列,正向引物為FTQQYQ:5'-TTTACGCAGCAATATCAG-3',反向引物為anti-IWPNV:5'-AC(A/G)TTCGGCCAAATAATT-3'。第二對引物利用DANMAN軟件比對紅香酥等重測序數據設計,FTQQYQ-B:5'-TTTAC(C/G/T)CAGCAATATCAG-3'和anti-GIIWPN:5'-AC(A/G)TTCGGCCAAAT(A/T)AT-(G/T)(G/T)CC-3'。第三對引物為擴增S39-RNase特異引物,正向引物為S39-F:5'-TTTACTCAGCAATATCAG-3',反向引物為S39-R:5'-ACGTTCGGCCAAATAATG-3'。
PCR反應體系為:基因組DNA 1 μL;10 μmol·L-1上下游引物各0.5 μL;GC Buffer 12.5 μL;dNTP 2 μL;Primer star 0.25 μL;ddH2O 8.25 μL。反應條件:98 ℃預變性3 min;98 ℃變性15 s,4 ℃退火15 s,72 ℃延伸1 min,變性退火延伸35個循環;72 ℃穩定75 min后降溫到4 ℃,取出后放于4 ℃保存備用。
取5 μL PCR擴增產物點樣于1.8%瓊脂糖凝膠中,于120 V電壓下電泳30~45 min。電泳結果采用伯樂?Bio-Rad GelDoc Go凝膠成像系統拍攝。
1.2.3 PCR產物膠回收、連接并測序 取50 μL PCR擴增產物點樣于1.8%瓊脂糖凝膠中,于120 V電壓下電泳30~45 min后在紫外燈下切膠。切下的膠塊參照博邁德瓊脂糖凝膠純化回收試劑盒說明書回收目的DNA片段。
膠回收產物與pEASY-Blunt Zero Cloning Kit Vector 按照4∶1的比例,于25 ℃連接15 min。連接產物轉化到大腸桿菌DH5α感受態中,涂布于Kana培養板上,37 ℃倒置培養過夜。挑取5個培養過夜的菌斑進行菌落PCR,篩選出的陽性克隆加入培養液中于37 ℃擴大培養,取部分送生工生物工程(上海)股份有限公司測序。樣品的測序結果經比對拼接后,與NCBI中已收錄的S-RNase序列進行BLAST比對,最終確定樣品的S基因型。
2 結果與分析
2.1 S基因的特異擴增
采用針對梨S-RNase基因的通用引物FTQQYQ和anti-IWPNV對23個梨新品種和1個對照(庫爾勒香梨)的梨品種基因組DNA進行PCR擴增,獲得瓊脂糖凝膠電泳檢測結果(圖1)。24個品種均可以擴增出S基因特異片段,條帶范圍在300~600 bp。其中,庫爾勒香梨、中梨291、陽光蜜露、紅酥脆、滿天紅、美人酥、早白蜜7個品種均擴增得到兩條S基因特異條帶,而紅香酥、中梨1號、紅酥寶、丹霞紅、紅酥蜜、早紅玉、紅瑪瑙、中梨碧玉、中梨秋香、中梨蜜脆、中梨金福、秋月、恬心、六月香、金香玉、T109和紅玉17個品種只擴增出一條S基因特異條帶,條帶范圍在300~500 bp。此外,紅酥脆、滿天紅、美人酥3個品種的2條S基因特異條帶的位置十分接近,均是一條在300~400 bp范圍內,另一條在500~600 bp范圍內。
由于上述17個品種只擴增出1條S基因特異條帶,推測原因可能為條帶大小非常接近,瓊脂糖電泳無法分離,或者引物只能擴增出部分特異的S基因型。基于以上猜測,對紅香酥、中梨1號、紅酥寶、丹霞紅、紅酥蜜、中梨碧玉、中梨蜜脆、中梨291等品種的重測序數據進行分析,發現經典的FTQQYQ和anti-IIWPNV引物不能擴增出部分梨品種的S基因。基于此,利用DANMAN軟件比對核苷酸序列,重新設計了新的多態性引物FTQQYQ-B和anti-GIIWPN(圖2)。與之前引物相比,FTQQYQ-B和anti-GIIWPN分別增加了1個(C/G/T)和3個(A/T)(G/T)(G/T)多態性位點,使得新引物能夠擴增出更為豐富的特異性S單倍型序列。
隨后,用新的特異引物FTQQYQ-B和anti-GIIWPN對24個梨品種基因組DNA進行PCR擴增,電泳檢測結果見圖3。由圖3可以看出,除中梨1號、紅酥蜜、中梨碧玉、中梨蜜脆、秋月擴增出1條300~400 bp的特異條帶外,其他19個品種均擴增出2條明顯的S基因特異性條帶,目的片段大小集中在300~600 bp之間。為了準確鑒定品種的S基因型,本研究對所有品種的目的條帶進行了測序分析。
2.2 S基因型的鑒定
將上述24個待測品種的S基因特異條帶進行回收、克隆及測序,測序結果通過BLAST與NCBI中已公布的梨S-RNase基因的序列信息進行比較分析,依據S基因相同時其DNA序列同源性為100%的原理,確定各品種的S基因型(表1)。
序列經比對分析后,24個梨品種的S基因型分別為:紅香酥S22S39;中梨1號S1S4;紅酥寶、早紅玉、紅瑪瑙、恬心和金香玉S3S39;丹霞紅、中梨秋香和六月香S4S39;紅酥蜜S4S22;中梨碧玉S5Sd;中梨蜜脆S4S5;中梨291 S12S28;陽光蜜露S12S22;早白蜜、T109和紅玉S5S12;紅酥脆、滿天紅和美人酥S4S12;中梨金福S5S39;秋月S3S4;庫爾勒香梨S22S28。其中,作為對照的庫爾勒香梨的S基因型與呂文娟等[17]、楊金花等[18]的鑒定結果一致,說明本研究鑒定的梨品種S基因型準確。
2.3 S基因頻率的分析
本研究鑒定出的24個梨品種中包括23個梨新品種和1個對照品種庫爾勒香梨,共涉及到9個不同的S基因,出現頻率最高的S基因為S39和S4,占10/48,其次是S12,占8/48;S3、S5,均占6/48;其余S基因出現的頻率較低,S22占4/48;S28占2/48;S1、Sd均占1/48。因此,不同S基因在檢測的梨品種中出現頻率不均衡。
23個梨新品種中10個品種含有S39基因型,說明S39基因型在本研究鑒定的新品種中所占比例較大。前文鑒定紅香酥的基因型為S22S39,所以根據紅香酥的重測序數據設計了擴增S39基因的特異性引物S39-F和S39-R,對24個梨品種DNA進行擴增,檢測引物的特異性。從圖4中可以看出,S39-F和S39-R引物可以特異擴增出S39基因型,與表1鑒定結果一致,為后續鑒定S39基因型提供了方便快捷的途徑。
2.4 新品種間授粉親和性分析
根據鑒定的24個梨品種的S基因型,發現紅酥寶、早紅玉、紅瑪瑙、恬心和金香玉的S基因型為S3S39,丹霞紅、中梨秋香和六月香的S基因型為S4S39,T109、紅玉和早白蜜的S基因型為S5S12,紅酥脆、滿天紅和美人酥的S基因型為S4S12。上述4組品種具有完全相同的S基因型,彼此之間不宜作為授粉品種。
紅香酥、紅酥寶、丹霞紅、早紅玉、紅瑪瑙、中梨秋香、恬心、六月香、金香玉和中梨金福均含有S39,中梨1號、丹霞紅、紅酥蜜、中梨秋香、中梨蜜脆、六月香、紅酥脆、滿天紅、美人酥和秋月均含有S4,中梨291、陽光蜜露、紅酥脆、滿天紅、美人酥、早白蜜、T109和紅玉均含有S12,中梨碧玉、中梨蜜脆、早白蜜、T109、紅玉和中梨金福均含有S5,紅酥寶、早紅玉、紅瑪瑙、恬心、金香玉和秋月均含有S3,紅香酥、紅酥蜜、陽光蜜露和庫爾勒香梨均含有S22,中梨291和庫爾勒香梨均含有S28。上述7組品種均含有一個相同的S基因,為避免發生結果率低或者結果不實,同一組品種之間不宜相互授粉。
3 討 論
1999年Ishimizu等[16]用PCR-RFLP體系來鑒定日本梨品種的S基因型,此方法也適用于中國梨品種,其引物FTQQYQ和anti-IIWPNV一直作為擴增中國梨品種S基因的特異引物。隨著分子生物學技術的發展,我國研究者利用這對引物擴增S等位基因并結合DNA測序技術進行了大量關于梨S基因型的鑒定工作[8-14]。本研究中,通過對紅香酥、中梨1號、紅酥寶、丹霞紅、紅酥蜜、中梨碧玉、中梨蜜脆、中梨291等梨品種重測序數據的分析,發現經典的S等位基因引物FTQQYQ和anti-IIWPNV并不完全適用于所有梨品種S基因型的鑒定。由此,根據序列多態性比對結果,重新設計了新的多態性引物FTQQYQ-B和anti-GIIWPN。與先前的引物相比,FTQQYQ-B和anti-GIIWPN引物分別新增了1個(C/G/T)和3個(A/T)(G/T)(G/T)多態性位點,這一改進提升了引物的特異性,從而能夠擴增出更加豐富且特異性強的S單倍型序列,擴大了遺傳分析的范圍,可用于后續新品種S基因型的鑒定工作。
本研究鑒定了24個梨品種的S基因型,其中鑒定庫爾勒香梨S基因型為S22S28,與呂文娟等[17]和楊金花等[18]鑒定結果一致。本研究表明紅酥脆、滿天紅和美人酥的S基因型為S4S12,與張琳等[19]鑒定結果一致。此外,S基因的遺傳遵循孟德爾遺傳規律,即在雜交后代中,子代的S基因分別來自其父本和母本。因此,開展果樹S基因型鑒定,不僅可以為生產實踐中合理配置授粉樹和雜交育種提供科學依據,還可以作為鑒定不同品種間親緣關系的有力證據[20-21]。本研究鑒定的23個梨新品種的親本基因型有的已被確定,如火把梨S12S26S44[19],新世紀S3S4[22],早美酥S3Sd[22],早酥S1Sd[23]和幸水S4S5[24]等,故可以通過親緣關系來進一步驗證這23個梨品種的S基因型,如早紅玉S3S39、紅酥寶S3S39、紅酥蜜S4S22的親本均為新世紀S3S4和紅香酥S22S39。丹霞紅的S基因型為S4S39,其親本為中梨1號S1S4和紅香酥S22S39。紅瑪瑙為S3S39,親本為早美酥S3Sd和紅香酥S22S39。滿天紅S4S12、美人酥S4S12和紅酥脆S4S12的親本均為幸水S4S5和火把梨S12S26。中梨秋香S4S39的親本為滿天紅S4S12和紅香酥S22S39。陽光蜜露S12S22的親本為滿天紅S4S12和庫爾勒香梨S22S28。除此之外,也可以利用本研究的結果推測出親本的S等位基因,如紅香酥S基因型為S22S39,親本為鄭州鵝梨和庫爾勒香梨S22S28,按照孟德爾遺傳規律,紅香酥的S22等位基因來自于庫爾勒香梨,而另一個等位基因S39來自于鄭州鵝梨,故鄭州鵝梨一定含有S39等位基因。
S基因是可遺傳的,親本S基因可遺傳給子代。本研究也對鑒定的24個梨品種的S基因出現頻率進行統計,發現24個梨品種所包含的9個S等位基因的分布頻率很不均衡,存在幾個明顯的高頻基因,如S4和S39,這可能是由于人們長期對品種可育性和經濟性狀進行了持續的選擇和優化。在新品種中S39基因出現的頻率最高,分析發現含有S39基因的品種親本之一均為紅香酥S22S39,而且發現目前已鑒定的梨品種中較少含有S39基因[5],推測S39可能與某些特殊的性狀(如果皮顏色、果心大小和糖酸比等經濟性狀)相連鎖,以致在新品種選育過程中被選擇,所以在新品種中出現的頻率最高。如果能將S基因與品種的經濟性狀的關系進一步研究,研究兩者之間是否具有連鎖關系,將進一步豐富對自交不親和領域理論的研究,還將有助于精準篩選出具有優良經濟性狀的品種,從而顯著提高育種效率和品種質量[25]。
本研究所鑒定的新品種,除中梨1號、紅酥脆、滿天紅和美人酥外,其他品種S基因型之前未被報道過,而且除秋月外其余均為我國自主培育的新品種,包括中梨1號、紅香酥、丹霞紅和早白蜜等代表性優良品種以及具有巨大推廣潛力的新秀品種中梨金福和陽光蜜露等。研究鑒定這些新品種的S基因型,并對其授粉親和性進行分析,可為新品種商業化栽培配置適宜授粉樹提供理論依據。
4 結 論
根據紅香酥等重測序數據,設計了新的S基因型特異引物FTQQYQ-B和anti-GIIWPN,該引物可擴增出更為豐富的特異性S單倍型序列。采用PCR技術結合DNA測序技術,鑒定了23個梨新品種的S基因型,鑒定結果為:紅香酥S22S39;中梨1號S1S4;紅酥寶、早紅玉、紅瑪瑙、恬心和金香玉S3S39;丹霞紅、中梨秋香和六月香S4S39;紅酥蜜S4S22;中梨碧玉S5Sd;中梨蜜脆S4S5;中梨291S12S28;陽光蜜露S12S22;早白蜜、T109和紅玉S5S12;紅酥脆、滿天紅和美人酥S4S12;中梨金福S5S39;秋月S3S4;庫爾勒香梨S22S28。統計發現新品種中S4和S39基因出現頻率最高。
參考文獻 References:
[1] MATTON D P,MAES O,LAUBLIN G,XIKE Q,BERTRAND C,MORSE D,CAPPADOCIA M. Hypervariable domains of self-incompatibility RNases mediate allele-specific pollen recognition[J]. The Plant Cell,1997,9(10):1757-1766.
[2] EAST E M,MANGELSDORF A J. A new interpretation of the hereditary behavior of self-sterile plants[J]. Proceedings of the National Academy of Sciences of the United States of America,1925,11(2):166-171.
[3] 張紹鈴,吳巨友,吳俊,齊永杰,高永彬. 薔薇科果樹自交不親和性分子機制研究進展[J]. 南京農業大學學報,2012,35(5):53-63.
ZHANG Shaoling,WU Juyou,WU Jun,QI Yongjie,GAO Yongbin. Advance in molecular mechanisms of self-incompatibility in Rosaceae fruit trees[J]. Journal of Nanjing Agricultural University,2012,35(5):53-63.
[4] SASSA H,HIRANO H,IKEHASHI H. Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear,Pyrus serotina Rehd.[J]. Molecular amp; General Genetics,1993,241(1/2):17-25.
[5] 張校立,艾沙江·買買提,徐葉挺,鄧莉,王繼勛. 梨S基因與S基因型鑒定的研究進展[J]. 西北農業學報,2018,27(8):1077-1087.
ZHANG Xiaoli,Aishajiang·Maimaiti,XU Yeting,DENG Li,WANG Jixun. Present advance of S-gene genotype and S-genotypes in pear[J]. Acta Agriculturae Boreali-occidentalis Sinica,2018,27(8):1077-1087.
[6] ISHIMIZU T,SATO Y,SAITO T,YOSHIMURA Y,NORIOKA S,NAKANISHI T,SAKIYAMA F. Identification and partial amino acid sequences of seven S-RNases associated with self-incompatibility of Japanese pear,Pyrus pyrifolia Nakai[J]. Journal of Biochemistry,1996,120(2):326-334.
[7] TAKASAKI T,OKADA K,CASTILLO C,MORIYA Y,SAITO T,SAWAMURA Y,NORIOKA N,NORIOKA S,NAKANISHI T. Sequence of the S9-RNase cDNA and PCR-RFLP system for discriminating S1- to S9-allele in Japanese pear[J]. Euphytica,2004,135(2):157-167.
[8] 烏云塔娜. 中國白梨自交不親和基因的分離鑒定[D]. 株洲:中南林學院,2003.
Wuyun Ta’na. Isolation and identification of self-incompatibility genes of Chinese Pyrus bretschneideri[D]. Zhuzhou:Central South Forestry University,2003.
[9] TAN X F,ZHANG L,Wuyun Ta’na,YUAN D Y,CAO Y F,JIANG A F,LIANG W J,ZENG Y L. Molecular identification of two new self-incompatible alleles (S-alleles) in Chinese pear (Pyrus bretschneideri)[J]. Journal of Plant Physiology and Molecular Biology,2007,33(1):61-70.
[10] 張妤艷,吳俊,衡偉,張紹鈴. 京白梨等品種S基因型鑒定及新基因S28和S30的核苷酸序列分析[J]. 園藝學報,2006,33(3):496-500.
ZHANG Yuyan,WU Jun,HENG Wei,ZHANG Shaoling. Identification of S-genotypes of pear cultivars and analyses of nucleotide sequences of S28-RNase and S30-RNase[J]. Acta Horticulturae Sinica,2006,33(3):496-500.
[11] 張妤艷,張紹鈴,吳俊,張瑞萍,李秀根. 八月酥等14個梨品種自交不親和基因(S基因)型的鑒定[J]. 果樹學報,2007,24(2):135-139.
ZHANG Yuyan,ZHANG Shaoling,WU Jun,ZHANG Ruiping,LI Xiugen. Identification of S-genotypes in 14 pear cultivars[J]. Journal of Fruit Science,2007,24(2):135-139.
[12] 衡偉,張紹鈴,張妤艷,吳俊,李秀根. 12個梨品種S基因型的鑒定[J]. 園藝學報,2007,34(4):853-858.
HENG Wei,ZHANG Shaoling,ZHANG Yuyan,WU Jun,LI Xiugen. Identification of S-genotypes of twelve pear cultivars by analysis of DNA sequence[J]. Acta Horticulturae Sinica,2007,34(4):853-858.
[13] 衡偉,張紹鈴,方成泉,吳華清,吳俊. 梨20個品種S基因型的鑒定及新S-RNases基因的克隆[J]. 園藝學報,2008,35(3):313-318.
HENG Wei,ZHANG Shaoling,FANG Chengquan,WU Huaqing,WU Jun. Identification of 20 S-genotypes and cloning novel S-RNases in Pyrus[J]. Acta Horticulturae Sinica,2008,35(3):313-318.
[14] 陳慧,張樹軍,張妤艷,衡偉,吳俊,張紹鈴. 40個梨品種S基因型的鑒定及S基因頻率分析[J]. 南京農業大學學報,2013,36(5):21-26.
CHEN Hui,ZHANG Shujun,ZHANG Yuyan,HENG Wei,WU Jun,ZHANG Shaoling. Identification of S-genotypes in forty pear cultivars and analysis of S-RNase genes frequency in Pyrus[J]. Journal of Nanjing Agricultural University,2013,36(5):21-26.
[15] 梁文杰,譚曉風,烏云塔娜. 梨自交不親和基因克隆及其進化分析[J]. 果樹學報,2021,38(10):1621-1637.
LIANG Wenjie,TAN Xiaofeng,Wuyun Ta’na. Cloning and phylogenetic analysis of S-RNase genes in genus Pyrus plants[J]. Journal of Fruit Science,2021,38(10):1621-1637.
[16] ISHIMIZU T,INOUE K,SHIMONAKA M,SAITO T,TERAI O,NORIOKA S. PCR-based method for identifying the S-genotypes of Japanese pear cultivars[J]. Theoretical and Applied Genetics,1999,98(6):961-967.
[17] 呂文娟,馮建榮,劉小芳,劉海楠,李文慧,鐘穎. ‘庫爾勒香梨’自交不親和S-RNase等位基因全長的克隆與分析[J]. 分子植物育種,2017,15(5):1639-1647.
Lü Wenjuan,FENG Jianrong,LIU Xiaofang,LIU Hainan,LI Wenhui,ZHONG Ying. Cloning and analysis of self-incompatibility S-RNase allelic genes in Korla fragrant pear[J]. Molecular Plant Breeding,2017,15(5):1639-1647.
[18] 楊金花,徐葉挺,田雯,張校立. 14個新疆與中亞梨品種S基因型的鑒定[J]. 分子植物育種,2023,21(10):3199-3206.
YANG Jinhua,XU Yeting,TIAN Wen,ZHANG Xiaoli. Identification of S-genotypes of fourteen pear cultivars in Xinjiang and central Asia[J]. Molecular Plant Breeding,2023,21(10):3199-3206.
[19] 張琳,譚曉風,胡姣,龍洪旭,袁德義,李秀根. 火把梨及其后代育成品種的S基因型鑒定[C]//南寧:第二屆中國林業學術大會—S9木本糧油產業化論文集,2009:379-385.
ZHANG Lin,TAN Xiaofeng,HU Jiao,LONG Hongxu,YUAN Deyi,LI Xiugen. Determination of S-genotypes of Huobali pear and its progenies[C]//Nanning:Proceedings of the 2nd China Forestry Academic Conference-S9 Woody Oil and Cereal Industrialization,2009:379-385.
[20] 何敏,谷超,吳巨友,張紹鈴. 果樹自交不親和機制研究進展[J]. 園藝學報,2021,48(4):759-777.
HE Min,GU Chao,WU Juyou,ZHANG Shaoling. Recent advances on self-incompatibility mechanism in fruit trees[J]. Acta Horticulturae Sinica,2021,48(4):759-777.
[21] 付燕,楊芩,彭舒,蔣瑤,劉倫沛. 枇杷屬植物3個新S基因鑒定及大渡河枇杷分類地位的新證據[J]. 果樹學報,2018,35(11):1316-1323.
FU Yan,YANG Qin,PENG Shu,JIANG Yao,LIU Lunpei. Identification of three novel S-RNase alleles in Eriobotrya Lindl. and new evidence for the taxonomic status of E. prinoides var. dadunensis[J]. Journal of Fruit Science,2018,35(11):1316-1323.
[22] 烏云塔娜,譚曉風,李秀根,張林,鄧建軍. 13個‘新世紀’梨后代品種S基因型的鑒定[J]. 林業科學,2007,43(9):116-122.
Wuyun Ta’na,TAN Xiaofeng,LI Xiugen,ZHANG Lin,DENG Jianjun. Identification of S-genotypes of 13 progenies of ‘Shinseiki’ pear[J]. Scientia Silvae Sinicae,2007,43(9):116-122.
[23] 許高歌. 桃和‘早酥’梨自交(不)親和性分子機制的研究[D]. 南京:南京農業大學,2012.
XU Gaoge. Molecular mechanism of self-compatibility in peach and ‘Zaosu’[D]. Nanjing:Nanjing Agricultural University,2012.
[24] 王春雷,高季平,趙憲坤. 利用酶聯免疫反應鑒定梨樹S基因型[J]. 江蘇農業學報,2015,31(5):1124-1128.
WANG Chunlei,GAO Jiping,ZHAO Xiankun. S genotyping in pear by PCR-ELISA[J]. Jiangsu Journal of Agricultural Sciences,2015,31(5):1124-1128.
[25] 姜新,曹曉艷,王大江,馮建榮,劉月霞,樊新民. 南疆杏品種自交不親和S-RNase基因型的鑒定[J]. 果樹學報,2012,29(4):569-576.
JIANG Xin,CAO Xiaoyan,WANG Dajiang,FENG Jianrong,LIU Yuexia,FAN Xinmin. Identification of self-incompatibility S-RNase genotypes for apricot cultivars in South of Xinjiang area[J]. Journal of Fruit Science,2012,29(4):569-576.