







摘" " 要:【目的】山楂作為食藥同源植物,具有抗炎等藥學潛能。為了開發山楂中的活性物質、選育山楂新品種,通過評估149份山楂種質資源中總酚、黃酮和花青苷含量的多樣性來篩選優異種質資源。【方法】以國家山楂種質資源圃(沈陽)中保存的149份山楂種質資源為試驗材料,分析果實中總酚、總黃酮和花青苷的含量,并通過聚類分析和隸屬函數分析對這些資源進行分類和篩選。【結果】總酚、總黃酮和花青苷含量存在顯著差異。總酚含量(w,后同)野圃8號為最高(1.531 mg·g-1),而桓仁向陽最低(0.110 mg·g-1)。總黃酮含量野圃8號為最高(56.434 mg·g-1),紫珍珠-1最低(19.763 mg·g-1)。花青苷含量野生山里紅-3最高(720.218 μg·g-1),黃果最低(19.187 μg·g-1)。聚類分析顯示了五類山楂資源,其中第一類的總酚(0.557~1.531 mg·g-1)和總黃酮(28.848~56.434 mg·g-1)含量平均值最高。利用百分位數分析初步建立了山楂3種活性成分的分級標準。【結論】根據隸屬函數值和聚類分析結果篩選出15份優異山楂種質資源,為后期篩選適宜鮮食和加工的品種以及今后選育優質山楂新品種提供相關依據。百分位數分析建立的分級標準可用于山楂種質資源成熟果實總酚、總黃酮和花青苷含量的系統性評價。
關鍵詞:山楂;果實品質;總酚;總黃酮;花青苷;聚類分析;隸屬函數
中圖分類號:S661.5 文獻標志碼:A 文章編號:1009-9980(2025)03-0486-12
Difference analysis in the content of the total phenols, flavonoid, and anthocyanin of 149 accessions of hawthorn gremplasm resources
ZHAO Baipeng1, CUI Mingqi1, SUN Xinyu1, WANG Yu1, WANG Xiangxu1, LIU Yuexue1, 2, ZHANG Xiao1, 2*
(1College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; 2National Field Genebank for Hawthorn, Shenyang 110866, Liaoning, China)
Abstract:【Objective】 Hawthorn (Crataegus L.), a plant belonging to the Rosaceae family and the apple tribe of the subfamily Maloideae, is renowned for its dual utility as both food and medicinal herb. Its historical use in medicine and food processing underscores its significance in both areas. The bioactive components present in hawthorn, particularly total phenols, total flavonoids, and anthocyanins, are known to contribute significantly to its health benefits, exhibiting a range of effects including anti-inflammatory, anti-diabetic, and anti-cancer properties. However, the diversity among hawthorn species is vast, leading to substantial variations in the contents of these active components. A systematic evaluation method is needed for the diversity of bioactive components content in hawthorn fruit. This study aimed to offer a basis for the selection of new varieties of hawthorn, and improve the utilization of these resources in the development of functional foods and other areas. 【Methods】 149 accessions of hawthorn germplasm resources from the National Hawthorn Germplasm Repository in Shenyang were used in this research. The fruits of these resources were meticulously processed to ensure the integrity of the total phenols, total flavonoids, and anthocyanins. The process began with cutting the hawthorn fruits into pieces, which were then subjected to liquid nitrogen treatment to preserve their freshness and potency. The treated fruits were subsequently stored at -80 ℃ to maintain their quality for later analysis. The samples were ground using a grinder to obtain a fine powder, from which 0.5 grams of freeze-dried hawthorn powder was weighed for each variety. A small amount of pre-cooled 1% HCl methanol solution was added to the powder, and the mixture was diluted to 10 mL. The mixture was homogenized and extracted in the dark at 4 ℃ for 20 minutes, with occasional shaking to ensure thorough mixing. After the extraction process, the samples were centrifuged at 12 000 r·min-1 for 10 minutes at 4 ℃ to separate the supernatant from the solid residue. The absorbance values at wavelengths of 280 nm, 325 nm, 600 nm, and 530 nm were measured for each variety using a 1% HCl-methanol solution as the blank reference. All data were processed using Excel 2016 for calculations of mean values, standard deviations, coefficients of variation, and membership functions. Descriptive statistics and frequency analysis were performed using SPSS v26.0 software, and cluster analysis was conducted using TBtools-Ⅱ software to classify the resources based on the content of total phenols, total flavonoids, and anthocyanins. 【Results】 The results of this study revealed significant variations in the content of total phenols, total flavonoids, and anthocyanins among the 149 accessions of hawthorn germplasm resources. Yepu No.8 was identified as the highest total phenol content (1.531 mg·g-1), while Huairen Xiangyang had the lowest (0.110 mg·g-1). Similarly, Yepu No.8 also exhibited the highest total flavonoid content (56.434 mg·g-1), Zizhenzhu No.1 was the lowest (19.763 mg·g-1). In terms of anthocyanin content, Yesheng Shanlihong No.3 had the highest (720.218 μg·g-1), and Huangguo had the lowest (19.187 μg·g-1). A preliminary grading standard for these compounds was established using percentile analysis. The total phenol content below 0.260 mg·g-1 was regarded as low, 0.260-0.587 mg·g-1 considered as medium, and above 0.587 mg·g-1 was high. The total flavonoid content below 22.242 mg·g-1 was regarded as low, 22.242-28.103 mg·g-1 considered as medium, and above 28.103 mg·g-1 was high. The anthocyanin content below 99.875 μg·g-1 was regarded as low, 99.875-249.819 μg·g-1 considered as medium, and above 249.819 μg·g-1 was high. The cluster analysis revealed five distinct groups, with the first group including Yepu No.8, Wuming Hawthorn-4, and Yesheng Shanlihong-3, having the highest average content of total phenols (1.531-0.557 mg·g-1), total flavonoids (56.434-28.848 mg·g-1), and anthocyanins (720.218-293.449 μg·g-1), with coefficients of variation of 35.1%, 23.4%, and 30.1%, respectively. The second group included Yu8002, Baiquan7807, and Muhuli-1, with total phenol content (0.980-0.327 mg·g-1), total flavonoid content (41.841-22.796 mg·g-1), and anthocyanin content (353.637-19.318 μg·g-1), with coefficients of variation of 24.7%, 11.5%, and 34.0%, respectively. The third group included Zizhenzhu-1, Chaojinxing-1, and 795507, with total phenol content (0.526-0.180 mg·g-1), total flavonoid content (26.533-19.763 mg·g-1), and anthocyanin content (193.442-19.187 μg·g-1), with coefficients of variation of 23.0%, 7.14%, and 45.4%, respectively. The fourth group included Xifenghong, Wangbaodi Dajinxing-2, and Lulong Dashanzha, with total phenol content (0.596-0.365 mg·g-1), total flavonoid content (26.861-21.795 mg·g-1), and anthocyanin content (256.720-110.848 μg·g-1), with coefficients of variation of 12.6%, 5.1%, and 19.7%, respectively. The fifth group included Feixian Zirou-1, Xifen No.5, and Songshancun Shisheng, with total phenol content (0.332-0.110 mg·g-1), total flavonoid content (27.198-21.870 mg·g-1), and anthocyanin content (299.691-105.526 μg·g-1), with coefficients of variation of 25.8%, 6.20%, and 26.1%, respectively. 【Conclusion】 Based on the membership function values and cluster analysis, 15 accessions of excellent hawthorn germplasm resources were selected. These results would provide the basis for the selection of suitable varieties for fresh consumption, processing, and the future hawthorn breeding. The grading standards established through percentile analysis would provide a systematic evaluation of the total phenol, total flavonoid, and anthocyanin content in mature fruits of hawthorn germplasm resources. This study would not only contribute to the understanding of the diversity of bioactive compounds in hawthorn, but also would serve as a valuable resource for the development of functional foods and the advancement of hawthorn cultivation and utilization.
Key words: Hawthorn; Fruit quality; Total phenols; Flavonoid; Anthocyanin; Cluster analysis; Membership function
薔薇科(Rosaceae)梨亞科蘋果族山楂屬(Crataegus L.),是目前薔薇科中最大的屬之一[1]。山楂屬植物廣泛分布于亞洲、歐洲、中北美洲及南美洲北部[2]。我國是山楂屬植物的起源中心之一,種質資源豐富[3]。野生山楂從2000多年前就發現可以被食用。我國山楂的栽培歷史已有1700余年[4],栽培山楂廣泛分布于東北、京津、遼冀、太行山區和山東等五大栽培產區,其中主要用于栽培生產推廣的有4個種,包括羽裂山楂、湖北山楂、云南山楂和伏山楂[5]。
山楂作為一種在傳統醫學和現代食品具有重要地位的植物[6],近年來,隨著科學研究的深入,研究的重點從果實外觀形態轉向了內在的生物活性成分[7-10]。酚類化合物及其黃酮類化合物作為山楂果實中的主要活性成分,已被證實具有治療心血管[11]、抗氧化[12]、抗炎[13]、降血脂[14]等多種生物活性[15-16]。花青苷作為一類特殊的黃酮類化合物,不僅賦予了山楂果實色澤,還具有抗氧化和抗腫瘤等藥學效能[17]。
總酚、總黃酮與花青苷含量作為果蔬評價的重要指標,已有不少學者利用其含量對植物進行評價[18]。楊迎東等[19]利用總酚、總黃酮、花青苷等活性成分含量對百合品質進行評價,徐子媛等[20]利用總酚等活性物質含量從73份桃種質資源中篩選出特異種質資源。山楂種類繁多,不同品種山楂果實間活性成分的含量差異較大[21],基于這3種活性物質的評價較為少見,在《作物種質資源鑒定評價技術規范 山楂》[22]中將總黃酮含量(干果實)大于4%的資源歸為優良種質資源,關于總酚和花青苷含量缺乏系統性評價。因此,筆者系統評估來自國家山楂種質資源圃(沈陽)的149份山楂資源果實總酚、總黃酮和總花青苷3種活性成分含量的多樣性,并基于這3種活性成分的含量采用聚類分析、隸屬函數等方法對149份山楂資源進行分類,旨在為篩選鮮食、加工的適宜品種及為今后選育優異山楂新品種奠定基礎。
1 材料和方法
1.1 材料
筆者所用的試材為國家山楂種質資源圃(沈陽)中保存的149份山楂種質資源(表1),取樣時間為2023年9月下旬至10月上旬,在果實著色后,對植株進行觀察,當確認植株上75%的果實均已達到成熟狀態時,即可采摘[22]。每個品種從長勢一致的3棵山楂樹上選取10個大小和成熟度一致的果實,削塊后低溫液氮處理,放入-80 ℃冰箱保存,用于后續的測定。
142份品種資源,編號1~15的山楂種質資源產地為北京;16~37為河北;38~45為河南;46為黑龍江;47~50為湖北;51~52為吉林;53:為捷克;54~87為遼寧;88為內蒙古;89~129為山東;130~141為山西;142~149為野生。
1.2 方法
1.2.1" " 總酚的提取及其含量測定" " 山楂總酚含量的測定參考曹建康等[23]的方法,并作適當改動。以沒食子酸標準品(源葉生物,B20851)為標樣,分別測定不同濃度下標準品溶液的OD280 nm吸光值。以OD280 nm吸光值為橫坐標x,濃度為縱坐標y繪制標準曲線:y=8.956 7x+0.025 6(R2=0.992 6)。
使用1%鹽酸-甲醇溶液作空白參比調零,取上清液測定OD280 nm吸光值。山楂果實總酚含量(mg·g-1)=C×V/M,其中C為標準曲線計算結果,V為提取液體積,M為果實鮮質量。
1.2.2" " 總黃酮、花青苷含量的測定" " 山楂總黃酮含量的測定[22],以蘆丁標準品(源葉生物,B20771)為標樣,分別測定不同濃度下標準品溶液的OD325 nm吸光值。以OD325 nm吸光值為橫坐標x,濃度為縱坐標y繪制標準曲線:y=0.586 1x-0.434 4(R2=0.993 3)。
山楂總黃酮含量的提取步驟與總酚相同,以1%鹽酸-甲醇溶液作空白參比調零,取上清液測定OD325 nm吸光值。山楂果實總黃酮含量(mg·g-1)=C×V/M,其中C為標準曲線計算結果,V為提取液體積,M為果實鮮質量。
山楂總花青苷含量的測定[22],以矢車菊素-3-O-葡萄糖苷(源葉生物,B21171)為標樣,分別測定不同濃度下標準品溶液的OD530 nm、OD600 nm吸光值。根據所得結果,以OD530 nm-OD600 nm吸光值之差為橫坐標x、濃度為縱坐標y,繪制標準曲線:y=(15.219x-0.014 1)×1000(R2=0.997 7)。
山楂花青苷含量的提取與總酚相同,以1%鹽酸-甲醇溶液作空白調零,取上清液分別于OD530 nm和OD600 nm處測定溶液的吸光值。山楂果實花青苷含量(μg·g-1)=C×V/M,其中C為標準曲線計算結果,V為提取液體積,M為果實鮮質量。
1.3 數據分析
利用Excel 2016進行數據平均值、標準偏差、變異系數、隸屬函數等計算。采用SPSS v26.0軟件進行描述統計和頻率分析并作圖,TBtools-Ⅱ軟件進行聚類分析并作圖。數據分析所用公式如下[24]:
隸屬函數值(membership function value):
μXi=(Xi-Xmin)/(Xmax-Xmin)
權重公式:Wj=Pj/[j=1nPj]
綜合評價值(comprehensive evaluation value):Di=[j=1nμXi×Wj]。
其中i為樣本序號(i=1,2,3…n);j為指標序號(j=1,2,3);μXi為總酚等3個指標的隸屬函數值;Xmin和Xmax為總酚等3個指標最小值和最大值;Wj為第j個綜合指標在所有綜合指標中所占的權重;Pj為山楂種質資源第j個指標的貢獻率;Di為第i個山楂種質資源的綜合評價值。
百分位數計算公式[25]:
Pr=[]+([+1]-)(d-[]);
d=1+(n-1)r。
其中Pr為第r個百分位數;d為百分位數r在樣本中的具體位置;[]為取d的整數部分;[]、[+1]分別為位次為[]、[+1]上的數據;n為樣本總數;r為百分位數數值。
2 結果與分析
2.1 山楂種質資源果實總酚、總黃酮、花青苷含量的分析
149份山楂種質資源果實的總酚、總黃酮和花青苷含量如表2所示,山楂果實中總酚含量分布為0.110~1.531 mg·g-1,其中含量最高的為野圃8號,最低的為桓仁向陽;總黃酮含量分布在19.763~56.434 mg·g-1,最高資源為野圃8號,最低為紫珍珠-1;花青苷含量分布在19.187~720.218 μg·g-1,最高資源為野生山里紅-4,最低資源為黃果。總酚、總黃酮和花青苷含量的變異系數分別為45.2%、17.4%、52.5%,總黃酮含量變異系數小于總酚和花青苷含量,說明總酚和花青苷含量的遺傳多樣性更為豐富。149份山楂種質資源果實的總酚、總黃酮、花青苷含量均值分別為0.495 mg·g-1、26.536 mg·g-1、205.450 μg·g-1。
根據149份山楂種質資源果實總酚、總黃酮、花青苷含量的百分位數分析(表2)建立分級標準,總酚含量低于0.260 mg·g-1為低含量,0.260~0.587 mg·g-1為中等含量,高于0.587 mg·g-1為高含量;總黃酮含量低于22.242 mg·g-1為低含量,22.242~28.103 mg·g-1為中等含量,高于28.103 mg·g-1為高含量;花青苷含量低于99.875 μg·g-1為低含量,99.875~249.819 μg·g-1為中等含量,高于249.819 μg·g-1為高含量。50%的山楂種質資源果實總酚含量不超過0.453 mg·g-1、總黃酮含量不超過25.441 mg·g-1、花青苷含量不超過191.603 μg·g-1,這些含量均低于平均值,說明大部分山楂種質資源的總酚、總黃酮和花青苷含量較低,高含量存在但較少。
149份山楂種質資源果實總酚、總黃酮、花青苷含量的頻率分布均呈正偏態(圖1)。其中共有98份山楂資源總酚含量在0.251~0.532 mg·g-1,有112份山楂資源總黃酮含量在22.581~29.440 mg·g-1,98份山楂資源花青苷含量在104.146~249.819 μg·g-1。頻率分布結果和百分位數分級結果較為接近,說明兩種分析方法準確可靠。
2.2 總酚、總黃酮、花青苷含量的綜合評價
根據隸屬函數公式計算總酚、總黃酮和花青苷含量的隸屬函數值μ1、μ2、μ3(表3),無名山楂-4的μ1為1.00,表明所有被測資源中無名山楂-4總酚含量最高,而紫珍珠-1的μ1為0.00,表明所有被測資源中紫珍珠-1的總酚含量最低。根據權重公式計算出3個指標的權重分別為W1 = 0.715 75、W2 = 0.229 36、W3 = 0.054 89。對149份山楂資源進行綜合評價并根據綜合評價值大小排序(表3),其中軟肉山里紅2號、野圃8號、晚秋山里紅、無名山楂-4、野生山里紅-3等為排名前15的優異資源。
2.3 聚類分析
根據總酚、總黃酮和花青苷含量對149份山楂資源進行聚類分析,結果顯示(圖2),可將所有資源分為5類,具體數據見表4。第Ⅰ類包括野圃8號、無名山楂-4、野生山里紅-3等13份山楂種質資源,總酚含量1.531~0.557 mg·g-1,總黃酮含量56.434~28.848 mg·g-1,花青苷含量720.218~293.449 μg·g-1,變異系數分別為35.1%、23.4%、30.1%。
第Ⅱ類包括豫8002、百泉7807、牧狐梨-1等52份山楂種質資源,總酚含量0.980~0.327 mg·g-1,總黃酮含量41.841~22.796 mg·g-1,花青苷含量353.637~19.318 μg·g-1,變異系數分別為24.7%、11.5%、34.0%。第Ⅲ類包括紫珍珠-1、超金星-1、795507等28份山楂種質資源,總酚含量0.526~0.180 mg·g-1,總黃酮含量26.533~19.763 mg·g-1,花青苷含量193.442~19.187 μg·g-1,變異系數分別為23.0%、7.14%、45.4%。第Ⅳ類包括西豐紅、萬寶地大金星-2、蘆龍大山楂等37份山楂種質資源,總酚含量0.596~0.365 mg·g-1,總黃酮含量26.861~21.795 mg·g-1,花青苷含量256.720~110.848 μg·g-1,變異系數分別為12.6%、5.1%、19.7%;第Ⅴ類包括費縣紫肉-1、西墳5號、松山村實生等19份山楂種質資源總酚含量0.332~0.110 mg·g-1,總黃酮含量27.198~21.870 mg·g-1,花青苷含量299.691~105.526 μg·g-1,變異系數分別為25.8%、6.20%、26.1%。
第Ⅰ類山楂種質資源總酚、總黃酮和花青苷含量均值最高,且根據百分位法分級建立的評價標準均屬于高含量,與綜合評價值的結果基本一致,說明兩種方法準確可靠。
3 討 論
目前,已有許多學者對山楂資源的總酚、總黃酮、花青苷等活性物質進行研究。孫博等[26]對10種不同產地的山楂進行了總黃酮含量的測定,總黃酮含量范圍為16.87~38.61 mg·g-1,其中最高含量約為最低含量的2.3倍,表明山楂資源的總黃酮含量具有顯著差異。白婧[27]測定了遼寧地區10種主要栽培的山楂品種總酚、總黃酮和花青苷含量,結果表明,10種山楂的總酚、總黃酮和花青苷含量具有顯著差異。李培暠等[28]測定了51份山楂資源的花青苷含量,結果表明,山楂資源的花青苷含量存在顯著差異。筆者對149份山楂資源的總酚、總黃酮和花青苷含量進行了測定,其中與白婧[27]相同的山楂資源總黃酮、花青苷含量基本一致,總酚含量總體上差異較大,可能是樣本保存條件、試驗儀器等差異造成的。在相同試驗方法下本研究與李培暠等[28]測出的山楂資源花青苷含量基本一致,表明本研究中的花青苷含量測定結果較為準確,具有一定重復性。
聚類分析可用于篩選優異的種質資源。張偉清等[29]以8種礦物質總酚和總黃酮含量進行聚類分析,篩選出各類物質含量均較高的酸橙類。張喬喬等[30]以總酚和總黃酮含量進行聚類分析,將142份棗種質資源分為5類,篩選出總酚和總黃酮含量較高的棗種質資源。白婧[27]對山楂果實顏色、糖酸比等品質特性與山楂花色苷、黃酮含量等功能性成分進行聚類分析,將10種山楂資源分為4類,得到具有較高的功能性成分含量,如黃酮、多酚和花色苷的第Ⅰ類和第Ⅲ類。李培暠等[28]對51份山楂資源的色差值和果實花青苷含量進行聚類分析,結果表明,51份山楂資源分為4類,其中包括花青苷含量最高的第Ⅰ類和花青苷含量較高的第Ⅲ類。筆者根據總酚、總黃酮和花青苷含量進行聚類分析,將149份山楂種質資源分為5類,其中興隆紫肉在第Ⅰ類花青苷含量均值最高,這與李培暠等[28]、白婧[27]涉及功能性成分花青苷含量的聚類結果相似,蒙陰大金星在第Ⅱ類,其總酚和總黃酮含量均值較高,這與白婧[27]涉及總酚,總黃酮含量的聚類結果相似,并由此篩選出第Ⅰ類總酚、總黃酮和花青苷含量均值最高。篩選出來的資源包括無名山楂-4、野圃8號、野生山里紅-3、軟肉山里紅2號等,這些資源在總酚、總黃酮和花青苷含量方面表現優異,為后續山楂相關研究與開發利用提供了重要依據。
百分位法作為一種常用的統計工具,在許多數據分析領域被廣泛使用[31]。張喬喬等[30]采用第25、50和75的百分位數對棗種質資源的總酚、總黃酮含量建立了分級標準,將總酚和總黃酮含量分為高中低等級。關于山楂總酚、總黃酮和花青苷含量的分級標準較為少見,在《作物種質資源鑒定評價技術規范 山楂》[22]中,將總黃酮含量大于4%的山楂種質資源歸為優良種質資源。常用百分數為第25、50、75百分數[30],在數據滿足正態分布的情況下,能較好地將數據劃分為不同等級,由于149份山楂種質資源果實總酚、總黃酮和花青苷含量的頻率分布滿足正偏態,常用的百分數劃分可能存在數據劃分不能反映真實情況的現象,有較多數據的值和第25百分數的值極為接近,二者之間的差異極小,所以在結合了頻數分析的情況下將低含量值劃分時采用第10百分數、高含量值劃分時采用第75百分數。
隸屬函數被廣泛運用于簡化植物評價指標的過程中,并提高評價的準確性和可靠性。李春紅等[32]運用隸屬函數對大豆的14個指標進行綜合評價,篩選出強耐陰型大豆品種9個。費丹等[33]運用隸屬函數篩選出4個蘆筍品種中最好的品種。筆者利用隸屬函數對總酚、總黃酮和花青苷含量進行綜合評價,根據D值大小排序后,篩選出的前15份資源D值均大于0.40,其中包括無名山楂-4、野圃8號、野生山里紅-3、軟肉山里紅2號等優異資源,與聚類結果相似。
4 結 論
筆者以149份山楂種質資源為研究對象,果實中的總酚、總黃酮和花青苷含量存在顯著差異,其中總酚和花青苷含量的遺傳多樣性更為豐富,總酚含量最高的資源為野圃8號,最低的為桓仁向陽;總黃酮含量最高的資源為野圃8號,最低的為紫珍珠;花青苷含量最高的資源為野生山里紅-4,最低的資源為黃果。
根據隸屬函數值和聚類分析,篩選出15份優異山楂資源種質資源,為后期篩選鮮食、加工的適宜品種及今后選育優異山楂新品種奠定基礎。通過百分位數法建立分級標準,從而初步形成針對山楂種質資源成熟果實總酚、總黃酮和花青苷含量的系統性評價標準。
參考文獻References:
[1] POTTER D,ERIKSSON T,EVANS R C,OH S,SMEDMARK J E E,MORGAN D R,KERR M,ROBERTSON K R,ARSENAULT M,DICKINSON T A,CAMPBELL C S. Phylogeny and classification of Rosaceae[J]. Plant Systematics and Evolution,2007,266(1):5-43.
[2] 段志文,王雙艷,龐旭,張潔,趙曄,鄭曉暉,馬百平. 山楂葉中的萜類化合物[J]. 中國中藥雜志,2021,46(11):2830-2836.
DUAN Zhiwen,WANG Shuangyan,PANG Xu,ZHANG Jie,ZHAO Ye,ZHENG Xiaohui,MA Baiping. Terpenoids from leaves of Chinese hawthorn[J]. China Journal of Chinese Materia Medica,2021,46(11):2830-2836.
[3] 勞永春. 山楂屬種質資源形態學評價及疑似資源鑒定[D]. 沈陽:沈陽農業大學,2019.
LAO Yongchun. Morphological evaluation of hawthorn germplasm resources and identification of suspected resources[D]. Shenyang:Shenyang Agricultural University,2019.
[4] 杜瀟. 我國原產栽培山楂及其近緣種的種間關系及起源演化研究[D]. 沈陽:沈陽農業大學,2019.
DU Xiao. Study on the interspecies relations and origins,evolution of cultivated hawthorn (Crataegus spp.) and related species in China[D]. Shenyang:Shenyang Agricultural University,2019.
[5] 趙煥諄,豐寶田. 中國果樹志-山楂卷[M]. 北京:中國林業出版社,1996.
ZHAO Huanzhun,FENG Baotian. Monograph on Chinese fruit trees:Volume on hawthorn[M]. Beijing:China Forestry Publishing House,1996.
[6] 齊索尼. 山楂果實性狀遺傳多樣性及果肉花色苷HPLC分析[D]. 沈陽:沈陽農業大學,2023.
QI Suoni. Analysis of genetic diversity and anthocyanins in hawthorn fruit by HPLC[D]. Shenyang:Shenyang Agricultural University,2023.
[7] 趙玉輝,齊索尼,李昂軒,趙迎汐,馬欣然,劉月學. 基于果實表型性狀的山楂種質資源遺傳多樣性分析[J]. 沈陽農業大學學報,2024,55(4):395-404.
ZHAO Yuhui,QI Suoni,LI Angxuan,ZHAO Yingxi,MA Xinran,LIU Yuexue. Genetic diversity analysis of hawthorn germplasm resources based on fruit phenotypic traits[J]. Journal of Shenyang Agricultural University,2024,55(4):395-404.
[8] 秦宇,郝瑞鑫,李若晴,王燕,董寧光. 山楂種質資源表型性狀多樣性分析及評價[J]. 果樹學報,2022,39(10):1759-1773.
QIN Yu,HAO Ruixin,LI Ruoqing,WANG Yan,DONG Ningguang. Diversity analysis of phenotypic characters in germplasm resources of hawthorn[J]. Journal of Fruit Science,2022,39(10):1759-1773.
[9] 趙瑞. 山楂種質資源性狀調查與分析[D]. 秦皇島:河北科技師范學院,2015.
ZHAO Rui. Traits investigation and analysis of hawthorn germplasm resources[D]. Qinhuangdao:Hebei Normal University of Science amp; Technology,2015.
[10] 沈燕琳,董文軒,李鮮,孫崇德,陳昆松. 山楂酚類物質及其生物活性研究進展[J]. 園藝學報,2013,40(9):1691-1700.
SHEN Yanlin,DONG Wenxuan,LI Xian,SUN Chongde,CHEN Kunsong. Phenolic compounds and their bioactivities in hawthorn (Crataegus spp.)[J]. Acta Horticulturae Sinica,2013,40(9):1691-1700.
[11] 吳瞻邑,由璐,劉素穩,常學東. 山楂抗心血管系統疾病的研究進展[J]. 中國食物與營養,2019,25(4):67-71.
WU Zhanyi,YOU Lu,LIU Suwen,CHANG Xuedong. Research advancements on effects of hawthorn against cardiovascular system diseases[J]. Food and Nutrition in China,2019,25(4):67-71.
[12] 陸施婷,張晟,陳月. 超重肥胖青壯年2型糖尿病中西醫治療概述[J]. 世界科學技術-中醫藥現代化,2024,26(4):927-933.
LU Shiting,ZHANG Sheng,CHEN Yue. The review of traditional Chinese and western medicine treatment of type 2 diabetes mellitus in overweight obese young adults[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2024,26(4):927-933.
[13] 賈彬,麥子盈,陳啟文,覃思意,王樂琪,嚴詩楷,李莎莎,肖雪. 山楂藥用價值與上市藥品研究進展[J]. 中草藥,2023,54(20):6878-6888.
JIA Bin,MAI Ziying,CHEN Qiwen,QIN Siyi,WANG Leqi,YAN Shikai,LI Shasha,XIAO Xue. Research progress on medicinal value of Crataegi Fructus and related marketed drugs[J]. Chinese Traditional and Herbal Drugs,2023,54(20):6878-6888.
[14] 李宣,何迎春,周芳亮. 山楂酸藥理作用及其機制的研究進展[J]. 中國現代醫學雜志,2021,31(8):49-53.
LI Xuan,HE Yingchun,ZHOU Fangliang. Research advances on pharmacological effects and mechanisms of maslinic acid[J]. China Journal of Modern Medicine,2021,31(8):49-53.
[15] 祖齊欣,王勇,劉素穩,徐永平,李淑英,王淑玉,常學東. 不同提取方式對山楂果渣可溶性膳食纖維結構及功能特性的影響[J]. 食品與發酵工業,2024,50(9):164-173.
ZU Qixin,WANG Yong,LIU Suwen,XU Yongping,LI Shu-ying,WANG Shuyu,CHANG Xuedong. Effects of different extraction methods on structure and functional characteristics of soluble dietary fiber from hawthorn residue[J]. Food and Fermentation Industries,2024,50(9):164-173.
[16] 趙盈,於天,鄭志剛,陳位三,弓思涵,宋天寶,李先寬,於洪建. 多酚在植物中的分布及其生物活性研究進展[J]. 中草藥,2023,54(17):5825-5832.
ZHAO Ying,YU Tian,ZHENG Zhigang,CHEN Weisan,GONG Sihan,SONG Tianbao,LI Xiankuan,YU Hongjian. Research progress on distribution and bioactivity of polyphenols in plants[J]. Chinese Traditional and Herbal Drugs,2023,54(17):5825-5832.
[17] 莊維兵,劉天宇,束曉春,渠慎春,翟恒華,王濤,張鳳嬌,王忠. 植物體內花青素苷生物合成及呈色的分子調控機制[J]. 植物生理學報,2018,54(11):1630-1644.
ZHUANG Weibing,LIU Tianyu,SHU Xiaochun,QU Shen-chun,ZHAI Henghua,WANG Tao,ZHANG Fengjiao,WANG Zhong. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants[J]. Plant Physiology Journal,2018,54(11):1630-1644.
[18] 陳奕琳,崔夢凡,馬晨陽,荀天卓,賈凱,李雯雯. 不同杏品種成熟期果實生長指標、總酚含量及總黃酮含量的比較[J]. 江蘇農業科學,2024,52(15):208-213.
CHEN Yilin,CUI Mengfan,MA Chenyang,XUN Tianzhuo,JIA Kai,LI Wenwen. Comparison of fruit growth indicators,total phenols content and total flavonoids content of different apricot varieties at maturity stage[J]. Jiangsu Agricultural Sciences,2024,52(15):208-213.
[19] 楊迎東,王偉東,張睿琪,馮秀麗,白一光,楊盼盼,周俐宏,李雪艷,胡新穎. 不同百合食藥用功能指標檢測分析[J]. 沈陽農業大學學報,2024,55(3):276-284.
YANG Yingdong,WANG Weidong,ZHANG Ruiqi,FENG Xiuli,BAI Yiguang,YANG Panpan,ZHOU Lihong,LI Xueyan,HU Xinying. Detection and analysis of functional indexes for food and medicine of different lilies[J]. Journal of Shenyang Agricultural University,2024,55(3):276-284.
[20] 徐子媛,嚴娟,蔡志翔,孫朦,宿子文,沈志軍,馬瑞娟,俞明亮. 桃果實糖酸和酚類物質與口感風味的相關性[J]. 江蘇農業學報,2022,38(1):190-199.
XU Ziyuan,YAN Juan,CAI Zhixiang,SUN Meng,SU Ziwen,SHEN Zhijun,MA Ruijuan,YU Mingliang. Correlation between soluble sugar,organic acid and phenolic substances with tasted flavor in peach fruit[J]. Jiangsu Journal of Agricultural Sciences,2022,38(1):190-199.
[21] 張春丹. 山楂貯存期間黃酮含量變化及抗氧化活性的研究[D]. 秦皇島:河北科技師范學院,2012.
ZHANG Chundan. Studies on changes of flavonoids content of hawthorn fruit during storage and their antioxidant activities[D]. Qinhuangdao:Hebei Normal University of Science amp; Technology,2012.
[22] 中華人民共和國農業部. 農作物種質資源鑒定評價技術規范 山楂:NY/T 2325—2013[S]. 北京:中國農業出版社,2013.
Ministry of Agriculture of the People’s Republic of China. Technical code for evaluating crop germplasm resources-Hawthorn:NY/T 2325—2013[S]. Beijing:China Agriculture Press,2013.
[23] 曹建康,姜微波,趙玉梅. 果蔬采后生理生化實驗指導[M]. 北京:中國輕工業出版社,2007:50-51.
CAO Jiankang,JIANG Weibo,ZHAO Yumei. Experimental guidance on postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press,2007:50-51.
[24] 謝季堅. 農業科學中的模糊數學方法[M]. 武昌:華中理工大學出版社,1993.
XIE Jijian. Fuzzy mathematical methods in agricultural science[M]. Wuchang:Huazhong University of Science and Technology Press,1993.
[25] 陳穎,馬禹. 新疆不同等級暴雨洪澇災害的時空變化特征[J]. 干旱區地理,2021,44(6):1515-1524.
CHEN Ying,MA Yu. Spatial and temporal characteristics of flood and rainstorm disaster in Xinjiang[J]. Arid Land Geography,2021,44(6):1515-1524.
[26] 孫博,霍華珍,蔡愛華,謝運昌,李典鵬. 不同產地大果山楂總黃酮含量及抗氧化活性[J]. 廣西科學,2020,27(4):356-361.
SUN Bo,HUO Huazhen,CAI Aihua,XIE Yunchang,LI Dianpeng. Total flavonoids content and antioxidant activity of Malus doumeri fruit from different producing areas[J]. Guangxi Sciences,2020,27(4):356-361.
[27] 白婧. 遼寧主栽山楂品種特征差異與主要功能性成分研究[D]. 沈陽:沈陽農業大學,2020.
BAI Jing. Study on the variety characteristics and functional components of cultivated hawthorn[D]. Shenyang:Shenyang Agricultural University,2020.
[28] 李培暠,孫馨宇,王鍵,付東旭,董文軒,劉月學,張梟. 山楂種質資源果實顏色與花青苷含量的關系[J]. 植物遺傳資源學報,2024,25(1):72-83.
LI Peihao,SUN Xinyu,WANG Jian,FU Dongxu,DONG Wenxuan,LIU Yuexue,ZHANG Xiao. Relationship of fruit color and anthocyanin content of hawthorn germplasm resources[J]. Journal of Plant Genetic Resources,2024,25(1):72-83.
[29] 張偉清,林媚,平新亮,王偉,馮先橘,姚周麟,王天玉. 柑橘果實礦質元素、活性物質含量特征及綜合評價[J]. 果樹學報,2024,41(8):1592-1603.
ZHANG Weiqing,LIN Mei,PING Xinliang,WANG Wei,FENG Xianju,YAO Zhoulin,WANG Tianyu. A comprehensive evaluation of mineral elements and active substances in citrus fruits[J]. Journal of Fruit Science,2024,41(8):1592-1603.
[30] 張喬喬,王艷,劉經延,張樂樂,吳翠云. 142份棗種質資源果實黃酮和總酚含量的差異分析[J/OL]. 分子植物育種,2024:1-22(2024-06-02). https://link.cnki.net/urlid/46.1068.S.20240531.1055.010.
ZHANG Qiaoqiao,WANG Yan,LIU Jingyan,ZHANG Lele,WU Cuiyun. Analysis on the Difference of Flavonoids and Total Phenols in 142 Jujube Fruits[J/OL]. Molecular Plant Breeding,2024:1-22(2024-06-02). https://link.cnki.net/urlid/46.1068.S.20240531.1055.010.
[31] 徐萬玲. 氮沉降、放牧和極端降水對羊草草地N2O排放的影響機制研究[D]. 長春:東北師范大學,2021.
XU Wanling. Study on effects of nitrogen deposition, grazing and extreme precipitation on N2O emissions in a Leymus chinensis meadow[D]. Changchun:Northeast Normal University,2021.
[32] 李春紅,姚興東,鞠寶韜,朱明月,王海英,張惠君,敖雪,于翠梅,謝甫綈,宋書宏. 不同基因型大豆耐陰性分析及其鑒定指標的篩選[J]. 中國農業科學,2014,47(15):2927-2939.
LI Chunhong,YAO Xingdong,JU Baotao,ZHU Mingyue,WANG Haiying,ZHANG Huijun,AO Xue,YU Cuimei,XIE Futi,SONG Shuhong. Analysis of shade-tolerance and determination of shade-tolerance evaluation indicators in different soybean genotypes[J]. Scientia Agricultura Sinica,2014,47(15):2927-2939.
[33] 費丹,謝敏,徐俊,周瑤敏,廣業蘭,湯泳萍,涂田華,熊曉暉. 基于主成分分析和隸屬函數法對不同品種蘆筍品質的綜合評價[J]. 江西農業學報,2024,36(4):33-39.
FEI Dan,XIE Min,XU Jun,ZHOU Yaomin,GUANG Yelan,TANG Yongping,TU Tianhua,XIONG Xiaohui. Comprehensive quality evaluation of different varieties of Asparagus based on principal component analysis and membership function analysis[J]. Acta Agriculturae Jiangxi,2024,36(4):33-39.