






摘" " 要:【目的】研究施氮時期對庫爾勒香梨萼片脫落的影響,探討氮素對庫爾勒香梨萼片脫落的作用,從而篩選出促進(jìn)庫爾勒香梨萼片脫落的適宜施氮時期。【方法】以庫爾勒香梨為試材,在不同生長階段用尿素(0.24 kg·株-1)作為氮肥進(jìn)行一次性施肥處理,調(diào)查不同處理的坐果率、脫萼率、萼筒氮素含量、萼筒木質(zhì)素含量及相關(guān)合成酶(PAL、POD、PPO)活性。【結(jié)果】與對照相比,不同施氮時期的庫爾勒香梨坐果率和脫萼率有顯著差異。花芽膨大期(3月26日)施氮肥的坐果率最高,為35.30%,而未施肥的對照脫萼率最高,為50.50%。萼筒全氮含量呈先升后降的趨勢。花芽膨大期(3月26日)施氮處理木質(zhì)素含量最高,在盛花期宿萼木質(zhì)素含量(w,后同)為115.64 mg·g-1、脫萼為112.49 mg·g-1;盛花期后10 d宿萼木質(zhì)素含量為125.73 mg·g-1、脫萼為103.69 mg·g-1;不同施氮時期在盛花期和盛花期后10 d宿萼和脫萼萼筒的木質(zhì)素含量與PAL、PPO活性均呈先升后降再上升再下降的變化趨勢。【結(jié)論】在花芽膨大期施氮處理可以有效提高萼筒木質(zhì)素含量,有利于庫爾勒香梨坐果,不利于庫爾勒香梨脫萼,反之不施氮肥有利于庫爾勒香梨萼片的脫落。
關(guān)鍵詞:庫爾勒香梨;施氮時期;坐果率;萼片脫落;木質(zhì)素
中圖分類號:S661.2 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2025)03-0568-09
Effects of nitrogen application time on fruit setting rate and lignin accumulation during sepal development of Kuerlexiangli pear
GUO Kailu1, 2, 3, WANG Lanfei1, 2, 3#, YU Mingyang1, 2, 3, FAN Weifan1, 2, 3, BAO Jianping1, 2, 3*
(1College of Horticulture and Forestry, Tarim University, Alar 843300, Xinjiang, China; 2Key Laboratory of Biological Resources Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Corps, Alar 843300, Xinjiang, China; 3Efficient and High-Quality Cultivation and Deep Processing Technology of Characteristic Fruit Trees in Southern Xinjiang National and Local Joint Engineering Laboratory, Alar 843300, Xinjiang, China)
Abstract: 【Objective】 Sepal shedding of Kuerlexiangli pear (Pyrus brestschneideri Rehd.) is a key factor in determining fruit quality and economic value. Nitrogen is an essential element for the growth of fruit trees, and has a profound influence on the growth and biochemical processes of fruit trees. However, there are limited studies on how the timing of N application affects sepal shedding in Kuerlexiangli pear. In this experiment, we used Kuerlexiangli pear trees as test materials to investigate the effects of nitrogen application times on the sepal shedding of Kuerlexiangli pear, so as to screen out the appropriate fertilization period for increasing the sepal shedding of Kuerlexiangli pear. 【Methods】 Four Kuerlexiangli pear plants with the same growth were set up in each treatment, and nitrogen fertilizer application (urea 0.24 kg per plant)" was carried out at different stages, that is, dormancy 1 (1 March), dormancy 2 (15 March), flower bud expansion (26 March), large bud stage (1 April), and full blooming stage (10 April). The fruit set rate was assessed on 1 April, and calyx abscission rate was assessed on 10 May. In view of the fact that sepal abscission in young fruits of Kuerlexiangli pear occurs at the time of full blossom and sepals are completely abscissa 10 days after full blossom. The calyx samples of 5 treatments were collected before N application on the day of full bloom (10 April) and 10 days after full bloom (20 April). The collected samples were used for the determination of the lignin content and related enzyme activities. 【Results】 The fruit setting rate and calyx shedding rate between the nitrogen application periods and the control showed significant differences. The fruit setting rate and the calyx shedding rate of the different nitrogen application periods were also significantly different from those of the control. The highest fruit setting rate (35.30%) was observed when nitrogen fertilizer was applied during the flower bud expansion period (March 26), which was an increase of up to 6.95% compared with the control. In contrast, the highest calyx shedding rate (50.50%) was recorded in the unfertilized control group. A positive correlation was observed between the total nitrogen content in the calyx tube and the fruit setting rate of sepals. The total nitrogen content in the calyx tube exhibited an initial increase followed by a subsequent decrease. The nitrogen application period had a significant impact on the lignin content and the activity of related enzymes in the calyx tube. The highest lignin content was found when nitrogen was applied during the flower bud expansion period (March 26), with 115.64 mg·g-1 in the persistent calyx during full blooming, 112.49 mg·g-1 in the calyx after shedding; 125.73 mg·g-1 in the persistent calyx 10 days after full bloom, and 103.69 mg·g-1 in the calyx after shedding. The lignin content and the activities of PAL and PPO enzymes in the calyx tube at full blooming and 10 days after full blooming showed a trend of increasing, then decreasing, and then rising and falling again across different nitrogen application periods. 【Conclusion】 Applying nitrogen fertilizer during the period of flower bud expansion was more beneficial for the fruit setting rate of Kuerlexiangli pear, but not for its calyx shedding rate. No-nitrogen fertilizer treatment was more beneficial for the calyx removal rate of Kuerlexiangli pear. The lignin content and related enzyme activities of the calyx sepals and detached sepals during the peak flowering period and 10 days after the peak flowering period showed a trend of first increasing and then decreasing. The lignin content, PAL activity, PPO activity, and POD activity of the calyx tube of Kuerlexiangli pear during the peak flowering period and 10 days after the peak flowering period were positively correlated with fruit setting rates and were negatively correlated with the rate of calyx detachment. These enzymes wouild play a key role in the biosynthesis of lignin and thus affect calyx detachment. Applying nitrogen during the period of flower bud expansion could increase the lignin content in the calyx tube, which would be beneficial for water transport and thus improve the fruit setting rate of Kuerlexiangli pear, but would not be conducive to the shedding of sepals.
Key words: Kuerlexiangli pear; Nitrogen application period; Fruit setting rate; Sepals detachment; Lignin
庫爾勒香梨(Pyrus brestschneideri Rehd.)簡稱香梨,屬于薔薇科梨亞科的白梨系統(tǒng)[1],為西洋梨和新疆梨自然雜交所產(chǎn)生的后代,以其獨(dú)特的口感和豐富的營養(yǎng)價值廣受消費(fèi)者的喜愛,是新疆主栽的梨品種[2]。
庫爾勒香梨分為宿萼果(公梨)和脫萼果(母梨),形態(tài)口感差異大[3]。宿萼果萼端凸起,果皮粗糙,果形不正,脫萼果萼端凹陷,果形端正,此差異由庫爾勒香梨在盛花期花萼的萼片部位是否脫落決定。影響脫萼的因素包括砧木、光照、樹齡、溫度、水分、營養(yǎng)、授粉品種、花序序位和植物激素等[4]。
在果樹的不同生長發(fā)育階段,對營養(yǎng)元素的需求及利用率是不同的。在蘋果、枸杞和柑橘的相關(guān)研究中,在控制施肥量的同時也將施肥時期作為重要的控制變量[5-7]。氮是果樹生長的必需元素,對果樹生長發(fā)育有重要的影響,與植物細(xì)胞木質(zhì)化程度有關(guān)。李付國等[8]的研究表明,桃經(jīng)過施氮處理后坐果率顯著高于不追施氮肥的處理。Meng等[9]研究表明,銨態(tài)氮處理提高了甘薯貯藏根形成過程中根系的PAL和POD活性,促進(jìn)了木質(zhì)素的合成,增強(qiáng)了根系的活性。在小麥孕穗期追施氮肥能提高莖稈中PAL、TAL、POD活性和木質(zhì)素含量[10]。PAL、POD、PPO等酶在木質(zhì)素合成中發(fā)揮著關(guān)鍵作用,其酶活性直接影響木質(zhì)素的合成[11-13]。在梨果實(shí)中,木質(zhì)素含量與各合成酶的活性之間存在顯著相關(guān)性[14-16]。與此同時,有研究者發(fā)現(xiàn)植物器官脫落與氮元素同樣存在相當(dāng)程度的關(guān)聯(lián)性[17]。在大豆相關(guān)研究中發(fā)現(xiàn),在植株葉片衰老脫落的同時,植株自身氮含量顯著降低[18]。而在甘藍(lán)型油菜的相關(guān)研究中,研究者發(fā)現(xiàn)脫落葉片中積累了大量氮元素。脫落葉片由于氮元素利用效率低,釋放出缺少氮元素的錯誤信號,導(dǎo)致植物體不斷向葉片輸送氮元素[19]。在狼尾草種粒脫落的相關(guān)研究中,通過對全長轉(zhuǎn)錄組分析,得出植物器官脫落與木質(zhì)素直接相關(guān)。此外,研究者發(fā)現(xiàn)玫瑰花瓣脫落過程中,在POD表達(dá)水平顯著上調(diào)的同時,木質(zhì)素沉積[20]。
筆者在本研究中以萼筒為研究對象,通過測定萼筒全氮、木質(zhì)素含量及PAL、POD、PPO等酶的活性,旨在篩選庫爾勒香梨適宜的施氮策略,為生產(chǎn)提供理論依據(jù)。
1 材料和方法
1.1 試驗材料
試驗前期處理于2023年3—4月在新疆生產(chǎn)建設(shè)兵團(tuán)第一師阿拉爾市塔里木大學(xué)庫爾勒香梨園進(jìn)行,該地屬暖溫帶大陸干旱荒漠氣候,年蒸發(fā)量約1 403.65 mm,降水量44.3 mm。試驗地土壤厚實(shí),無植被覆蓋物,主要為砂質(zhì)土壤,光照充足,晝夜溫差大,常年采用大水漫灌,以碭山酥梨為授粉樹進(jìn)行自然授粉。選用長勢一致、株高約4.5 m的庫爾勒香梨樹為試材,南北排列,樹齡25 a(年),株行距為2 m×4 m。試驗肥料選擇一次性施尿素0.24 kg·株-1處理,選用尿素作為施用的氮肥。
1.2 試驗設(shè)計
試驗選取24株長勢相近的庫爾勒香梨樹,在不同的生長階段休眠期1(3月1日)、休眠期2(3月15日)、花芽膨大期(3月26日)、大蕾期(4月1日)、盛花期(4月10日),分別選取4株樹進(jìn)行施氮肥處理(尿素0.24 kg·株-1),并分別標(biāo)記為T1、T2、T3、T4、T5,并設(shè)置4株樹不施氮肥為對照組(CK),每處理間隔1株樹進(jìn)行隔離。鑒于庫爾勒香梨幼果萼片離區(qū)在盛花期出現(xiàn),而在盛花期后10 d萼片完全脫落。在盛花期(4月10日)當(dāng)天施氮前和盛花期后10 d(4月20日)兩個時間點(diǎn),分別采集T5處理的宿萼果和脫萼果,并從中提取花萼樣品。
1.3 試驗方法
1.3.1 庫爾勒香梨花序坐果率和脫萼率的調(diào)查 在4月1日,分別從休眠期1、休眠期2、花芽膨大期、大蕾期和盛花期各選取5枝花序調(diào)查5個施肥處理和對照庫爾勒香梨的開花數(shù)量,統(tǒng)計花朵數(shù)。4月30日,調(diào)查5個施肥處理和對照的坐果率。5月10日,統(tǒng)計坐果花序果實(shí)總數(shù)和脫萼果數(shù)量,最終統(tǒng)計每個處理的脫萼率。
[坐果率/%=花序坐果總數(shù)花序開花總數(shù)×100];
[脫萼率/%=脫萼數(shù)總果數(shù)×100]。
1.3.2 萼筒全氮含量的測定 將盛花期和盛花期后10 d的庫爾勒香梨萼筒樣品帶回實(shí)驗室,洗滌順序為自來水→0.1%洗滌劑→自來水→蒸餾水,洗滌時間不超過2 min。吸去多余水分,在105 ℃干燥箱中殺青20 min,80 ℃烘至恒質(zhì)量,研磨并過篩。花萼全氮含量用微量凱氏定氮法測量,采用王冠力[21]和李嘉欣[22]的方法并加以改進(jìn)。
1.3.3 木質(zhì)素含量的測定 使用北京索萊寶科技有限公司的試劑盒進(jìn)行測定。
1.3.4 萼筒PAL、POD、PPO等酶活性的測定 將超低溫冰箱中的試驗樣品加液氮研磨至粉末,使用北京索萊寶科技有限公司的試劑盒(微量法)進(jìn)行測定。
1.4 數(shù)據(jù)分析方法
試驗數(shù)據(jù)采用Microsoft Excel 2019和DPS 7.05進(jìn)行分析,用LSD法評估顯著性(p<0.05)。用Origin 2021軟件對各項指標(biāo)進(jìn)行相關(guān)性分析,采用GraphPad Prism 9繪制圖片。
2 結(jié)果與分析
2.1 施氮時期對庫爾勒香梨坐果率和脫萼率的影響
2.1.1 施氮時期對庫爾勒香梨坐果率的影響 由圖1可知,不同時期施氮后庫爾勒香梨坐果率先升后降。T1、T2、T3、T4處理與對照有顯著差異,而T5與對照無顯著差異。5種施氮處理的坐果率均高于對照,其中T3處理坐果率最高,為35.30%,比對照增加了6.95%。可見,花芽膨大期施氮肥有利于庫爾勒香梨坐果。
2.1.2 施氮時期對庫爾勒香梨脫萼率的影響 由圖2可知,不同時期施氮后庫爾勒香梨脫萼率先降后升再降。對照脫萼率為50.50%,T1、T3、T4、T5處理的脫萼率顯著低于對照,T2處理與對照無差異,T1~T5處理的脫萼率分別下降了8.37%、1.94%、16.80%、21.50%、21.23%。說明施氮處理不利于庫爾勒香梨花萼的脫落,越延后施氮肥,脫萼率越低。
2.2 施氮時期對萼筒全氮含量的影響
由圖3可知,T1、T2、T3、T4、T5處理和對照的萼筒全氮含量呈先升后降趨勢,除T1時期盛花期后10 d宿萼全氮含量與對照無顯著差異外,施氮處理的萼筒全氮含量均顯著高于對照。盛花期和盛花期后10 d宿萼的全氮含量普遍高于脫萼。T4處理的宿萼與脫萼萼筒全氮含量(w,后同)均高于其他處理,分別為5.48、5.27、6.14、5.88 g·kg-1。
2.3 施氮時期對庫爾勒香梨萼筒木質(zhì)素含量及其相關(guān)酶活性的影響
2.3.1 施氮時期對庫爾勒香梨萼筒木質(zhì)素含量的影響 由圖4可知,不同施氮處理盛花期及盛花期后10 d的萼筒木質(zhì)素含量呈現(xiàn)先升后降再上升再下降的趨勢,且宿萼萼筒的木質(zhì)素含量高于脫萼萼筒。在盛花期和盛花期后10 d,T1、T3、T4、T5處理與對照組相比,萼筒的木質(zhì)素含量均顯著增加,其中T3處理的宿萼木質(zhì)素含量增幅最大,達(dá)到21.28 mg·g-1,而T2處理則導(dǎo)致木質(zhì)素含量下降4.90 mg·g-1;脫萼萼筒中,T3處理的木質(zhì)素含量增幅最大,達(dá)到21.41 mg·g-1,T2處理下降2.03 mg·g-1。在盛花期10 d后,宿萼木質(zhì)素含量增幅最大的為T3處理,達(dá)到26.87 mg·g-1,而T2處理的木質(zhì)素含量下降0.65 mg·g-1;T3和T4處理脫萼木質(zhì)素含量的增幅最大,分別為16.10 mg·g-1和16.08 mg·g-1,T2處理則下降3.98 mg·g-1。綜上所述,在T1、T3、T4和T5時期施氮增加萼筒木質(zhì)素含量,在T2時期施用降低木質(zhì)素含量。
2.3.2 施氮時期對萼筒木質(zhì)素合成相關(guān)酶活性的影響 由圖5可知,不同施氮處理萼筒木質(zhì)素合成相關(guān)酶活性均存在顯著差異。由圖5-A可知,盛花期和盛花期后10 d,T1、T3、T4和T5處理的宿萼萼筒PAL活性顯著增強(qiáng),T4增幅最大為33.76%和35.79%,T2處理顯著下降8.15%和8.30%;脫萼萼筒的PAL活性在T4處理下增幅最大,為36.21%和35.83%,T2處理顯著下降14.73%和12.33%。由圖5-B可知,在盛花期和盛花期后10 d,T1、T3、T4、T5施氮處理的PPO活性顯著高于對照,且宿萼萼筒的PPO活性高于脫萼萼筒。T3處理在兩個時期中的PPO活性最高,分別為12.94、11.30、14.03、12.37 U·g-1,T2處理顯著下降0.67 U·g-1和0.70 U·g-1。由圖5-C可知,施氮處理顯著提高了宿萼與脫萼萼筒的POD活性,T3處理的增幅最大,其中宿萼萼筒的POD活性分別在盛花期和盛花期后10 d達(dá)到64.11%和80.68%的增幅,脫萼萼筒的POD活性在盛花期和盛花期后10 d達(dá)到67.16%和60.65%的增幅。
2.4 坐果率、脫萼率與萼筒全氮、木質(zhì)素含量及相關(guān)酶活性的相關(guān)性分析
由圖6可知,盛花期和盛花期后10 d的萼筒全氮含量與庫爾勒香梨萼片坐果率呈極顯著正相關(guān)(r>0.707 9)。盛花期POD活性與坐果率呈顯著(0.576 0<r<0.707 9)正相關(guān)。
盛花期和盛花期后10 d的萼筒全氮含量與庫爾勒香梨萼片脫萼率之間存在極顯著負(fù)相關(guān)(r>0.707 9)。盛花期和盛花期后10 d木質(zhì)素含量與萼片脫萼率呈顯著負(fù)相關(guān)(0.576 0<r<0.707 9)。盛花期和盛花期后10 d的PAL活性與脫萼率呈極顯著負(fù)相關(guān)(r>0.707 9);盛花期和盛花期后10 d的PPO活性與脫萼率呈極顯著負(fù)相關(guān)(r>0.707 9)。
3 討 論
3.1 施氮時期對花萼全氮含量的影響
相關(guān)研究表明,氮素是植物生長發(fā)育過程中至關(guān)重要的礦質(zhì)元素之一[23],不僅對植物的營養(yǎng)生長和生殖生長產(chǎn)生影響,更是決定作物產(chǎn)量的關(guān)鍵因素[24]。駱建珍[25]發(fā)現(xiàn),當(dāng)偏施氮肥時,黃金梨樹脫萼率較低,于新剛等[26]也認(rèn)為施氮肥時梨樹的脫萼率降低,筆者在本研究中發(fā)現(xiàn)施氮處理可以提高庫爾勒香梨的坐果率,研究結(jié)果與前人研究基本一致。筆者在本研究中注意到施氮處理增加了庫爾勒香梨花萼的全氮含量,劉衛(wèi)星等[27]發(fā)現(xiàn)施氮量可影響不同土壤肥力條件下冬小麥葉片全氮含量,與不施氮肥相比,施氮處理顯著增加了頂三葉的全氮含量,這與本試驗研究結(jié)果一致。本研究結(jié)果表明,施氮有助于庫爾勒香梨坐果,但會增加宿萼果,降低脫萼率。
3.2 施氮時期對庫爾勒香梨花萼木質(zhì)素含量及其相關(guān)酶活性的影響
木質(zhì)素是細(xì)胞壁重要成分,木質(zhì)次生細(xì)胞壁在植物生長中起關(guān)鍵作用,對植物體內(nèi)水分、營養(yǎng)輸送、生物和非生物脅迫的抵抗能力至關(guān)重要[28]。章霄云等[29]在研究中指出,PAL、POD、PPO在木質(zhì)素合成過程中具有關(guān)鍵的調(diào)控作用。氮素影響植物體內(nèi)酶活性,調(diào)控木質(zhì)素、纖維素合成,直接參與木質(zhì)化過程。
筆者在本研究中發(fā)現(xiàn)不同施氮時期處理的庫爾勒香梨花萼木質(zhì)素含量均高于未施氮處理。蕭長亮等[30]的研究結(jié)果表明,氮素對水稻的抗倒伏性能具有顯著影響,劉笑鳴[31]研究發(fā)現(xiàn),不同施氮處理玉米節(jié)間木質(zhì)素含量均高于不施氮處理,這與本試驗研究結(jié)果一致。高珍妮等[32]證實(shí),適量地施氮可提高胡麻作物莖稈的PAL、POD活性。黃秀蘭[33]認(rèn)為,PAL、PPO、POD酶活性的激活對木質(zhì)素的積累有重要作用,且梨果實(shí)中相關(guān)合成酶活性與木質(zhì)素含量之間存在顯著相關(guān)關(guān)系。筆者在本研究中發(fā)現(xiàn),PAL、PPO和POD活性與木質(zhì)素含量之間存在正相關(guān)性,其次是與脫萼率之間同樣呈現(xiàn)負(fù)相關(guān)性。
4 結(jié) 論
施氮對庫爾勒香梨花萼脫萼有顯著影響。適量施氮可提高坐果率,但可能會導(dǎo)致宿萼果增多,從而降低花萼的正常脫萼。在花芽膨大期進(jìn)行施氮處理可以增加萼筒的木質(zhì)素含量,盛花期宿萼木質(zhì)素含量為115.64 mg·g-1,脫萼為112.49 mg·g-1;盛花期后10 d宿萼木質(zhì)素含量為125.73 mg·g-1,脫萼為103.69 mg·g-1。木質(zhì)素含量的增加可能增強(qiáng)萼筒的結(jié)構(gòu),有利于水分的運(yùn)輸,從而提高香梨的坐果率,而不利于萼片的脫落。盛花期和盛花期后10 d庫爾勒香梨萼筒木質(zhì)素含量、PAL活性、PPO活性、POD活性與坐果率呈正相關(guān),但與脫萼率呈負(fù)相關(guān),這些酶在木質(zhì)素的生物合成過程中起著關(guān)鍵作用,進(jìn)而影響花萼脫落。
參考文獻(xiàn) References:
[1] 玉山·庫爾班,齊曼·尤努斯,李疆,覃偉銘. 庫爾勒香梨脫萼、宿萼正常果和粗皮果的品質(zhì)比較[J]. 新疆農(nóng)業(yè)科學(xué),2012,49(6):1028-1034.
Yusan·Kurban,Qiman·Yunus,LI Jiang,QIN Weiming. Comparison of fruit quality of normal and roughbark pear in persistent calyx and dropping calyx of Korla fragrant pear[J]. Xinjiang Agricultural Sciences,2012,49(6):1028-1034.
[2] 田雯,張校立,陳勵坤,何臨梓,王永鵬. 庫爾勒香梨研究進(jìn)展[J]. 分子植物育種,2024,22(16):5459-5468.
TIAN Wen,ZHANG Xiaoli,CHEN Likun,HE Linzi,WANG Yongpeng. Research progress of Korla fragrant pear[J]. Molecular Plant Breeding,2024,22(16):5459-5468.
[3] 田嘉,李鵬,賽靜憶,蒲小秋,李疆. 庫爾勒香梨脫萼、宿萼果果實(shí)發(fā)育動態(tài)及大小差異分析[J]. 新疆農(nóng)業(yè)大學(xué)學(xué)報,2018,41(1):11-17.
TIAN Jia,LI Peng,SAI Jingyi,PU Xiaoqiu,LI Jiang. Analysis of the development dynamics and size difference of Korla fragrant pear deciduous calyx fruit and persistent calyx fruit[J]. Journal of Xinjiang Agricultural University,2018,41(1):11-17.
[4] 郝志超,溫玥,田嘉,邵白俊杰,楊丁花,張峰. 庫爾勒香梨萼片脫落與離區(qū)不同部位植物激素的關(guān)系[J]. 植物生理學(xué)報,2022,58(7):1369-1380.
HAO Zhichao,WEN Yue,TIAN Jia,SHAO Baijunjie,YANG Dinghua,ZHANG Feng. Relationship between sepal abscission and phytohormones in diferent parts of Korla fragrant pear[J]. Plant Physiology Journal,2022,58(7):1369-1380.
[5] CSIHON á,GONDA I,SIPOS M,HOLB I J. Impacts of N-P-K-Mg fertilizer combinations on tree parameters and fungal disease incidences in apple cultivars with varying disease susceptibility[J]. Plants,2024,13(9):1217.
[6] WANG C,QI G P,MA Y L,YIN M H,WANG J H,KANG Y X,JIA Q,GAO Y L,TIAN R R,ZHANG R,LU Q,XIAO F. Effects of water and nitrogen control on the growth physiology,yields,and economic benefits of Lycium barbarum plants in a Lycium barbarum + alfalfa system[J]. Plants,2024,13(8):1095.
[7] 余高,陳芬,盧心,滕明歡,田霞,羅有亮. 不同施肥對幼齡柑橘園土壤養(yǎng)分及酶活性變化的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2023,51(20):218-223.
YU Gao,CHEN Fen,LU Xin,TENG Minghuan,TIAN Xia,LUO Youliang. Effects of different fertilization on soil nutrients and enzyme activities in young citrus orchards[J]. Jiangsu Agricultural Sciences,2023,51(20):218-223.
[8] 李付國,孟月華,賈小紅,陳清,許雪峰,韓振海. 供氮水平對‘八月脆’桃產(chǎn)量、品質(zhì)和葉片養(yǎng)分含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2006,12(6):918-921.
LI Fuguo,MENG Yuehua,JIA Xiaohong,CHEN Qing,XU Xuefeng,HAN Zhenhai. Effects of nitrogen applied rate on fruit yield,quality and leaf nutrient content of ‘Bayuecui’ peach[J]. Plant Nutrition and Fertilizer Science,2006,12(6):918-921.
[9] MENG Y Y,WANG N,SI C C. The application of nitrogen source in regulating lignin biosynthesis,storage root development and yield of sweet potato[J]. Agronomy,2022,12(10):2317.
[10] 盧昆麗,尹燕枰,王振林,李勇,彭佃亮,楊衛(wèi)兵,崔正勇,楊東清,江文文. 施氮期對小麥莖稈木質(zhì)素合成的影響及其抗倒伏生理機(jī)制[J]. 作物學(xué)報,2014,40(9):1686-1694.
LU Kunli,YIN Yanping,WANG Zhenlin,LI Yong,PENG Dianliang,YANG Weibing,CUI Zhengyong,YANG Dongqing,JIANG Wenwen. Effect of nitrogen fertilization timing on lignin synthesis of stem and physiological mechanism of lodging resistance in wheat[J]. Acta Agronomica Sinica,2014,40(9):1686-1694.
[11] XU Q,WANG W Q,ZENG J K,ZHANG J,GRIERSON D,LI X,YIN X R,CHEN K S. A NAC transcription factor,EjNAC1,affects lignification of loquat fruit by regulating lignin[J]. Postharvest Biology and Technology,2015,102:25-31.
[12] LI D,CHENG Y D,DONG Y,SHANG Z L,GUAN J F. Effects of low temperature conditioning on fruit quality and peel browning spot in ‘Huangguan’ pears during cold storage[J]. Postharvest Biology and Technology,2017,131:68-73.
[13] JIAO W X,LI X X,WANG X M,CAO J K,JIANG W B. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway[J]. Food Chemistry,2018,260:274-282.
[14] 劉盼盼. 硼肥對梨木質(zhì)素代謝酶及石細(xì)胞合成的影響研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2016.
LIU Panpan. Effects of boron on lignin metabolism related enzymes and stone cell formation in pear[D]. Nanjing:Nanjing Agricultural University,2016.
[15] 劉玉倩. 刺梨果實(shí)中木質(zhì)素合成及相關(guān)基因的表達(dá)分析[D]. 貴陽:貴州大學(xué),2015.
LIU Yuqian. Lignin biosynthesis and the expression ofrelated genes in Rosa roxburghii Tratt[D]. Guiyang:Guizhou University,2015.
[16] 陶書田. 梨(Pyrus)果實(shí)石細(xì)胞的結(jié)構(gòu)成分分析及相關(guān)酶基因的克隆[D]. 南京:南京農(nóng)業(yè)大學(xué),2009.
TAO Shutian. Characterization of sclereid structure and composition and coloning of sclereid related enzyme genes in pear (Pyrus) fruit[D]. Nanjing:Nanjing Agricultural University,2009.
[17] BENNETT E,ROBERTS J A,WAGSTAFF C. Manipulating resource allocation in plants[J]. Journal of Experimental Botany,2012,63(9):3391-3400.
[18] DENG J C,HUANG X Q,CHEN J H,VANHOLME B,GUO J Y,HE Y Y,QIN W T,ZHANG J,YANG W Y,LIU J. Shade stress triggers ethylene biosynthesis to accelerate soybean senescence and impede nitrogen remobilization[J]. Plant Physiology and Biochemistry,2024,210:108658.
[19] DESCLOS-THéVENIAU M,COQUET L,JOUENNE T,ETIENNE P. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus[J]. Plant Biology,2015,17(2):408-418.
[20] JIANG C Y,JIANG T H,DENG S N,YUAN C L,LIANG Y,LI S S,MA C,GAO Y R. Integrative analysis of transcriptome,proteome,and ubiquitome changes during rose petal abscission[J]. Frontiers in Plant Science,2022,13:1041141.
[21] 王冠力. 主干形蘋果樹定量施肥應(yīng)用研究及氮素營養(yǎng)近紅外光譜分析[D]. 阿拉爾:塔里木大學(xué),2023.
WANG Guanli. Application research on quantitative fertilization of trunk-shaped apple trees and near infrared spectroscopy analysis of nitrogen nutrition[D]. Alar:Tarim University,2023.
[22] 李嘉欣. 主干形灰棗定量施肥應(yīng)用研究及氮素營養(yǎng)近紅外光譜分析[D]. 阿拉爾:塔里木大學(xué),2023.
LI Jiaxin. Application research on quantitative fertilization of main shape jujube tree and near infrared spectroscopy analysis of nitrogen nutrition[D]. Alar:Tarim University,2023.
[23] 彭福田,姜遠(yuǎn)茂,顧曼如,束懷瑞. 落葉果樹氮素營養(yǎng)研究進(jìn)展[J]. 果樹學(xué)報,2003,20(1):54-58.
PENG Futian,JIANG Yuanmao,GU Manru,SHU Huairui. Advances in research on nitrogen nutrition of deciduous fruit crops[J]. Journal of Fruit Science,2003,20(1):54-58.
[24] 李洪娜,許海港,任飴華,丁寧,姜翰,姜遠(yuǎn)茂. 不同施氮水平對矮化富士蘋果幼樹生長、氮素利用及內(nèi)源激素含量的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2015,21(5):1304-1311.
LI Hongna,XU Haigang,REN Yihua,DING Ning,JIANG Han,JIANG Yuanmao. Effect of different N application rates on plant growth,15N-urea utilization and hormone content of dwarf apple trees[J]. Plant Nutrition and Fertilizer Science,2015,21(5):1304-1311.
[25] 駱建珍. 促使黃金梨脫萼的五項技術(shù)措施[J]. 煙臺果樹,2009(4):52.
LUO Jianzhen. Five technical measures to promote calyx abscission of golden pear[J]. Yantai Fruits,2009(4):52.
[26] 于新剛,孫蕾. 幾個日韓砂梨品種果實(shí)脫萼技術(shù)[J]. 山西果樹,2007(6):17-18.
YU Xingang,SUN Lei. Fruit calyx removal technology of several Japanese and Korean pear cultivars[J]. Shanxi Fruits,2007(6):17-18.
[27] 劉衛(wèi)星,王家瑞,王晨陽,盧紅芳,康娟,申圓心. 施氮量對不同土壤肥力條件下冬小麥光合特性和產(chǎn)量的影響[J]. 麥類作物學(xué)報,2021,41(5):604-612.
LIU Weixing,WANG Jiarui,WANG Chenyang,LU Hongfang,KANG Juan,SHEN Yuanxin. Effect of nitrogen application rates on photosynthetic characteristics and yield of winter wheat under different soil fertility conditions[J]. Journal of Triticeae Crops,2021,41(5):604-612.
[28] BOUDET A M,KAJITA S,GRIMA-PETTENATI J,GOFFNER D. Lignins and lignocellulosics:A better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581.
[29] 章霄云,郭安平,賀立卡,孔華. 木質(zhì)素生物合成及其基因調(diào)控的研究進(jìn)展[J]. 分子植物育種,2006,4(3):431-437.
ZHANG Xiaoyun,GUO Anping,HE Lika,KONG Hua. Advances in study of lignin biosynthesis and its genetic manipulation[J]. Molecular Plant Breeding,2006,4(3):431-437.
[30] 蕭長亮,解保勝,王安東,王士強(qiáng),李春光,那永光. 氮和稀效唑調(diào)控對寒地水稻倒伏和產(chǎn)量的影響[J]. 作物雜志,2017(6):96-103.
XIAO Changliang,XIE Baosheng,WANG Andong,WANG Shiqiang,LI Chunguang,NA Yongguang. Effects of nitrogen and uniconazole regulation on lodging resistance and yield of rice in cold region[J]. Crops,2017(6):96-103.
[31] 劉笑鳴. 高密種植下黑龍江春玉米對氮素和化控的生理生態(tài)響應(yīng)及溫室氣體排放的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2023.
LIU Xiaoming. Physiological and ecological response of spring maize to nitrogen fertilizer and chemical regulation under high density planting and its impact on greenhouse gas emissions in Heilongjiang Province[D]. Harbin:Northeast Agricultural University,2023.
[32] 高珍妮,郭麗琢,李麗,郭芳,牛俊義. 氮肥對胡麻莖稈木質(zhì)素合成酶活性及其抗倒性的影響[J]. 中國油料作物學(xué)報,2014,36(5):610-615.
GAO Zhenni,GUO Lizhuo,LI Li,GUO Fang,NIU Junyi. Effects of nitrogen on oilseed flax stem lignin and relative enzyme and lodging resistance[J]. Chinese Journal of Oil Crop Sciences,2014,36(5):610-615.
[33] 黃秀蘭. 獼猴桃抗褐斑病機(jī)理初步研究[D]. 雅安:四川農(nóng)業(yè)大學(xué),2019.
HUANG Xiulan. Preliminary study on the resistance mechanism of kiwifruit against Corynespora cassiicola[D]. Ya’an:Sichuan Agricultural University,2019.