








摘 要:【目的】探究陸地棉C2H2型鋅指蛋白基因GhZFP8在棉花抗黃萎病反應(yīng)中的功能,為挖掘棉花抗病基因奠定理論基礎(chǔ)。
【方法】通過同源克隆方法得到一個陸地棉C2H2型鋅指蛋白基因GhZFP8,利用生物信息學(xué)方法分析該基因的理化性質(zhì),構(gòu)建該基因病毒誘導(dǎo)的基因沉默(VIGS)載體,通過農(nóng)桿菌介導(dǎo)法轉(zhuǎn)化棉花,檢驗GhZFP8的抗病功能。
【結(jié)果】GhZFP8開放閱讀框(ORF)為789 bp、編碼為262個氨基酸,相對分子量為28.12 kD、等電點(diǎn)為8.16、脂肪指數(shù)為59.31和平均疏水性為-0.718,為親水性、堿性的非跨膜蛋白。GhZFP8蛋白具有2個ZnF-C2H2結(jié)構(gòu)域,含有6個α-螺旋和4個β-折疊,屬于C2H2型鋅指蛋白。GhZFP8基因沉默植株對黃萎病菌的抗性相對減弱。
【結(jié)論】GhZFP8基因在棉花抗黃萎病過程中發(fā)揮正調(diào)控作用。
關(guān)鍵詞:黃萎病;GhZAT8;基因克隆;病毒誘導(dǎo)的基因沉默
中圖分類號:S562 ""文獻(xiàn)標(biāo)志碼:A
文章編號:1001-4330(2025)01-0137-09
收稿日期(Received):
2024-08-11
基金項目:
國家自然科學(xué)基金項目(32160494);新疆維吾爾自治區(qū)自然科學(xué)基金項目(2023D01E03);國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(202210758001);新疆維吾爾自治區(qū)重點(diǎn)研發(fā)專項(2022B02033-1)
作者簡介:
程貫富(1998-),男,山東濟(jì)南人,碩士研究生,研究方向為棉花逆境分子生物學(xué),(E-mail) cgfyouxi@163.com
通信作者:
李月(1984-),女,河南許昌人,副教授,博士,研究方向為棉花逆境分子生物學(xué),(E-mail) liyue6905@126.com
0 引 言
【研究意義】棉花黃萎病是由大麗輪枝菌引起的,嚴(yán)重為害棉花生產(chǎn)[1]。目前尚缺乏行之有效的殺菌劑,因此培育抗病品種成為防控棉花黃萎病的有效措施[2],傳統(tǒng)雜交育種方法培育抗病品種難度大,周期長[3-4]。因此利用分子生物學(xué)方法挖掘抗病基因,對培育棉花抗病品種、有效防控棉花黃萎病有重要意義。【前人研究進(jìn)展】植物抗病過程涉及多種基因及信號傳遞途徑,例如轉(zhuǎn)錄因子調(diào)控、蛋白激酶、激素信號途徑、防衛(wèi)基因合成等。其中轉(zhuǎn)錄因子在植物抗病過程中發(fā)揮重要作用,已成為研究植物抗病育種的關(guān)鍵因素。Zhang等[5]發(fā)現(xiàn)玉米JAZ家族轉(zhuǎn)錄因子ZmJAZ在莖腐病和炭疽病菌侵染植株后,其表達(dá)量發(fā)生變化。Yu等[6]將葡萄TIFY家族轉(zhuǎn)錄因子基因VvTIFY9過表達(dá)后,發(fā)現(xiàn)植株對白粉病的抗性增強(qiáng)。Zang等[7]研究表明,玉米轉(zhuǎn)錄因子ZmERF105能增強(qiáng)植株對大斑病菌的抗性。鋅指蛋白(zinc finger proteins, ZFPs)是真核生物基因組中最豐富的轉(zhuǎn)錄因子之一,ZFPs具有高度保守的結(jié)構(gòu)域,由大約20~30個氨基酸組成,共識序列為CX2-4CX3FX5LX2HX3-5H(X代表任何氨基酸,下標(biāo):氨基酸數(shù))[8],Berg等[9]將其分為9類,分別為C4、C6、C8、CCCH、C2HC、C2HC5、C2H2、C3HC4和C4HC3,其參與調(diào)節(jié)植物多種生長發(fā)育過程,抵抗生物和非生物脅迫[10]。Mittler等[11]發(fā)現(xiàn)擬南芥Zat10基因表達(dá)可以快速適應(yīng)外界溫度的變化。Davletova等[12]又發(fā)現(xiàn)在多種非生物脅迫的信號傳導(dǎo)途徑中均檢驗到Zat12蛋白。Kim等[13]又發(fā)現(xiàn)大豆SCOF-1基因受到低溫和ABA脅迫后表達(dá)上調(diào),增強(qiáng)了植株的耐凍性。已經(jīng)報道了許多參與植物抗病的ZFPs基因,Tian等[14]發(fā)現(xiàn)在馬鈴薯受到致病菌感染后StZFP1基因表達(dá)量增加,并提高了植株的抗病性。Uehara等[15]通過試驗發(fā)現(xiàn) NtZFT1基因響應(yīng)煙草花葉病毒的入侵,并增強(qiáng)了對煙草花葉病毒的抗性。Li等[16]在水稻抗稻瘟病品種“地谷”中發(fā)現(xiàn)一個編碼鋅指蛋白的基因bsr-d1,其能調(diào)控H2O2酶基因表達(dá),影響水稻對稻瘟病的抗性。其中王亞等[17]將Bsr-d1基因啟動子區(qū)域的一個關(guān)鍵堿基突變,導(dǎo)致MYB轉(zhuǎn)錄因子與Bsr-d1啟動子結(jié)合增強(qiáng),抑制Bsr-d1基因表達(dá),使細(xì)胞內(nèi)H2O2富集,提高了水稻的免疫反應(yīng)并因此獲得稻瘟病抗性。近幾年報道了許多參與防御棉花黃萎病的基因,如LYK1和LYK2[18],GbCYP86A1[19],GhWAK7A [20]和GhWAKL[21]。【本研究切入點(diǎn)】鋅指蛋白在棉花抗黃萎病中發(fā)揮作用的報道相對較少。前期通過同源克隆方法,在陸地棉基因庫中找到并克隆水稻抗稻瘟病基因Bsr-d1的同源基因,并命名為GhZFP8,需通過結(jié)構(gòu)預(yù)測其是否具有C2H2型鋅指蛋白特征。【擬解決的關(guān)鍵問題】采用生物信息學(xué)的方法分析其理化性質(zhì),利用病毒誘導(dǎo)基因沉默(virusinduced gene silencing,VIGS)技術(shù),驗證其是否在棉花黃萎病抗性過程中發(fā)揮作用,研究該基因抗病機(jī)制提供理論基礎(chǔ),為棉花抗病品種的培育提供科學(xué)依據(jù)。
1 材料與方法
1.1 材 料
供試植物材料中棉35、農(nóng)桿菌菌株為GV3101、棉花黃萎病菌菌株V991、TRV病毒載體及含陽性對照TRV:GhCLA1載體的農(nóng)桿菌菌株,由新疆農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院作物功能基因組學(xué)與分子改良實驗室保存;卡那霉素、慶大霉素、MES、乙酰丁香酮、MgCl2及培養(yǎng)基均為國產(chǎn)分析純試劑;多糖多酚植物總RNA提取試劑盒購于杭州博日科技公司;EcoRI和KpnI等限制性內(nèi)切酶購于賽默飛(Thermo)公司, TaqDNA聚合酶、T4 DNALigase、RNaseA、高保真聚合酶TransStar KD Plus、反轉(zhuǎn)錄試劑盒、熒光定量試劑盒、瓊脂糖凝膠回收試劑盒和DNA分子量Marker均購自北京全式金生物技術(shù)有限公司。PCR所用引物的合成及DNA的測序均由上海生工生物工程有限公司完成。
1.2 方 法
1.2.1 種植及培養(yǎng)
陸地棉中棉35種子經(jīng)硫酸脫絨后,選取大小一致的種子,利用胡子曜等[22]方法種植。
1.2.2 總RNA的提取及cDNA的合成
參照RNA提取試劑的說明書提取棉花葉和根部樣品的總RNA。經(jīng)瓊脂糖凝膠電泳檢驗后,用反轉(zhuǎn)錄試劑盒合成cDNA。
1.2.3 GhZFP8基因的克隆及序列分析
通過對水稻Bsr-d1的氨基酸序列在陸地棉數(shù)據(jù)庫中進(jìn)行Blastp比對,獲得棉花基因GhZFP8序列,其NCBI(https://www.ncbi.nlm.nih.gov/)的登錄號為XM_016850242,利用表1工具,進(jìn)行GhZFP8基因生物信息學(xué)分析。通過其CDS序列信息設(shè)計特異性引物,參照李秀青等[23]的方法,以中棉35的cDNA為模板,進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)瓊脂糖凝膠電泳檢測后,回收目的條帶,并連接pEASY Blunt-Zero克隆載體,轉(zhuǎn)化大腸桿菌Trans-T1感受態(tài)細(xì)胞,挑取陽性單克隆質(zhì)粒進(jìn)行測序。表1,表2
1.2.4 GhZFP8基因的VIGS載體構(gòu)建
利用SGN-VIGS網(wǎng)站(https://vigs.solgenomics.net/)設(shè)計GhZFP8 基因的沉默片段序列,沉默片段大小為318 bp,利用DNAMAN6軟件設(shè)計該序列的上下游的引物,利用SnapGemne軟件在2個引物的5′端分別加入EcoRI和 KpnI的酶切位點(diǎn)。以棉花葉片cDNA為模板,用PCR技術(shù)擴(kuò)增沉默片段序列,將PCR產(chǎn)物中符合大小的目的片段回收連接克隆載體B-zero載體并測序,參考胡子曜等[22]方法,將測序正確的目的片段與TRV2線性化載體用T4 DNA Ligase連接,得到GhZFP8基因的VIGS沉默載體,將質(zhì)粒轉(zhuǎn)化DH5α大腸感受態(tài)細(xì)胞,擴(kuò)大培養(yǎng)提取質(zhì)粒并雙酶切驗證,將驗證正確的質(zhì)粒通過凍融法轉(zhuǎn)化到GV3101 感受態(tài)細(xì)胞中,28℃培養(yǎng)2~3 d以備下一步的試驗。表2
1.2.5 農(nóng)桿菌介導(dǎo)的VIGS侵染棉花及沉默效率檢測
將載體TRV:RNA2、TRV:GhCLA1、TRV:GhZFP8和TRV:RNA 1分別轉(zhuǎn)化農(nóng)桿菌,待棉花苗生長至2片子葉完全展開時,選取生長較為一致的棉花幼苗,參照Hou等[24]方法,進(jìn)行VIGS侵染棉花。分別將3組混合重懸菌液(TRV:GhCLA1和TRV:RNA1、TRV:RNA2和TRV:RNA1、TRV:GhZFP8和TRV:RNA1)侵染的棉花植株作為陽性、陰性對照及試驗組。當(dāng)陽性對照植株TRV:GhCLA1的葉片出現(xiàn)明顯的白化表型時,于試驗組和陰性、陽性對照的第2片真葉及根部取樣,提取RNA,反轉(zhuǎn)cDNA,按照熒光定量試劑盒說明書進(jìn)行qRT-PCR反應(yīng),檢測目的基因沉默效率。
以棉花管家基因GhUBQ7[25]為內(nèi)參基因,進(jìn)行3個技術(shù)重復(fù)。反應(yīng)條件與體系按照王倩等[26]方法進(jìn)行,根據(jù)目的基因和內(nèi)參基因Ct值,使用2-ΔΔCt方法[16]計算目的基因的表達(dá)量。表2
1.2.6 GhZFP8黃萎病抗性的鑒定
參考Li等[27]方法對沉默植株進(jìn)行黃萎病接種處理,15 d后觀察沉默植株與對照植株的表型差異,采用葉片分級法統(tǒng)計病情指數(shù)[27],對沉默植株和對照植株進(jìn)行剖桿檢測[28],并對接種48 h的沉默植株進(jìn)行植物木質(zhì)化檢測[28]。
2 結(jié)果與分析
2.1 GhZFP8基因的克隆與序列
研究表明,GhZFP8基因克隆成,其開放閱讀框(ORF)為789 bp,編碼一個含262個氨基酸,相對分子量為28.12 kD,等電點(diǎn)為8.16的堿性氨基酸,脂肪指數(shù)為59.31,平均疏水性為-0.718的親水蛋白。GhZFP8蛋白有99.93%的概率不存在信號肽,預(yù)測GhZFP8屬于非跨膜蛋白。GhZFP8蛋白的結(jié)構(gòu)域預(yù)測具有2個ZnF-C2H2結(jié)構(gòu)域。其二級結(jié)構(gòu)預(yù)測可知,GhZFP8蛋白含有6個α-螺旋和4個β-折疊,其三級結(jié)構(gòu)預(yù)測符合二級結(jié)構(gòu)的所預(yù)測的特征,其符合鋅指蛋白的特征。圖1~4
2.2 "GhZFP8基因的VIGS載體構(gòu)建
研究表明,將抑制GhZFP8表達(dá)的靶序列用PCR的方法擴(kuò)增,目的片段大小為318 bp符合預(yù)期。所擴(kuò)增的片段與目的片段一致。隨后將其與VIGS沉默載體TRV2連接,隨后用EcoRI和 KpnI進(jìn)行酶切驗證,所得結(jié)果與預(yù)期結(jié)果一致,為一條大于8 000 bp的條帶和一條在250~500 bp的目的片段條帶。GhZFP8的VIGS載體構(gòu)建成功。圖5
2.3 GhZFP8的沉默效果檢測
研究表明,將TRV:RNA2、TRV:GhCLA1、TRV:GhZFP8農(nóng)桿菌分別與TRV:RNA1農(nóng)桿菌等比例混合,分別侵染棉花子葉。15 d后表型觀察,侵染TRV﹕GhCLA1的陽性對照植株出現(xiàn)白化現(xiàn)象,利用qRT-PCR技術(shù)檢測陽性對照植株中根和真葉的GhCLA1表達(dá)量。陽性對照植株中GhCLA1的表達(dá)量低于對照組,VIGS載體能夠在植株體內(nèi)正常工作。同時利用qRT-PCR技術(shù)檢測目的基因GhZFP8在根和真葉的表達(dá)量,與對照組相比,沉默植株的GhZFP8的表達(dá)量明顯低于對照組,獲得GhZFP8基因沉默植株。圖6
2.4 GhZFP8基因沉默植株的黃萎病抗性鑒定
研究表明,與對照植株相比,TRV:GhZFP8基因沉默植株出現(xiàn)葉片邊緣發(fā)黃,萎蔫癥狀。TRV:00對照植株病情指數(shù)統(tǒng)計為37,GhZFP8基因沉默植株病情指數(shù)為43%,顯著高于對照植株。各植株莖稈均不同程度發(fā)生褐變,TRV:GhZFP8植株褐變程度比對照組較深。取接種黃萎病菌后48 h的棉花莖段切片放置于體式顯微鏡下觀測植株木質(zhì)化程度,TRV:GhZFP8沉默植株木質(zhì)化程度較弱。GhZFP8基因?qū)Φ钟S萎病的侵染可能具有積極作用。圖7
3 討 論
3.1
棉花抗黃萎病反應(yīng)的過程需要一系列相關(guān)蛋白的參與,隨著棉花基因組測序的完成,一系列的抗黃萎病病基因陸續(xù)被挖掘鑒定:Dong等[29]從雷蒙德氏棉克隆一個ATP結(jié)合蛋白基因ABCF5,并通過VIGS技術(shù)驗證了其是棉花抗黃萎病反應(yīng)的負(fù)調(diào)控因子。Qin等[30]發(fā)現(xiàn)棉花GhCyP3基因可以抑制U-box E3泛素連接酶基因GhPUB17的表達(dá),使其在棉花抗黃萎病反應(yīng)中發(fā)揮負(fù)調(diào)控作用。Han等[31]在棉花中克隆了棉花宿主細(xì)胞分泌幾丁質(zhì)酶基因Chi28和富含半胱氨酸的重復(fù)蛋白基因CRR1并且又在大麗輪枝菌中克隆得到分泌型絲氨酸蛋白酶基因VdSSEP1,通過試驗表明VdSSEP1蛋白可以分解Chi28蛋白,CRR1蛋白保護(hù)Chi28蛋白不被VdSSEP1分解,而將CRR1和Chi28基因敲除后,植株突變體易感棉花黃萎病菌,反之將大麗輪枝菌VdSSEP1基因沉默后,則破壞了大麗輪枝菌的致病性。Gong等[32]在215份接種黃萎病菌的中國棉屬材料進(jìn)行全基因研究,鑒定出一種GST基因GaGSTF9,其可能通過SA相關(guān)信號通路影響棉花黃萎病菌的抗性,并通過試驗驗證該基因正調(diào)控棉花黃萎病抗性。He等[33]在棉花中鑒定出一個可以抑制JA應(yīng)答基因表達(dá)的HD-ZIPⅠ類轉(zhuǎn)錄因子基因GhHB12,發(fā)現(xiàn)其對棉花抗黃萎病反應(yīng)進(jìn)行負(fù)向調(diào)控。
3.2 C2H2型鋅指蛋白是生物體內(nèi)普遍存在的一類轉(zhuǎn)錄因子,有研究表明其在植株受到生物脅迫時發(fā)揮作用。Zhang等[34]在煙草中發(fā)現(xiàn)C2H2型鋅指蛋白NbcZF1可以通過ROS-NO途徑介導(dǎo)多種SsCut(Sccutotinia sclerotiorum cutinase是一類誘導(dǎo)子可以誘導(dǎo)植物免疫)觸發(fā)的反應(yīng),增強(qiáng)煙草對煙草黑脛病等疾病抗性。Noman等[35]在辣椒中發(fā)現(xiàn)C2H2型CaZNF基因沉默后,植株對青枯病的抗性降低。Shi等[36]在擬南芥鑒定出C2H2型鋅指蛋白AtZAT6通過與防御基因的啟動子相結(jié)合正向調(diào)控植株體內(nèi)SA與ROS積累,從而提高植株對丁香假單胞桿菌的抗性。目前有關(guān)C2H2型鋅指蛋白在棉花抗黃萎病中發(fā)揮作用的報道相對較少。
3.3 研究通過同源對比方法克隆得到一個C2H2型鋅指蛋白基因GhZFP8,該基因開放閱讀框(ORF)為789 bp,編碼一個含262個氨基酸,相對分子量為28.12 kD,等電點(diǎn)為8.16的堿性氨基酸。GhZFP8蛋白脂肪指數(shù)為59.31,平均疏水性為-0.718的親水蛋白。GhZFP8蛋白有99.93%的概率不存在信號肽,預(yù)測GhZFP8屬于非跨膜蛋白。GhZFP8蛋白的結(jié)構(gòu)域預(yù)測具有2個ZnF-C2H2結(jié)構(gòu)域。其二級結(jié)構(gòu)預(yù)測可知,GhZFP8蛋白含有6個α-螺旋和4個β-折疊,其三級結(jié)構(gòu)預(yù)測符合二級結(jié)構(gòu)的所預(yù)測的特征。通過VIGS技術(shù)得到GhZFP8沉默植株后并接種黃萎病菌,與對照植株相比,GhZFP8沉默植株出現(xiàn)葉片邊緣發(fā)黃和萎蔫狀態(tài),測得沉默植株的病情指數(shù)為43%,高于對照植株。通過縱剖莖稈觀察,發(fā)現(xiàn)沉默植株褐變程度比對照組較深,將植株進(jìn)行木質(zhì)部染色,觀察沉默植株木質(zhì)部比對照植株較薄但差異較小。推測GhZFP8在棉花抗黃萎病過程中可能參與抗病過程,其在棉花抗黃萎病反應(yīng)中具體發(fā)揮的作用需進(jìn)一步試驗驗證。
4 結(jié) 論
克隆獲得C2H2型鋅指蛋白基因GhZFP8,并初步探究其在棉花中的抗病功能,其開放閱讀框(ORF)為789 bp,編碼一個含262個氨基酸,相對分子量為28.12 kD,等電點(diǎn)為8.16的堿性氨基酸,GhZFP8蛋白脂肪指數(shù)為59.31,平均疏水性為-0.718的親水蛋白。GhZFP8蛋白有99.93%的概率不存在信號肽,預(yù)測GhZFP8屬于非跨膜蛋白,GhZFP8蛋白的結(jié)構(gòu)域預(yù)測具有2個ZnF-C2H2結(jié)構(gòu)域。GhZFP8蛋白含有6個α-螺旋和4個β-折疊。VIGS技術(shù)抑制該基因表達(dá)后,其病情指數(shù)略高于陰性對照植株;基因沉默后棉花對黃萎病的抗性相對減弱,推測GhZFP8在棉花抗黃萎病過程中發(fā)揮正調(diào)控作用。
參考文獻(xiàn)(References)
[1]Li F G, Fan G Y, Lu C R, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5): 524-530.
[2] 馬存, 簡桂良, 鄭傳臨. 中國棉花抗枯、黃萎病育種50年[J]. 中國農(nóng)業(yè)科學(xué), 2002, 35(5): 508-513.
MA Cun, JIAN Guiliang, ZHENG Chuanlin. The advances in cotton breeding resistance to Fusarium and Verticillium wilts in China during past fifty years[J]. Scientia Agricultura Sinica, 2002, 35(5): 508-513.
[3] Wei Z, Yu D. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing[J]. Archives of Microbiology, 2018, 200(4): 653-662.
[4] Mohamed H I, Akladious S A. Changes in antioxidants potential, secondary metabolites and plant hormones induced by different fungicides treatment in cotton plants[J]. Pesticide Biochemistry and Physiology, 2017, 142: 117-122.
[5] Zhang Z B, Li X L, Yu R, et al. Isolation, structural analysis, and expression characteristics of the maize TIFY gene family[J]. Molecular Genetics and Genomics, 2015, 290(5): 1849-1858.
[6] Yu Y H, Wan Y T, Jiao Z L, et al. Functional characterization of resistance to powdery mildew of VvTIFY9 from Vitis vinifera[J]. International Journal of Molecular Sciences, 2019, 20(17): 4286.
[7] Zang Z Y, Lv Y, Liu S, et al. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum[J]. Frontiers in Plant Science, 2020, 11: 850.
[8] Liu Y H, Khan A R, Gan Y B. C2H2 zinc finger proteins response to abiotic stress in plants[J]. International Journal of Molecular Sciences, 2022, 23(5): 2730.
[9] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252): 1081-1085.
[10] Zheng F Y, Cui L, Li C X, et al. Hair interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato[J]. Journal of Experimental Botany, 2022, 73(1): 228-244.
[11] Mittler R, Kim Y, Song L H, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J]. FEBS Letters, 2006, 580(28/29): 6537-6542.
[12] Davletova S, Schlauch K, Coutu J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis[J]. Plant Physiology, 2005, 139(2): 847-856.
[13] Kim J C, Jeong J C, Park H C, et al. Cold accumulation of SCOF-1 transcripts is associated with transcriptional activation and mRNA stability[J]. Molecules and Cells, 2001, 12(2): 204-208.
[14] Tian Z D, Zhang Y, Liu J, et al. Novel potato C2H2-type zinc finger protein gene, StZFP1, which responds to biotic and abiotic stress, plays a role in salt tolerance[J]. Plant Biology, 2010, 12(5): 689-697.
[15] Uehara Y, Takahashi Y, Berberich T, et al. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway[J]. Plant Molecular Biology, 2005, 59(3): 435-448.
[16] Li W T, Zhu Z W, Chern M, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017, 170(1): 114-126.
[17] 王亞, 王越濤, 申關(guān)望, 等. 聚合R基因Pigm和非R基因bsr-d1改良水稻稻瘟病抗性[J]. 華北農(nóng)學(xué)報, 2022, 37(5): 157-165.
WANG Ya, WANG Yuetao, SHEN Guanwang, et al. Improvement of rice blast resistance by pyramiding the R gene pigm and the non-R gene bsr-d1[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(5): 157-165.
[18] Gu Z H, Liu T L, Ding B, et al. Two lysin-motif receptor kinases, gh-LYK1 and gh-LYK2, contribute to resistance against Verticillium wilt in upland cotton[J]. Frontiers in Plant Science, 2017, 8: 2133.
[19] Wang G L, Xu J, Li L C, et al. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways[J]. Plant Biotechnology Journal, 2020, 18(1): 222-238.
[20] Wang P, Zhou L, Jamieson P, et al. The cotton wall-associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors[J]. The Plant Cell, 2020, 32(12): 3978-4001.
[21] Feng H J, Li C, Zhou J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae[J]. International Journal of Biological Macromolecules, 2021, 167: 633-643.
[22] 胡子曜, 武曉玉, 雷建峰, 等. 陸地棉小GTP結(jié)合蛋白基因GhROP1和GhROP8的克隆及表達(dá)分析[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報, 2023, 28(4): 13-25.
HU Ziyao, WU Xiaoyu, LEI Jianfeng, et al. Molecular cloning and expression analysis of small GTP-binding protein genes GhROP1 and GhROP8 in cotton (Gossypium hirsutum L.)[J]. Journal of China Agricultural University, 2023, 28(4): 13-25.
[23] 李秀青, 李月, 劉超, 等. 棉花黃萎病相關(guān)基因GhAAT的克隆與功能鑒定[J]. 分子植物育種, 2020, 18(4): 1048-1053.
LI Xiuqing, LI Yue, LIU Chao, et al. Cloning and functional identification of cotton Verticillium wilt related gene GhAAT[J]. Molecular Plant Breeding, 2020, 18(4): 1048-1053.
[24] Hou T Z, Huang M Z, Liao Y, et al. Virus-induced gene silencing (VIGS) for functional analysis of genes involved in the regulation of anthocyanin biosynthesis in the perianth of Phalaenopsis-type Dendrobium hybrids[J]. Scientia Horticulturae, 2023, 307: 111485.
[25] 袁偉, 萬紅建, 楊悅儉. 植物實時熒光定量PCR內(nèi)參基因的特點(diǎn)及選擇[J]. 植物學(xué)報, 2012, 47(4): 427-436.
YUAN Wei, WAN Hongjian, YANG Yuejian. Characterization and selection of reference genes for real-time quantitative RT-PCR of plants[J]. Chinese Bulletin of Botany, 2012, 47(4): 427-436.
[26] 王倩, 章超, 代培紅, 等. 陸地棉GhMAPKKKK3基因的克隆及其表達(dá)分析[J]. 分子植物育種, 2024, 22(3): 697-703.
WANG Qian, ZHANG Chao, DAI Peihong, et al. Cloning and expression analysis of GhMAPKKKK3 gene in Gossypium hirsutum L[J]. Molecular Plant Breeding, 2024, 22(3): 697-703.
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC T method[J]. Methods, 2001, 25(4): 402-408.
[28] Li Y, Zhou Y J, Dai P H, et al. Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum[J]. Plant Growth Regulation, 2021, 95(2): 283-292.
[29] Dong Q, Magwanga R O, Cai X Y, et al. Rna-sequencing, physiological and RNAi analyses provide insights into the response mechanism of the ABC-mediated resistance to Verticillium dahliae infection in cotton[J]. Genes, 2019, 10(2): 110.
[30] Qin T, Liu S M, Zhang Z N, et al. GhCyP3 improves the resistance of cotton to Verticillium dahliae by inhibiting the E3 ubiquitin ligase activity of GhPUB17[J]. Plant Molecular Biology, 2019, 99(4/5): 379-393.
[31] Han L B, Li Y B, Wang F X, et al. The cotton apoplastic protein CRR1 stabilizes chitinase 28 to facilitate defense against the fungal pathogen Verticillium dahliae[J]. The Plant Cell, 2019, 31(2): 520-536.
[32] Gong Q, Yang Z E, Chen E Y, et al. A phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study[J]. Plant amp; Cell Physiology, 2018, 59(2): 275-289.
[33] He X, Wang T Y, Zhu W, et al. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae[J]. International Journal of Molecular Sciences, 2018, 19(12): 3997.
[34] Zhang H J, Zhao T Y, Zhuang P T, et al. NbCZF1, a novel C2H2-type zinc finger protein, as a new regulator of SsCut-induced plant immunity in Nicotiana benthamiana[J]. Plant amp; Cell Physiology, 2016, 57(12): 2472-2484.
[35] Noman A, Liu Z Q, Yang S, et al. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity[J]. Microbial Pathogenesis, 2018, 118: 336-346.
[36] Shi H T, Wang X, Ye T T, et al. The Cysteine2/Histidine2-Type Transcription Factor zinc finger of Arabidopsis thaliana6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and c-repeat-binding factor Genes in Arabidopsis[J]. Plant Physiology, 2014, 165(3): 1367-1379.
Functional analysis of a C2H2 zinc protein GhZFP8
gene in Gossypium hirsutum resistance to Verticillium wilt
CHENG Guanfu,LU Guoqiang,CUI Yongxiang,HOU Aocheng,ZHANG Guoshuai,
LIANG Chunyan,LEI Jianfeng,LU Wei,DAI Peihong,LI yue
(Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology/College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China)
Abstract:【Objective】 To explore the function of the terrestrial cotton C2H2-type zinc finger protein gene GhZFP8 in the response to Verticillium wilt in cotton in the hope of laying a theoretical foundation for mining cotton disease resistance genes.
【Methods】 The cotton gene GhZFP8 was obtained by homologous cloning and its biological function explored. Bioinformatics methods were used to analyze the physicochemical properties of the gene, while the VIGS vector for the gene was constructed and transformed into cotton by Agrobacterium-mediated method to preliminarily test the disease resistance function of GhZFP8.
【Results】 The open reading frame (ORF) of GhZFP8 was 789 bp, encoded as a hydrophilic protein containing 262 amino acids, a relative molecular weight was 28.12 kD, a basic amino acid with an isoelectric point of 8.16, a lipid index of 59.31, and an average hydrophobicity of-0.718. The absence of a signal peptide in the GhZFP8 protein predicted that GhZFP8 was a non-transmembrane protein. GhZFP8 protein revealed that it had 2 ZnF-C2H2 structural domains. Its secondary structure prediction revealed that the GhZFP8 protein contained 6 α-helices and 4 β-folds. GhZFP8 gene silenced plants showed relatively reduced resistance to Verticillium wilt.
【Conclusion】 The GhZFP8 gene plays a positive regulatory role in cotton resistance to verticillium wilt.
Key words:Verticillium wilt;GhZFP8; gene cloning;VIGS
Fund projects:" National Natural Science Foundation of China (32160494); Project of Natural Science Foundation of Xinjiang Uygur Autonomous Region (2023D01E03);" Project of National Innovation and Entrepreneurship Training Program for College Students (202210758001);" Key Scientific R amp; D Program Project of Xinjiang Uygur Autonomous Region (2022B02033-1)
Correspondence author: LI Yue (1984-), female, from Xuchang, Henan, doctor, associate professor, research direction: molecular biology of cotton adversity, (E-mail) liyue6905@126.com