999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

厚皮甜瓜心部果肉可溶性固形物含量遺傳規(guī)律分析及QTL定位

2025-04-03 00:00:00范蓉張永兵李寐華張學(xué)軍伊鴻平劉釗楊永
新疆農(nóng)業(yè)科學(xué) 2025年1期

摘 要:【目的】研究厚皮甜瓜果實(shí)心部可溶性固形物的遺傳規(guī)律和QTL定位,挖掘厚皮甜瓜果實(shí)心部可溶性固形物相關(guān)的候選基因。

【方法】以高糖材料P1和低糖材料P2為雙親構(gòu)建六世代分離群體;采用主基因+多基因混合遺傳模型研究厚皮甜瓜心部果肉可溶性固形物含量的遺傳規(guī)律,并基于F2群體,選取果實(shí)可溶性固形物含量極端的單株構(gòu)建混池,利用BSA方法對(duì)甜瓜可溶性固形物含量進(jìn)行定位。

【結(jié)果】甜瓜可溶性固形物符合E-1(MX2-ADI-AD)遺傳模型,2對(duì)主基因以上位性效應(yīng)為主,其次為顯性效應(yīng)、加性效應(yīng)。2個(gè)QTL分別在第5號(hào)染色體827066 bp-109953 bp和第8號(hào)11316600 bp-11729324 bp,區(qū)間大小分別為0.27 Mb和0.41 Mb,2個(gè)區(qū)間內(nèi)共包含50個(gè)候選基因。篩選獲得了6個(gè)與甜瓜可溶性固形物含量相關(guān)的候選基因,分別是MELO3C014619、MELO3C014617、MELO3C014596、MELO3C014594、MELO3C019077、MELO3C019089。

【結(jié)論】厚皮甜瓜心部可溶性固形物符合E-1(MX2-ADI-AD)遺傳模型,通過(guò)BSA方法在5號(hào)和8號(hào)染色體定位到2個(gè)甜瓜可溶性固形物相關(guān)QTL,篩選出6個(gè)與甜瓜可溶性固形物含量相關(guān)的候選基因。

關(guān)鍵詞:厚皮甜瓜;可溶性固形物;主基因+多基因;BSA

中圖分類號(hào):S652 ""文獻(xiàn)標(biāo)志碼:A

文章編號(hào):1001-4330(2025)01-0182-11

收稿日期(Received):

2024-07-17

基金項(xiàng)目:

新疆維吾爾自治區(qū)重點(diǎn)研發(fā)項(xiàng)目(2022B02002-3);國(guó)家自然科學(xué)基金項(xiàng)目(31860567);財(cái)政部和農(nóng)業(yè)農(nóng)村部\"國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助\"(CARS-25-G2);新疆農(nóng)業(yè)科學(xué)院青年科技骨干創(chuàng)新能力培養(yǎng)項(xiàng)目(xinkq-2022011);新疆維吾爾自治區(qū)重大科技專項(xiàng)(2022A03004-5);海南省院士創(chuàng)新平臺(tái)科研專項(xiàng)(吳明珠院士團(tuán)隊(duì)創(chuàng)新中心);新疆特色果蔬基因組研究與遺傳改良重點(diǎn)實(shí)驗(yàn)室

作者簡(jiǎn)介:

范蓉(1995-),女,新疆塔城人,助理研究員,碩士,研究方向?yàn)樘鸸线z傳分子改良,(E-mail)1029681312@qq.com

通信作者:

楊永(1986-),男,山東曹縣人,副研究員,碩士,研究方向?yàn)樘鸸线z傳分子改良,(E-mail)553508458@qq.com

0 引 言

【研究意義】果實(shí)可溶性固形物含量屬于復(fù)雜的數(shù)量性狀[1],是衡量厚皮甜瓜風(fēng)味品質(zhì)的重要指標(biāo)[2-4],風(fēng)味品質(zhì)改良是提高經(jīng)濟(jì)效益的主要途徑。分析厚皮甜瓜可溶性固形物遺傳特性和QTL定位,挖掘關(guān)鍵基因,對(duì)厚皮甜瓜的品質(zhì)分子遺傳改良具有重要意義。【前人研究進(jìn)展】植物數(shù)量性狀主基因+多基因混合遺傳分離分析方法[5]廣泛應(yīng)用于甜瓜[6]、黃瓜[7]、玉米[8]、小麥[9]、枸杞[10]、亞麻[11]等作物的抗性、產(chǎn)量、農(nóng)藝性狀等數(shù)量性狀的遺傳分析。呂律等[12]利用低糖“花皮菜瓜”和高糖“XLH”為雙親構(gòu)建六世代群體,發(fā)現(xiàn)甜瓜果實(shí)可溶性符合D-0(MX1-AD-ADI)遺傳模型,以1對(duì)主基因負(fù)向加性效應(yīng)為主,多基因?qū)μ鸸峡扇苄怨绦挝锏倪z傳起重要影響。通過(guò)現(xiàn)代分子遺傳學(xué)方法定位到多個(gè)與可溶性固形物相關(guān)的QTL[4,12-16]。Monforte等[15]利用“Piel de Sapo”和“PI161375”為雙親的92個(gè)F2個(gè)體和77個(gè)DH系構(gòu)建遺傳連鎖圖譜,在1、2、4、8號(hào)連鎖群共定位到5個(gè)可溶性固形物相關(guān)QTL。Paris等[16]利用“USDA-846-1”和“Top Mark”為雙親的RIL群體構(gòu)建遺傳連鎖圖譜,在1、2、6、7、8、9和10號(hào)連鎖群共定位到8個(gè)可溶性固形物相關(guān)QTL。Obando等[17]利用“Piel de Sapo”和“PI161375”為雙親的NIL群體構(gòu)建遺傳連鎖圖譜,在1-10、12號(hào)連鎖群共定位到15個(gè)可溶性固形物相關(guān)QTL。【本研究切入點(diǎn)】目前在多個(gè)染色體上定位到甜瓜可溶性固形物含量相關(guān)QTL,但在功能基因挖掘的研究較少,使得甜瓜可溶性固形物分子標(biāo)記輔助選擇育種進(jìn)程緩慢。【擬解決的關(guān)鍵問(wèn)題】以高糖材料P1和低糖材料P2為雙親,構(gòu)建六世代分離群體,利用植物數(shù)量性狀主基因+多基因混合遺傳模型和BSA方法,對(duì)甜瓜果實(shí)心部可溶性固形物進(jìn)行遺傳分析和QTL定位,結(jié)合生物信息學(xué)方法,挖掘甜瓜果實(shí)心部可溶性固形物相關(guān)的候選基因,為厚皮甜瓜品質(zhì)改良和新品種選育提供理論依據(jù)。

1 材料與方法

1.1 材 料

以高糖材料(P1)和低糖材料(P2)及其雜交、回交群體F1、F2、B1和B2為材料,種子由新疆農(nóng)業(yè)科學(xué)院哈密瓜研究中心提供。

1.2 方 法

1.2.1 試驗(yàn)設(shè)計(jì)

材料田間種植在新疆農(nóng)業(yè)科學(xué)院吐魯番農(nóng)業(yè)科學(xué)研究所試驗(yàn)地,按照株距40 cm,行間距3 m,單蔓整枝,坐果結(jié)位12~15 節(jié),常規(guī)生產(chǎn)田進(jìn)行水肥管理。2022年4月種植P1、P2,通過(guò)雜交得到F1的種子。同年7月對(duì)上一季得到的F1種植,通過(guò)自交獲得F2的種子,同時(shí)將F1與P1、P2分別回交得到B1、B2的種子。

1.2.2 可溶性固形物含量

2023年4月將得到6個(gè)世代的種子種植,擇成熟度一致的果實(shí)采收,利用便攜式手持測(cè)糖儀(PAL-1,日本愛拓)隨機(jī)在果實(shí)橫軸切面心部選擇2個(gè)點(diǎn),測(cè)定可溶性固形物含量。

1.2.3 BSA及QTL定位

分別選取F2可溶性固形物含量極端材料各20個(gè),取新鮮葉片于-70℃低溫保存,用于BSA混池定位分析。BSA混池測(cè)序由北京諾禾致源科技股份有限公司提供技術(shù)支持。利用CTAB法提取基因組DNA,經(jīng)瓊脂糖凝膠電泳以及紫外分光光度計(jì)對(duì)DNA質(zhì)檢合格后構(gòu)建文庫(kù)(可溶性固形物高含量混池HS、可溶性固形物低含量混池LS、可溶性固形物高含量親本P1、可溶性固形物低含量親本P2),通過(guò)Illumina Hiseq進(jìn)行基因組測(cè)序,親本池測(cè)序深度20×,混池測(cè)序深度30×。使用bwa軟件與參考基因組DHL92序列比對(duì)。使用DeepBSA軟件[19],基于Deep Learning、K value、ED4、△SNP index、SmoothG、SmoothLOD、Ridit七種方法的交集區(qū)間作為最終的定位區(qū)間。

1.2.4 候選基因篩選及注釋

基于TBtools軟件提取區(qū)間內(nèi)的基因并繪基因表達(dá)熱圖;利用國(guó)際葫蘆科網(wǎng)站(http://cucurbitgenomics.org/)對(duì)候選基因進(jìn)行功能注釋及GO(gene ontology)富集分析。

1.3 數(shù)據(jù)處理

利用Excel 2010對(duì)6個(gè)世代的可溶性固形物含量數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理,利用SPSS 25進(jìn)行方差分析,利用R軟件SEA 2.0包進(jìn)行遺傳模型分析[18],其中包括計(jì)算極大似然函數(shù)值與AIC值,選擇AIC值較小的3個(gè)作為備選模型,通過(guò)擬合優(yōu)度模型檢驗(yàn)(均勻性檢驗(yàn)、Smirnov檢驗(yàn)、Kolmogorov檢驗(yàn))確定最優(yōu)遺傳模型,并對(duì)一階、二階遺傳參數(shù)估計(jì),對(duì)分離世代F2、B1和B2繪制可溶性固形物含量頻次分布圖。

2 結(jié)果與分析

2.1 甜瓜6個(gè)世代群體心部可溶性固形物的次數(shù)分布

研究表明,甜瓜6個(gè)世代心部可溶性固形物的平均值分別為P1(14.49)gt;B1(13.68)gt;F1(11.93)gt; F2(11.69)gt;B2(9.48)gt;P2(7.34),P1、P2與其他世代間存在顯著差異,F(xiàn)1在雙親之間,偏向于高糖P1。甜瓜分離世代心部可溶性固形物頻率分布圖中,可溶性固形物具有明顯的多峰和偏態(tài)分布,符合主基因+多基因混合模型的遺傳特征。表1,圖1

2.2 主基因+多基因混合遺傳模型

2.2.1 最佳模型選擇

研究表明,對(duì)甜瓜6個(gè)世代的可溶性固形物含量分別進(jìn)行主基因+多基因混合遺傳模型分析,得到5類24種模型的極大似然函數(shù)值與AIC值。不同模型根據(jù)極大似然函數(shù)值在-1 341.19至-1 169.32,AIC值在2 368.64~2 688.38。將D-0(MX1-AD-ADI)、E-0(MX2-ADI-ADI)和E-1(MX2-ADI-AD)作為甜瓜可溶性固形物的備選模型。表2

D-0模型有2個(gè)統(tǒng)計(jì)參數(shù)達(dá)顯著水平,E-0模型有2個(gè)統(tǒng)計(jì)參數(shù)達(dá)顯著水平,E-1模型有1個(gè)統(tǒng)計(jì)參數(shù)達(dá)顯著水平。選擇統(tǒng)計(jì)參數(shù)達(dá)顯著水平數(shù)最少的E-1 (MX2-ADI-AD)即2對(duì)加性-顯性-上位性主基因+加性-顯性多基因作為最優(yōu)遺傳模型。表3

2.2.2 最佳模型參數(shù)估計(jì)

研究表明,一階遺傳參數(shù)估值表明:2對(duì)主基因顯性效應(yīng)中,負(fù)向顯性效應(yīng)值(-1.419 0)大于正向顯性效應(yīng)(0.953 2),第1對(duì)主基因以正向顯性效應(yīng)為主,第2對(duì)主基因以負(fù)向顯性效應(yīng)為主;四種互作效應(yīng)中,加性×顯性與顯性×顯性互作為正向,加性×加性與顯性×加性互作為負(fù)向,加性×顯性互作(2.358 4)最明顯,對(duì)甜瓜可溶性固形物的遺傳貢獻(xiàn)相對(duì)較大;多基因加性效應(yīng)值(3.571 5)大于多基因顯性效應(yīng)值(-1.651 8),多基因以正向加性效應(yīng)為主。總體來(lái)看,|i|+|jab|+|jba|+|l|gt;|ha|+|hb|gt;|da|+|db|,甜瓜可溶性固形物的遺傳以2對(duì)主基因的上位性效應(yīng)為主,其次為顯性效應(yīng)和加性效應(yīng)。F2主基因遺傳率(71.855 4)最高,其次為B2(69.502 1)和B1(39.956 9),不同世代多基因遺傳率較小,分別為B1(7.974 8),B2(0.000 2),F(xiàn)2(0.000 2),圖中m:群體平均數(shù);da:第1對(duì)主基因加性效應(yīng)值;db:第2對(duì)主基因加性效應(yīng)值;d:主基因加性效應(yīng)值;ha:第1對(duì)主基因顯性效應(yīng)值;hb:第2對(duì)主基因顯性效應(yīng)值;i:加性×加性互作;jab:加性×顯性互作;jba:顯性×加性互作;l:顯性×顯性互作;[d]:多基因加性效應(yīng)值;[h]:多基因顯性效應(yīng)值;σ2mg:主基因遺傳方差;σ2pg:多基因遺傳方差;h2mg:主基因遺傳率;h2pg:多基因遺傳率。表4

2.3 BSA性狀定位

2.3.1 測(cè)序數(shù)據(jù)質(zhì)量

研究表明,共獲得有效數(shù)據(jù)量為38.76G,有效Reads比與有效數(shù)據(jù)量占比均>99%,36.39%≤GC含量≤37.86%,95.56%≤Q20≤95.68%,89.04%≤Q30≤89.13%。樣本數(shù)據(jù)量充足,測(cè)序數(shù)據(jù)質(zhì)量合格,GC分布正常。表5

將過(guò)濾后Reads與甜瓜參考基因組DHL92比對(duì),雙親比對(duì)率分別為95.83%和96.16%,平均測(cè)序深度為19.36×;子代極端混池比對(duì)率分別為93.77%和95%,平均測(cè)序深度為24.96×。測(cè)序深度1×?xí)r,堿基覆蓋度≥96.71%,測(cè)序深度4×?xí)r,堿基覆蓋度≥95.27%。表6

2.3.2 候選區(qū)間定位

研究表明,基于Deep Learning、K value、ED4、△SNP index、SmoothG、SmoothLOD、Ridit七種算法初定位取交集,得到2個(gè)與可溶性固形物相關(guān)聯(lián)的染色體區(qū)域,在5號(hào)染色體的827066 bp~1099530 bp和8號(hào)染色體的11316600 bp~11729324 bp,區(qū)間大小為0.27 Mb和0.41 Mb,作為候選區(qū)間。表7,圖2

2.3.3 候選區(qū)間差異表達(dá)基因

研究表明,利用TBtools軟件提取候選區(qū)間內(nèi)的基因共計(jì)50個(gè),在候選區(qū)間內(nèi)有效表達(dá)的基因有28個(gè),篩選出P1和P2至少在同一時(shí)期差異表達(dá)的基因有24個(gè)。在果實(shí)發(fā)育20 d,此時(shí)糖分開始積累,有16個(gè)顯著差異的基因;果實(shí)發(fā)育30 d是糖分急速上升階段,有6個(gè)顯著差異的基因;在果實(shí)發(fā)育40 d是果實(shí)成熟期,有9個(gè)顯著差異的基因。圖3

2.3.4 基因注釋及GO富集

研究表明,雙親編碼區(qū)以及啟動(dòng)子區(qū)域有差異的基因有22個(gè),與同一時(shí)期雙親間差異表達(dá)的基因取交集得到14個(gè)基因,利用國(guó)際葫蘆科網(wǎng)站對(duì)14個(gè)候選基因進(jìn)行功能注釋以及GO富集分析。14個(gè)基因在生物過(guò)程中包含16個(gè)條目,多富集于生物過(guò)程;細(xì)胞組分中包含15個(gè)條目,多富集于細(xì)胞組分、線粒體和膜的組成部分;分子功能中包含25個(gè)條目,多富集于分子功能、酶活性、蛋白結(jié)合等條目。表8,圖4

14個(gè)候選基因中,有6個(gè)基因在編碼區(qū)存在非同義突變,分別是:MELO3C014619、MELO3C014617、MELO3C014596、MELO3C014594、MELO3C019077、MELO3C019089,推測(cè)以上6個(gè)基因是甜瓜可溶性固形物相關(guān)的候選基因。

3 討 論3.1

可溶性固形物是評(píng)價(jià)甜瓜商品等級(jí)最直接也是最重要的指標(biāo)[20],近幾年主要在品種[21-22]、光譜無(wú)損檢測(cè)技術(shù)[23-25]等方面研究較多,甜瓜果實(shí)糖分遺傳分析方面的研究主要在果糖、葡萄糖、蔗糖方面[26-27],關(guān)于可溶性固形物的研究較少。試驗(yàn)研究通過(guò)主基因+多基因遺傳模型分析表明,甜瓜心部可溶性固形物符合2對(duì)加性-顯性-上位性主基因+加性-顯性多基因遺傳模型(E-1模型),以2對(duì)主基因的上位性效應(yīng)為主,其次為顯性效應(yīng)和加性效應(yīng),上位性效應(yīng)對(duì)甜瓜心部可溶性固形物具有重要影響。以低糖越瓜自交系“花皮菜瓜”為母本和高糖哈密瓜自交系“XLH”為父本通過(guò)六個(gè)世代聯(lián)合分析發(fā)現(xiàn),果實(shí)可溶性固形物符合1對(duì)加性-顯性主基因+加性-顯性-上位性多基因遺傳模型(E-0模型)[12],以1對(duì)主基因負(fù)向加性效應(yīng)為主。試驗(yàn)研究中控制可溶性固形物的主基因數(shù)與該研究所得結(jié)果不一致,說(shuō)明不同的遺傳群體控制可溶性固形物的主基因與多基因遺傳效應(yīng)有所差異。3.2

可溶性固形物成分較復(fù)雜,包含多種糖類物質(zhì)、維生素、礦物質(zhì)等,且易受環(huán)境以及種植管理等因素影響。研究通過(guò)以F2群體為材料,BSA定位到2個(gè)可溶性固形物相關(guān)QTL,分別在5號(hào)染色體827066 bp-109953 bp和第8號(hào)11316600 bp-11729324 bp,區(qū)間大小分別為 0.27 Mb 和 0.41 Mb。Pereira等[28]采用GBS構(gòu)建甜瓜重組自交系群體的高密度遺傳圖譜,定位的33個(gè)穩(wěn)定的QTL中,與可溶性固形物相關(guān)的有6個(gè),位于8號(hào)染色體chr08_9446475-chr08_17287431區(qū)間9.63 Mb,chr08_21787907-chr08_25723466區(qū)間2.45 Mb,chr08_29419309-chr08_31888799區(qū)間29.81 Mb,9號(hào)染色體chr09_2403873-chr09_6139775區(qū)間3.45 Mb,chr09_12354052-chr09_20679607區(qū)間18.82 Mb,10號(hào)染色體chr10_290494-chr10_1736076區(qū)間1.45 Mb。Argyris等[29]通過(guò)近等基因系發(fā)現(xiàn)了55個(gè)果實(shí)糖積累相關(guān)的QTL,有8個(gè)與可溶性固形物含量相關(guān)的QTL,其中4號(hào)染色體有3個(gè),在5號(hào)染色體有5個(gè)。許彥賓等[13]以192份甜瓜種質(zhì)資源為材料,通過(guò)3年重復(fù)試驗(yàn),104個(gè)SSR標(biāo)記對(duì)可溶性固形物關(guān)聯(lián)作圖,發(fā)掘到16個(gè)與可溶性固形物相關(guān)的標(biāo)記位點(diǎn),其中有8個(gè)穩(wěn)定表達(dá)的SSR位點(diǎn),1號(hào)染色體CMCCA145,2號(hào)染色體CMGA108,5號(hào)染色體DE1557,9號(hào)染色體CMCTTN166,CMATN22,10號(hào)染色體CM38,12號(hào)染色體CMBR150,CSAT425A。雖然受多因素影響下,定位到穩(wěn)定的QTL和優(yōu)良的候選基因較困難,但獲得了一些新的QTL。

3.3

研究通過(guò)雙親間轉(zhuǎn)錄組數(shù)據(jù)、基因結(jié)構(gòu)以及國(guó)際葫蘆科網(wǎng)站基因注釋和GO富集分析初步定位了6個(gè)候選基因。其中MELO3C014596基因注釋為蘋果酸/酮戊二酸轉(zhuǎn)運(yùn)蛋白,前人研究中蘋果酸/酮戊二酸轉(zhuǎn)運(yùn)蛋白可以調(diào)節(jié)碳氮代謝[30]、蔗糖合成、氨基酸水平[31]、糖酵解和三羧酸循環(huán)過(guò)程[32-33];MELO3C014594基因注釋為含五肽重復(fù)序列的蛋白質(zhì)(PPR),是細(xì)胞核編碼的葉綠體RNA結(jié)合蛋白中最重要的一類家族蛋白[34],對(duì)葉綠體的功能以及植株的正常生長(zhǎng)發(fā)育起至關(guān)重要的作用[35];MELO3C019077基因在擬南芥上的同源基因AT1G16020注釋為液泡融合蛋白CCZ1,參與囊泡介導(dǎo)轉(zhuǎn)運(yùn)的生物過(guò)程。MELO3C019089注釋為DNA促旋酶亞基B,屬于II型拓?fù)洚悩?gòu)酶,能催化DNA兩條鏈同時(shí)斷裂并消耗能量,關(guān)于DNA促旋酶亞基B的研究主要在醫(yī)學(xué)靶向藥物[36]、細(xì)菌鑒定[37]以及抑菌劑[38]方面研究較多。MELO3C014619基因在擬南芥上的同源基因AT5G12900注釋為DNA雙鏈斷裂修復(fù)RAD50 ATP酶,參與植物的調(diào)節(jié)發(fā)育過(guò)程;MELO3C014617在擬南芥上的同源基因AT4G12070,注釋為假定蛋白質(zhì),參與有機(jī)物的分解代謝過(guò)程。MELO3C019087注釋為UDP糖基轉(zhuǎn)移酶(尿苷二磷酸糖基轉(zhuǎn)移酶UGT)超家族蛋白,通過(guò)參與植物次生代謝過(guò)程[39],在果實(shí)的發(fā)育成熟以及香氣、風(fēng)味等品質(zhì)的形成過(guò)程中發(fā)揮關(guān)鍵性作用[40-43],試驗(yàn)研究中該基因在編碼區(qū)無(wú)非同義突變,在啟動(dòng)子區(qū)存在大量差異位點(diǎn),果實(shí)成熟期(40 d)高糖親本P1中的表達(dá)量顯著高于低糖親本P2,該基因可能通過(guò)表達(dá)量的差異來(lái)影響可溶性固形物的積累,后續(xù)還需要通過(guò)基因編輯技術(shù)對(duì)該基因功能進(jìn)行驗(yàn)證。

4 結(jié) 論

厚皮甜瓜心部可溶性固形物符合E-1(MX2-ADI-AD)遺傳模型,在5號(hào)和8號(hào)染色體共定位到2個(gè)可溶性固形物相關(guān)QTL,區(qū)間大小分別為 0.27 Mb 和 0.41 Mb。

篩選獲得了6個(gè)與甜瓜可溶性固形物含量相關(guān)的候選基因,分別是MELO3C014619、MELO3C014617、MELO3C014596、MELO3C014594、MELO3C019077、MELO3C019089。

參考文獻(xiàn)(References)

[1]Eduardo I, Arus P, Monforte A J, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines[J]. Journal of the American Society for Horticultural Science, 2007, 132(1): 80-89.

[2] Senesi E, Scalzo R L, Prinzivalli C, et al. Relationships between volatile composition and sensory evaluation in eight varieties of netted muskmelon (Cucumis melo L var Reticulatus Naud)[J]. Journal of the Science of Food and Agriculture, 2002, 82(6): 655-662.

[3] Zhang J Z, Li B S, Zhang J L, et al. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol[J]. PLoS One, 2020, 15(3): e0230593.

[4] Dia M, Wehner T C, Perkins-Veazie P, et al. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments[J]. Horticulture Research, 2016, 3: 16066.

[5] 蓋鈞鎰. 植物數(shù)量性狀遺傳體系[M]. 北京: 科學(xué)出版社, 2003.

GAI Junyi. Genetic system of quantitative traits in plants[M]. Beijing: Science Press, 2003.

[6] Qi Z Y, Li J X, Raza M A, et al. Inheritance of fruit cracking resistance of melon (Cucumis melo L.) fitting E-0 genetic model using major gene plus polygene inheritance analysis[J]. Scientia Horticulturae, 2015, 189: 168-174.

[7] Dong J P, Xu J, Xu X W, et al. Inheritance and quantitative trait locus mapping of Fusarium wilt resistance in cucumber[J]. Frontiers in Plant Science, 2019, 10: 1425.

[8] 蔣鋒, 閆艷, 黃正剛, 等. 糯玉米種子活力性狀的主基因+多基因混合遺傳分析[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 51(2): 22-29, 42.

JIANG Feng, YAN Yan, HUANG Zhenggang, et al. Mixed major genes and polygenes inheritance analyses for seed vigor traits in waxy corn[J]. Journal of Northwest A amp; F University (Natural Science Edition), 2023, 51(2): 22-29, 42.

[9] 解松峰, 吉萬(wàn)全, 張耀元, 等. 小麥重要產(chǎn)量性狀的主基因+多基因混合遺傳分析[J]. 作物學(xué)報(bào), 2020, 46(3): 365-384.

XIE Songfeng, JI Wanquan, ZHANG Yaoyuan, et al. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat[J]. Acta Agronomica Sinica, 2020, 46(3): 365-384.

[10] Ren X Y, Li H X, Yin Y, et al. Genetic analysis of fruit traits in wolfberry (Lycium L.) by the major gene plus polygene model[J]. Agronomy, 2022, 12(6): 1403.

[11] 王利民, 黨照, 趙瑋, 等. 基于分離世代和RIL群體的亞麻株高遺傳定位[J]. 植物遺傳資源學(xué)報(bào), 2022, 23(5): 1446-1457.

WANG Limin, DANG Zhao, ZHAO Wei, et al. Genetic analysis of plant height in flax using segregating generations and recombination inbred line populations[J]. Journal of Plant Genetic Resources, 2022, 23(5): 1446-1457.

[12] 呂律. 甜瓜果實(shí)含糖量遺傳分析及糖分積累與蔗糖代謝酶關(guān)系的研究[D]. 杭州: 浙江大學(xué), 2018.

LYU Lyu. Genetic Analysis of Sugar Content and the Relationship between Sugar Accumulation and Its Metabolism-related Enzymes in Melon(Cucumis melo L.). Hangzhou: Zhejiang University, 2018.

[13] 許彥賓, 王艷玲, 胡建斌, 等. 甜瓜果實(shí)可溶性固形物含量的關(guān)聯(lián)作圖及優(yōu)異等位變異發(fā)掘[J]. 園藝學(xué)報(bào), 2017, 44(5): 902-910.

XU Yanbin, WANG Yanling, HU Jianbin, et al. Association mapping of soluble solid content in melon fruits and exploration of the elite alleles[J]. Acta Horticulturae Sinica, 2017, 44(5): 902-910.

[14] Diaz A, Fergany M, Formisano G, et al. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.)[J]. BMC Plant Biology, 2011, 11: 111.

[15] Monforte A J, Oliver M, Gonzalo M J, et al. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.)[J]. TAG Theoretical and Applied Genetics Theoretische und Angewandte Genetik, 2004, 108(4): 750-758.

[16] Paris M K, Zalapa J E, McCreight J D, et al. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm[J]. Molecular Breeding, 2008, 22(3): 405-419.

[17] Obando J, Fernández-Trujillo J P, Martínez J A, et al. Identification of melon fruit quality quantitative trait loci using near-isogenic lines[J]. Journal of the American Society for Horticultural Science, 2008, 133(1): 139-151.

[18] 王靖天, 張亞雯, 杜應(yīng)雯, 等. 數(shù)量性狀主基因+多基因混合遺傳分析R軟件包SEA v2.0[J]. 作物學(xué)報(bào), 2022, 48(6): 1416-1424.

WANG Jingtian, ZHANG Yawen, DU Yingwen, et al. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits[J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.

[19] Li Z, Chen X X, Shi S Q, et al. DeepBSA: a deep-learning algorithm improves bulked segregant analysis for dissecting complex traits[J]. Molecular Plant, 2022, 15(9): 1418-1427.

[20] Lingle S E, Dunlap J R. Sucrose metabolism in netted muskmelon fruit during development[J]. Plant Physiology, 1987, 84(2): 386-389.

[21] 張勇, 馬建祥, 李好, 等. 厚皮甜瓜新品種‘農(nóng)大甜9號(hào)’[J]. 園藝學(xué)報(bào), 2021, 48(S2):2869-2870.

ZHANG Yong, MA Jianxiang, LI Hao, et al. A new muskmelon cultivar‘nongdatian 9’[J]. Acta Horticulturae Sinica, 2021, 48(S2):2869-2870.

[22] 張若緯, 李肯, 武云鵬, 等. 薄皮甜瓜新品種‘花田1號(hào)’[J]. 園藝學(xué)報(bào), 2021, 48(S2): 2871-2872.

ZHANG Ruowei, LI Ken, WU Yunpeng, et al. A new oriental melon cultivar‘Huatian 1’[J]. Acta Horticulturae Sinica, 2021, 48(S2): 2871-2872.

[23] Lu J, Qi S Y, Liu R, et al. Nondestructive determination of soluble solids and firmness in mix-cultivar melon using near-infrared CCD spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2015, 8(6): 1550032.

[24] Hu R, Zhang L X, Yu Z Y, et al. Optimization of soluble solids content prediction models in ‘Hami’ melons by means of Vis-NIR spectroscopy and chemometric tools[J]. Infrared Physics amp; Technology, 2019, 102: 102999.

[25] 郭陽(yáng), 史勇, 郭俊先, 等. 近紅外光譜技術(shù)結(jié)合反向區(qū)間偏最小二乘算法-連續(xù)投影算法預(yù)測(cè)哈密瓜可溶性固形物含量[J]. 食品與發(fā)酵工業(yè), 2022, 48(2): 248-253.

GUO Yang, SHI Yong, GUO Junxian, et al. Prediction of soluble solids content in Hami melon by combining near-infrared spectroscopy and BiPLS-SPA technology[J]. Food and Fermentation Industries, 2022, 48(2): 248-253.

[26] 葉紅霞, 呂律, 海睿, 等. 甜瓜果實(shí)糖含量的主基因+多基因遺傳分析[J]. 浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2019, 45(4): 391-400.

YE Hongxia, LYU Lyu, HAI Rui, et al. Genetic analysis of fruit sugar content in melon(Cucumis melo L.) based on a mixed model of major genes and polygenes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 391-400.

[27] 張寧, 張顯, 張勇, 等. 甜瓜遠(yuǎn)緣群體果實(shí)糖含量相關(guān)性狀遺傳分析[J]. 植物遺傳資源學(xué)報(bào), 2014, 15(5): 932-939.

ZHANG Ning, ZHANG Xian, ZHANG Yong, et al. Genetic analysis of fruit sugar content correlated traits in interspecific population of melon[J]. Journal of Plant Genetic Resources, 2014, 15(5): 932-939.

[28] Pereira L, Ruggieri V, Pérez S, et al. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map[J]. BMC Plant Biology, 2018, 18(1): 324.

[29] Argyris J M, Díaz A, Ruggieri V, et al. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.)[J]. Frontiers in Plant Science, 2017, 8: 1679.

[30] Kinoshita H, Nagasaki J, Yoshikawa N, et al. The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism[J]. The Plant Journal, 2011, 65(1): 15-26.

[31] Schneidereit J, Husler R E, Fiene G, et al. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism[J]. The Plant Journal, 2006, 45(2): 206-224.

[32] Zamani-Nour S, Lin H C, Walker B J, et al. Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice[J]. Journal of Experimental Botany, 2021, 72(1): 137-152.

[33] Li W J, Yang B, Xu J Y, et al. A genome-wide association study reveals that the 2-oxoglutarate/malate translocator mediates seed vigor in rice[J]. The Plant Journal, 2021, 108(2): 478-491.

[34] Andrade-Marcial M, Pacheco-Arjona R, Góngora-Castillo E, et al. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior[J]. BMC Plant Biology, 2022, 22(1): 352.

[35] Lee K, Park S J, Han J H, et al. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development[J]. BMC Plant Biology, 2019, 19(1): 244.

[36] Salman M, Sharma P, Kumar M, et al. Targeting novel sites in DNA gyrase for development of anti-microbials[J]. Briefings in Functional Genomics, 2023, 22(2): 180-194.

[37] Delmas J, Breysse F, Devulder G, et al. Rapid identification of Enterobacteriaceae by sequencing DNA gyrase subunit B encoding gene[J]. Diagnostic Microbiology and Infectious Disease, 2006, 55(4): 263-268.

[38] Fois B, Skok , TomaiT, et al. Dual Escherichia coli DNA gyrase A and B inhibitors with antibacterial activity[J]. ChemMedChem, 2020, 15(3): 265-269.

[39] Vogt T, Jones P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family[J]. Trends in Plant Science, 2000, 5(9): 380-386.

[40] Wei Y Z, Mu H Y, Xu G Z, et al. Genome-wide analysis and functional characterization of the UDP-glycosyltransferase family in grapes[J]. Horticulturae, 2021, 7(8): 204.

[41] Wu B P, Liu X H, Xu K, et al. Genome-wide characterization, evolution and expression profiling of UDP-glycosyltransferase family in pomelo (Citrus grandis) fruit[J]. BMC Plant Biology, 2020, 20(1): 459.

[42] Wu B P, Cao X M, Liu H R, et al. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach[J]. Journal of Experimental Botany, 2019, 70(3): 925-936.

[43] Liu X G, Lin C L, Ma X D, et al. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis)[J]. Frontiers in Plant Science, 2018, 9: 166.

QTL mapping and genetic analysis of soluble solids

content in the center flesh of muskmelon

FAN Rong1, ZHANG Yongbing1, LI Meihua1, ZHANG Xuejun1,

YI Hongping1, LIU Zhao2,YANG Yong1

(1.Center of Hami Melon, Xinjiang Academy of Agricultural Sciences,Urumqi 830091, China;2.Shouguang Sanmu Seed Co.,Ltd,Shouguang Shandong 262700,China)

Abstract:【Objective】 This study aims to analyze the content of soluble solids in the center flesh of muskmelon by Genetic analysis and QTL mapping in the hope of finding out candidate genes associated with soluble solids in the heart of C. achyum fruits.

【Methods】 Six generations population (P1, P2, F1, B1, B2, and F2) were created using the high-sugar material P1 and the low-sugar material P2 as parents. A mixed major gene plus polygene inheritance model was used to analyze soluble solids content in the center flesh of six generations population. Based on the F2 population, individual plants with higher and lower fruit soluble solids content were selected to construct two pools to locate the soluble solids content of muskmelons by using the BSA method.

【Results】 Muskmelon soluble solids conformed to the E-1 (MX2-ADI-AD) genetic model, with epistatic effects dominating the 2 main gene pairs, followed by dominant and additive effects. Two QTLs were located in chromosome 5 (827066 bp-109953bp) and chromosome 8 (11316600 bp-11729324 bp), with interval sizes of 0.27Mb and 0.41 Mb, respectively, and contained a total of 50 candidate genes. Six candidate genes related to soluble solids content of melon were screened and obtained (MELO3C014619, MELO3C014617, MELO3C014596, MELO3C014594, MELO3C019077 and MELO3C019089).

【Conclusion】 Muskmelon soluble solids conforms to the E-1 (MX2-ADI-AD) genetic model, two QTLs related to soluble solid content of muskmelon are mapped on chromosomes 5 and 8 by BSA method, and six candidate genes related to soluble solid content of muskmelon screened out.

Key words:muskmelon; soluble solids; major gene plus polygene; BSA

Fund projects:Key R amp; D Project of Xinjiang Uygur Autonomous Region (2022B02002-3);National Natural Science Foundation of China (31860567);China Agriculture Research System of MOF and MARA(CARS-25-G2);Innovation Ability Training Project for Young Sci-Tech Backbone Talents Sponsored by Xinjiang Academy of Agricultural Sciences(xinkq-2022011);Major Science and technology Projects in Xinjiang Uygur Autonomous Region(2022A03004-5); Scientific Research Special Project of Hainan Provincial Academician Innovation Platform (Academician Wu Mingzhu Team Innovation Center); Key Laboratory Project of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables

Correspondence author:YANG Yong(1986-),male,from Cao xian,Shandong,associate research fellow,research direction: molecular genetic improvement of melon,(E-mail)553508458@qq.com

主站蜘蛛池模板: 欧美在线黄| 久热这里只有精品6| 国产精品v欧美| 国产一区二区三区在线观看免费| 色噜噜在线观看| 亚洲高清免费在线观看| 午夜少妇精品视频小电影| 国产主播喷水| www.99在线观看| 亚洲Av综合日韩精品久久久| 高h视频在线| 国产精品漂亮美女在线观看| 国产成人久久综合777777麻豆 | 99在线视频免费| 国产91无码福利在线| 91激情视频| 久久香蕉国产线| 啪啪永久免费av| 毛片网站免费在线观看| 香蕉视频在线精品| 日韩精品一区二区三区视频免费看| 亚洲熟妇AV日韩熟妇在线| 国产午夜人做人免费视频中文| 小说 亚洲 无码 精品| 黄色污网站在线观看| 国产人人乐人人爱| 2020精品极品国产色在线观看| 国产亚洲精品在天天在线麻豆| 成人在线视频一区| 国产xx在线观看| 久久综合国产乱子免费| 国产成a人片在线播放| 亚洲无码精彩视频在线观看 | av大片在线无码免费| 国产精品刺激对白在线| 亚洲人成日本在线观看| 中文字幕欧美日韩| 在线观看亚洲国产| 狠狠色狠狠色综合久久第一次| 毛片免费试看| 久久亚洲高清国产| 国内视频精品| 欧美第二区| 日韩精品成人网页视频在线| 国产精品自在线天天看片| 欧美性精品| 亚洲天堂网视频| 99性视频| 干中文字幕| 99九九成人免费视频精品| 欧美高清三区| 婷婷色一区二区三区| 91久久偷偷做嫩草影院免费看| 日韩欧美国产综合| 97人妻精品专区久久久久| 天堂中文在线资源| 性69交片免费看| 极品性荡少妇一区二区色欲 | 久久国产乱子| 欧美.成人.综合在线| 国内精品91| 午夜无码一区二区三区| 国产精品尤物在线| 凹凸精品免费精品视频| 亚洲一级毛片在线播放| 一级黄色网站在线免费看| 国产在线高清一级毛片| 亚洲精品第五页| 91在线视频福利| 国产成人精品18| 日韩乱码免费一区二区三区| 欧美日韩福利| 国产精品分类视频分类一区| 国产极品美女在线观看| 激情网址在线观看| 久久国产精品影院| 狠狠干欧美| 色窝窝免费一区二区三区 | 国内精品久久久久鸭| jizz国产在线| 国产精品不卡永久免费| 香蕉久人久人青草青草|