Research Progress on Relationship between Ca2+ and Calcium-Binding Proteins and Salt Tolerance in Plants
Li Cheng’,Du Chunyan2,Cui Xianfen3,Li Yancan',Li Jingjuan1,Song Jie4,Cui Bing',Gao Jianwei(1. Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;2. Agriculture and Rural Bureau of Daiyue District, Taian City, Taian 271OOO,China;3. Tianzhuang Reservoir Comprehensive Service Center, Yiyuan County, Yiyuan 2561Oo, China ;4. College of Life Sciences, Shandong Normal University, Jinan 25oooo, China)
AbstractSoil salinization severely impacts crop productivity. As a pivotal secondary messenger in plant cells, Ca2+ plays a central role in mediating responses to salt stress. Calcium-binding proteins in plants perceive extracellular signals by binding Ca2+ . These proteins belong to an extensive gene superfamily including four subfamilies which were calcium-dependent protein kinases (CDPKs)and their related kinases(CRKs), calmodulins (CaMs),calmodulin-like proteins(CMLs),and calcineurin B-like proteins(CBLs)paired with their interacting protein kinases ((CIPKs). Calcium-binding proteins play important roles in plants response to salt stress adaptation. This review synthesized current advances in understanding Ca2+ signaling and calciumbinding proteins in plant salt tolerance,and mainly discussed the regulatory effects of Ca2+ on salt-stressed crops and the function of calcium-binding proteins to crop salt resistance.Finally,the research and application prospects of calcium-binding proteins were prospected.
Keywords Ca2+ ; Calcium-binding protein; Salt stress; Salt tolerant mechanism
鹽脅迫對植物生長有重大危害,顯著影響作物產量。目前已知,全球二分之一的灌溉土地和五分之一的耕地受到鹽漬化威脅[1]。由于氣候變化、海水對沿海低洼地的侵蝕以及不合理灌溉等原因,土壤鹽漬化面積日益增加,土壤鹽漬化問題越來越嚴重[2]。我國鹽堿地約有1億公頃,其中大約有三分之一鹽堿地具備開發利用潛力。合理利用鹽堿地資源有助于實現我國耕地資源擴容和提質增效
鹽漬化土壤中的鈉離子( Na+ )濃度過高會抑制植物對水和營養成分的吸收,并且造成滲透脅迫和離子脅迫,導致包括氧化脅迫在內的一系列次級脅迫的產生[3-4]。鹽脅迫還會對植物糖分的積累及糖酵解等糖信號產生影響,除此之外植物光合作用也受到鹽脅迫的調控[5-6]。總之,鹽脅迫通過影響光合作用和糖分積累,抑制細胞的分裂伸長,導致植物生理生化水平紊亂,從而阻礙植物的正常生長發育[2]
鈣離子( Ca2+ )在植物細胞信號傳遞中扮演重要角色,尤其在應對環境壓力時起到關鍵作用。植物受到外界脅迫時細胞質中的游離 Ca2+ 濃度會短暫增加, Ca2+ 與鈣結合蛋白結合解碼 Ca2+ 信號并引起細胞生化和生理過程發生改變以應對各種逆境脅迫[7-8]。如在鹽脅迫下, Ca2+ 通過介導植物耐受 Na+ 脅迫的重要防御通路(SOS途徑),利用根部細胞將 Na+ 排出體外,維持細胞的離子穩態,保護植株免受離子毒害[9]。本文通過綜述Ca2+ 及鈣結合蛋白在植物耐鹽中的研究進展,主要探討 Ca2+ 對鹽脅迫作物的調節作用,以及鈣結合蛋白在作物耐鹽機制中的功能,最后對鈣結合蛋白的研究及應用前景進行展望,以期為耐鹽作物培育提供理論參考。
(204 Ca2+ 在植物耐鹽中的作用
植物在應對各類逆境時出現了多種多樣的生存機制。鹽脅迫抑制種子發芽,阻礙植物的生長[10]。面對鹽脅迫,植物胞質內的 Ca2+ 濃度會迅速提高,形成鈣信號進行傳遞。植物細胞質中Ca2+ 含量是鈣信號形成的基礎,細胞質中 Ca2+ 濃度一般在 100~200nmol?L-1 。除此之外,液泡、線粒體和內質網內的 Ca2+ 濃度遠遠高于細胞質中的,被稱為鈣庫[11]。當植物受到逆境脅迫時,鈣庫內儲存的 Ca2+ 會通過鈣離子通道迅速進人細胞質中形成鈣信號,細胞質內 Ca2+ 的濃度將會達到1~10μmol?L-1 水平[12-13]。鈣信號完成調控使命后,鈣離子泵將細胞質中的 Ca2+ 排到細胞外部,Ca2+ 反向轉運蛋白( Ca2+ /cation antiporter, CAXs)調控 Ca2+ 進入液泡[14]。
在鹽脅迫下,植物因受到土壤高滲透勢的影響,會出現細胞內水分流失現象。在滲透脅迫中,Ca2+ 通過結合質膜鈣滲透通道OSCA1(reducedhyperosmolality-induced
increase channel)發揮重要作用。滲透脅迫下,擬南芥Atosca1突變體細胞內鈣信號無法正常傳遞[15]。水稻中已發現11個OSCA1的同源基因,其中OsOSCA1.4定位于質膜上,在滲透脅迫下可以促進細胞質 Ca2+ (20濃度增加[16]。雙孔通道(TPC1)可以加速 Ca2+ 的傳遞,擬南芥Attpc1突變體遠距離傳遞鈣信號的速度顯著降低[17]。在植物體內,鹽脅迫下鈣信號波的振幅和波峰振蕩模式顯著受鹽響應影響,由此表明 Ca2+ 在植物對鹽脅迫的響應中扮演重要角色。
Ca2+ 對植物耐鹽反應的調控很大程度上依賴于脫落酸(ABA)響應順式元件,包括ABREs及其耦合元件[18]。G-box啟動子元件是 ABA 響應元件(ABREs)的核心基序,可被ABA應答的bZIP類轉錄因子(如AREB/ABFs)特異性識別并結合,進而激活下游脅迫響應基因的表達[9]。ABFs主要由ABA調控,在鹽脅迫和氧化脅迫過程中發揮功能;ABF2/ABRE1和ABF4/ABRE2則在ABA的調控下介導干旱、鹽和氧化應激反應[20]。ABA信號通路在調控過程中一般被分為三個環節,包括受體復合物的形成、蛋白激酶的介質信息傳遞以及轉錄因子介導的靶蛋白合成與翻譯后修飾。ABA受體復合物由ABA結合調控組分RCAR/PYR1/PYLs、ABA受體和共受體PP2C組成,后者依賴ABA的催化活性被RCARs抑制,從而激活 ABA 信號[21]。 Ca2+ 信號與ABA信號的結合可能發生在三步調控過程中的任何一個節點[21]。研究發現,ABA受體在膜上的累積由Ca2+ 通過鈣受體(calcium receptor,CAR)蛋白的功能控制[22-23]。此外,鈣依賴蛋白激酶(CDPKs)和CBL-CIPKs(CBL,類鈣調磷酸酶B蛋白)通過解碼 Ca2+ 信號,在ABA依賴和非依賴的脅迫響應中形成多層次調控網絡[24]。這兩類蛋白激酶的成員都與ABA共受體ABI2發生物理作用,并磷酸化ABA信號通路的靶蛋白[25]。CDPKs和CBLs-CIPKs表達的改變影響ABA敏感性,進而影響ABA應答[25] O
2鈣結合蛋白對植物耐鹽調控的研究進展
在鹽漬化土壤中,植物細胞內部或外部的大量 Na+ 會觸發胞質內 Ca2+ 濃度的迅速升高[26]細胞內 Ca2+ 濃度的瞬態變化引發鈣信號,被下游鈣結合蛋白識別和解碼,從而使得下游信號途徑被激活,包括蛋白磷酸化和基因表達等[27-28]。植物鈣結合蛋白分為4類,包括鈣依賴性蛋白激酶(calcium-dependent protein kinases,CDPKs)和相關蛋白激酶(CDPK-relatedkinase,CRKs)、鈣調蛋白(calmodulinproteins,CaMs)、類鈣調蛋白(calmodulin-likeproteins,CMLs)類鈣調磷酸酶B蛋白(calcineurinB-like protein,CBLs)和CBL相互作用蛋白激酶(CBL interacting protein ki-nase,CIPK)[29-30]。與CaMs、CMLs 和 CBL 相比,CDPKs可將 Ca2+ 信號直接轉導成磷酸化級聯,這賦予CDPKs具有 Ca2+ 感受器和響應器的雙重功能。CaMs、CMLs和CBL與 Ca2+ 結合后,需要與下游的靶蛋白相互作用解碼鈣信號傳遞的信息[31]。目前,擬南芥中已鑒定出34個CDPKs、7個CaMs、50個CMLs和10個 CBL[32-33] 0
2.1 CaMs和CMLs對植物耐鹽的調控作用
CaMs是一個典型的鈣結合蛋白,含有4個Ca2+ 結合蛋白的短EF-hand結構,存在于所有真核生物分支中并參與多種基本反應,如轉錄和酶活性的調節等[34]。擬南芥AtCaM1和AtCaM4通過與S-亞硝基谷胱甘肽還原酶(GSNOR)結合,降低GSNOR活性,促進一氧化氮(NO)積累,從而提高植物耐鹽性[35]。擬南芥中特異性CaM亞型GmCaM4過表達上調AtMYB2調控基因的轉錄表達,促進脯氨酸積累,增強擬南芥耐鹽性[36]。大麥鈣調蛋白1(HvCaM1)則通過大麥高親和性鉀離子轉運蛋白1;1(HvHKT1;1)和大麥鈣調蛋白結合轉錄激活因子4(HvCAMTA4)負調控大麥耐鹽性[37] 。
CMLs是一種高度保守的類鈣調蛋白,是當前廣泛研究的一種典型的鈣結合蛋白,在植物的各生長階段均具有重要作用,對作物應對各類脅迫反應至關重要。目前,已經對擬南芥、水稻等的CMLs基因家族進行了鑒定,并進行相關功能研究(表1);CMLs在植物中普遍存在,對CMLs的基因分析指出,絕大多數CMLs不含內含子,暗示其起源于原核生物,并在進入真核生物時代后具有高度保守性[38]。盡管大多數CMLs不含內含子,但少數CMLs基因有內含子存在,證明這些內含子是近期進化的產物。這意味著CMLs基因家族的成員都保持高度保守性,有可能自同一“祖先”進化而來。
CMLs與同一物種內的CaMs至少具有 16% 的序列相似性;除此之外,與CaMs相比,CMLs結構的N末端和C末端兩個相似的球形末端結構域之間具有更長的連接區域,使其更具靈活性,并可能影響其與下游靶標的相互作用,增加其結構與功能的多樣性[39]。CMLs 在其 EF-hand 結構域中含有保守的 Ca2+ 結合序列。序列比對顯示,第4個EF-hand 中存在保守的 D-x-D-x-D 基序,其第14位、16位和18位氨基酸是保守的;除了第4個EF-hand 外,CMLs 中的其他 EF-hand都不包含保守的 D-x-D 基序[40]

研究表明,AtCML6、AtCML17、AtCML28、AtC-ML37.AtCML40…AtCML44…AtCML50 在鹽脅迫下顯著上調表達,AtCML8、AtCML13、AtCML18、AtC-ML25在鹽脅迫下表達模式則被抑制[27]CML20、CML37通過調控ABA信號通路提高植物的耐鹽能力[41-42],CML36通過調節 Ca2+ -ATPaseACA8活性,參與植物應對干旱和鹽脅迫的過程[43]。水稻通過過表達OsCML16 顯著增強其植株的耐鹽性[44]。Magnan等[45]研究發現,AtCML9在ABA和鹽脅迫處理下表達量顯著上調,并在擬南芥的鹽脅迫響應中發揮重要作用。在大豆中,過量表達GmCaM4可以增強其對病原體和鹽脅迫的抗性[46]。AtCML24參與調控ABA、鹽脅迫和長日照誘導的開花過程,并發揮重要作用[47]。在寒冷、干旱和鹽脅迫下番茄SICML26表達顯著上調[48]。鹽脅迫下,4 種甘野菊的CsCML14、CsC-ML50、CsCML65、CsCML79表達均有顯著上調[49]鹽處理下,大白菜CML41和CML43的表達量均顯著上調[50]。鹽誘導條件下,茶樹中CsCML16、CsCML18、CsCML42的表達量均顯著上調[51] 。
2.2 CBL-CIPK對植物耐鹽的調控作用
CBLs代表另一個含有EF-hand結構的鈣結合蛋白,CBLs與CaMs保守基序的相似度很低,這兩個鈣離子結合蛋白家族似乎在進化早期就發生了分化[34]。盡管CBLs蛋白也包含4個EF-hand 基序,但它的第一個EF-hand上的 Ca2+ 結合區域并不是由12個氨基酸而是由14個氨基酸組成,且可以正常與 Ca2+ 結合[52]。CBL互作蛋白激酶(CIPKs)是一類絲氨酸/蘇氨酸蛋白激酶,其N端具有催化功能的激酶結構域,C端則包含通過NAF/FISL基序結合CBL蛋白的調節結構域,兩者通過形成CBL-CIPK復合體協同傳遞鈣離子信號,從而調控植物對鹽脅迫等環境逆境的適應性響應[53] O
CBL和CIPK可以形成復合物,對植物的耐鹽過程至關重要。擬南芥中CBL-CIPK復合體通過兩條不同的途徑調控植物的耐鹽反應。一條是CBL4-CIPK24-SOSI 通路,是CBL-CIPK調控網絡中的一條經典途徑,又稱作SOS途徑,主要是通過SOS途徑將根部細胞內的 Na+ 排出體外,從而增強植物的耐鹽性[54-55];另一條是CBL10-CIPK24-NHX1通路,將細胞質中的 Na+ 區域化到液泡中,維持胞質中的低 Na+ 濃度,減少鹽脅迫造成的損傷[56] 。
2.3 CDPKs和CRKs對植物耐鹽的調控作用
鈣調蛋白CDPKs包含4個保守結構域,即N端可變域、激酶催化域、自抑制連接域和C端調控域[57],包含了EF-hand鈣結合基序的傳感活性和蛋白激酶結構域的響應活性的蛋白[58]。相比之下,CRKs具有與CDPKs相似的蛋白質結構,但是C端調控域的EF-hand發生了退化,不能直接受 Ca2+ 的調控[59]。研究發現,當 Ca2+ 和CaM相結合時可調控CRKs的激酶活性[60]。除此之外,CRKs 可以通過自磷酸化調節激酶活性[61]。目前已知,AtCRK1可以通過 Ca2+ 依賴的方式結合鈣調蛋白(CaM)發揮激酶活性,同樣,在自磷酸化和底物磷酸化情況下發現其不依賴于 Ca2+ 同樣可以發揮激酶活性[62]。CRKs僅存在于植物中,而CDPKs在植物和某些原核生物中均有存在,這表明了CRKs的植物特異性[63] 。
CDPKs和CRKs在作物應對鹽脅迫時扮演關鍵角色。擬南芥CDPKs通過調控ABF(ABA-re-sponsive element binding factors)轉錄因子介導的ABA應答基因表達和調控ABA介導的陰離子通道(SLAC1,SLAH3),調節氣孔關閉來參與鹽脅迫響應[24,64]。比如,AtCPK4 和 AtCPK11是植物激素 ABA信號傳導途徑中的正向調控因子,參與種子萌發、幼苗生長、氣孔調節以及抗鹽逆境反應等[65],AtCPK12被認為是ABA信號通路的負調控因子[66],而 AtCPK6在應對干旱和鹽脅迫的響應中至關重要[6]。鹽脅迫下,細胞內活性氧(ROS)增加會破壞植物細胞膜,除此之外,還導致細胞內離子穩態發生紊亂[68-69],CDPKs通過調控ROS 清除途徑來調節作物對鹽脅迫的適應能力,例如,擬南芥中過氧化氫酶AtCAT3被AtCPK8磷酸化激活[70],水稻中抗壞血酸過氧化物酶Os-APX2/OsAPX8和還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶OsRbohI活性受Os-CPK12調控[71]。AtCPK5可以通過磷酸化 NAD-PH氧化酶RbohD導致細胞外 H2O2 產生,對加速信號傳播和防御氧化脅迫至關重要[72]。AtCPK27和AtCPK12在清除ROS過程中發揮作用,調節離子穩態進而提高植株耐鹽性[73-74]。過量表達AtCPK1和AtCPK6增強作物耐鹽性,可能是通過調節 ROS 和脯氨酸的產生實現的[75-76]。相反,CPK21和CPK23對滲透脅迫的耐受力更強[77-79]。AtCRK1與AtCBK3相互作用并磷酸化是鹽敏感性的調節因子,在鹽脅迫下維持細胞氧化還原穩態和滲透平衡[80]。此外,液泡鉀離子(2 (K+ )通道TPK1被AtCPK3磷酸化,在鹽脅迫下調節胞質 Na+/K+ 平衡[81]。過表達玉米Zm-CPK11可以提高植株體內 Na+ 和 K+ 的穩定性,使植株的耐鹽性增強[82]。cpk12 和cpk27突變體可以通過根系外排 Na+ ,減少鹽脅迫對作物的傷害[73-74]
3 展望
近年來,由于人類活動和全球氣候變化,世界范圍內的土壤鹽漬化嚴重程度仍在擴大。鹽脅迫抑制種子發芽、阻礙植物的正常生長發育,對植物造成負面影響。在植物對抗鹽脅迫過程中, Ca2+ 作為植物的第二信使,通過與鈣結合蛋白相結合,調控下游蛋白的表達,從而在抗鹽過程中發揮關鍵作用。不同鈣結合蛋白在作物響應鹽脅迫中表現為正調控或負調控特性,呈現復雜調控模式。然而,前人研究主要側重于驗證鈣結合蛋白的耐鹽功能和轉錄調節,缺乏對其耐鹽脅迫調控機理的研究,以及 Ca2+ 信號路徑的上下游調節機理仍未徹底揭示。后續仍需進一步深入挖掘鈣結合蛋白響應鹽脅迫的家族成員,探明其在響應鹽脅迫過程中的自我調節機制,以及與上下游調控元件的互作關系。相信隨著細胞生物學、生理學和現代分子遺傳學技術的不斷發展,植物中鈣結合蛋白調控鹽脅迫的分子機理將會陸續被探明,從而為作物抗鹽性評價和抗鹽作物培育提供理論依據和技術支持。
參考文獻:
[1]LiJG,PuLJ,HanMF,et al.Soil salinization research in China:advances and prospects[J]. Journal of Geographical Sciences,2014,24:943-960.
[2] 郭昭陽,殷宇航,劉鈺,等.玉米ZmIMPα基因的生物信息 學分析及其在鹽脅迫下的表達模式分析[J].山東農業科 學,2025,57(2):1-10.
[3] Gong Z Z. Plant abiotic stress:new insights into the factors that activateandmodulateplantresponses[J]. Journalof Integrative Plant Biology,2021,63(3):429-430.
[4] Zhu J K. Salt and drought stress signal transduction in plants [J].Annual Review ofPlant Biology,2002,53:247-273.
[5] Chen Y M,Hoehenwarter W. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis[J].Plant Physiology,2O15,169 (4):3021-3033.
[6] ShumilinaJ,Kusnetsova A,Tsarev A,etal.Glycation ofplant proteins:regulatory roles and interplay with sugar signalling [J].Int.J.Mol.Sci.,2019,20(9):2366.
[7] Dodd A N,Kudla J,Sanders D. The language of calcium signaling[J]. Annu.Rev.Plant Biol.,2010,61(1) :593-620. Nat.Plants,2020,6(7) :750-759.
[9]Julkowska M M,Testerink C. Tuning plant signaling and growth to survive salt[J]. Trends in Plant Science,2015,20(9): 586-594.
[10]Yang Y Q,Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. The New Phytologist, 2018,217(2) :523-539.
[11]Bose J,Pottosin I I,Shabala S S,et al. Calcium efflux systems in stress signaling and adaptation in plants[J]. Front. Plant Sci.,2011,2:85.
[12]Manishankar P,Wang N L,Koster P,et al. Caleium signaling during salt stress and in the regulation of ion homeostasis[J]. J.Exp.Bot.,2018,69(17) :4215-4226.
[13]Vincent TR,Avramova M,Canham J,et al. Interplay of plasma membrane and vacuolar ion channels,together with BAK1,elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding[J]. The Plant Cell,2017,29(6) :1460-1479.
[14]van Zelm E,Zhang Y X,Testerink C. Salt tolerance mechanisms of plants[J].Annu.Rev.Plant.Biol.,202O,71(1): 403-433.
[15]Yuan F,Yang H M,Xue Y,et al. OSCA1 mediates osmoticstress-evoked Ca 2+ increases vitalforosmosensing in Arabidopsis[J]. Nature,2014,514:367-371.
[16] Zhai YJ,Wen Z H,Han Y,et al. Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis oscal mutant[J]. Cell Calcium,2020,91:102261.
[17]Hedrich R,Mueller T D,Becker D,et al. Structure and function of TPC1 vacuole SV channel gains shape[J]. Mol. Plant, 2018,11(6) :764-775.
[18]Kaplan B,Davydov O,Knight H,et al. Rapid transcriptome changes induced bycytosolic Ca 2+ transients reveal ABRE-related sequences as Ca2+ -responsive cis elements in Arabidopsis [J]. The Plant Cell,2006,18(10) :2733-2748.
[19] Yoshida T,Fujita Y,Maruyama K,et al. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress[J].Plant,Cell amp; Environment,2015,38(1) :35-49.
[20]Li L L,Li L X,Cui S H,et al. PDC1 is activated by ABF4 and inhibits seed germination by promoting ROS accumulation in Arabidopsis[J]. Environ. Exp. Bot.,2023,206:105188.
[21]Nishimura N,Sarkeshik A,Nito K,et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2Cinteracting proteins in Arabidopsis[J]. Plant.J.,2010,61 : 290-299. and regulate abscisic acid sensitivity in Arabidopsis[J].The Plant Cell,2014,26(12) :4802-4820.
[23]Diaz M,Sanchez-Barrena M J,Gonzalez-Rubio JM,et al. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling[J].Proceedings of the National Academy of Sciences,2016,113(3):E396-E405.
[24]Edel K H,Kudla J. Integration of calcium and ABA signaling [J]. Current Opinion in Plant Biology,2016,33 :83-91.
[25]Leran S,Edel K H,Pervent M,et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2,a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015,8(375) :ra43.
[26] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiology,2000,124(3) :941-948.
[27]McCormack E,Tsai Y C,Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs[J]. Trends in Plant Science, 2005,10(8) :383-389.
[28]Aldon D,Mbengue M,Mazars C,et al. Calcium signaling in plant biotic interactions[J]. Int.J. Mol. Sci.,2018,19(3): 665.
[29]Batistic O,Kudla J. Analysis of calcium signaling pathways in plants[J].Biochimica et Biophysica Acta(BBA)-General Subjects,2012,1820(8) :1283-1293.
[30]Schulz P,Herde M,Romeis T. Calcium-dependent protein kinases:hubs in plant stress signaling and development[J].Plant Physiol.,2013,163(2) :523-530.
[31]Harper JF,Breton G,Harmon A. Decoding Ca2+ signals through plant protein kinases[J].Annu.Rev. Plant Biol., 2004,55:263-288.
[32] Zhu X Y,Dunand C,Snedden W,et al. CaM and CML emergence in the green lineage[J]. Trends in Plant Science,2015, 20(8) :483-489.
[33] Shi S J,Li S G,Asim M,et al. The Arabidopsis calcium-dependent protein kinases (CDPKs)and their roles in plant growth regulation and abiotic stress responses[J]. Int. J. Mol. Sci., 2018,19(7) :1900.
[34]Edel K H,Kudla J. Increasing complexity and versatility:how the calcium signaling toolkit was shaped during plant land colonization[J]. Cell Calcium,2015,57(3) :231-246.
[35]Zhou S,Jia L X,Chu HY,et al. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S -Nitrosoglutathione reductase via direct binding[J].PLoS Genetics,2016,12(9) :e1006255.
[36]Yoo JH,Park C Y,Kim JC,et al. Direct interaction of a divergent CaM isoform and the transcription factor,MYB2,en
[37] Shen Q F,Fu L B,Su TT,et al. Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4[J]. Plant Physiol.,2020,183(4) :1650-1662.
[38] Mohanta T K,Kumar P,Bae H. Genomics and evolutionary aspect of calcium signaling event in calmodulin and calmodulinlike proteins in plants[J]. BMC Plant Biology,2017,17:38.
[39] McCormack E,Braam J. Calmodulins and related potential calcium sensors of Arabidopsis[J]. New Phytol.,2003,159(3) : 585-598.
[40]Mohanta T K,Yadav D,Khan A L,et al. Molecular players of EF-hand containing calcium signaling event in plants[J]. Int. J. Mol. Sci.,2019,20(6) :1476.
[41]Scholz S S,Reichelt M,Vadassery J,et al. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis[J]. Plant Signaling amp; Behavior,2015,10(6) : e1011951.
[42]Wu X M,Qiao Z,Liu HP,et al. CML20,an Arabidopsis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance[J]. Front.Plant Sci.,2017, 8:824.
[43]Astegno A,Bonza M C,Vallone R,et al. Arabidopsis calmodulin-like protein CML36 is a calcium ( Ca2+ )sensor that interacts with the plasma membrane Ca2+ -ATPase isoform ACA8 and stimulates its activity[J]. J. Biol. Chem.,2017,292(36) : 15049-15061.
[44]鄭鈺瑩.OsCaM1-OsCAMTA1-OsCML16模塊調控水稻耐鹽 性的作用機制[D].武漢:華中農業大學,2023.
[45]Magnan F,Ranty B,Charpenteau M,et al. Mutations in AtCML9,a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. The Plant Journal,2008,56(4) :575-589.
[46]Rao S S,El-Habbak M H,Havens W M,et al. Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress[J].Mol. Plant Pathol.,2014,15(2): 145-160.
[47]Delk N A,Johnson K A,Chowdhury NI,et al. CML24,regulated in expression by diverse stimuli,encodes a potential Ca 2+ (20 sensor that functions in responses to abscisic acid,daylength, and ion stress[J]. Plant Physiol.,2005,139(1) :240-253.
[48]Munir S,Khan MR G,Song JW,et al. Genome-wide identification,characterization and expression analysis of calmodulinlike(CML) proteins in tomato (Solanum lycopersicum)[J]. Plant Physiology and Biochemistry,2016,102:167-179.
[49]Fu M M,Wu C,Li X,et al. Genome-wide identification and expression analysis of CsCaM/CML gene family in response to low-temperature and salt stresses in Chrysanthemum seticuspe
[J].Plants,2022,11(13) :1760.
[50] Qiu N W,Liu Q,Li JJ,et al. Physiological and transeriptomic responses of Chinese cabbage (Brassica rapa L. ssp. Pekinensis)to salt stress[J]. Int.J. Mol. Sci.,2017,18(9) :1953.
[51] Ma Q P,Zhou Q Q,Chen C M,et al. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis)[J]. Sci. Rep.,2019,9(1)) :8211.
[52] Nagae M,Nozawa A,Koizumi N,et al. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana[J]. J. Biol. Chem.,2003,278(43) :42240-42246.
[53]Batistic O,Kudla J. Integrationand channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network[J]. Planta.,2004,219(6):915-924.
[54]Halfter U,Ishitani M,Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3[J]. Proc.Natl. Acad. Sci. U. S.A., 2000,97(7) :3735-3740.
[55]Liu JP,Ishitani M,Halfter U,et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc. Natl. Acad. Sci.,2000,97(7) :3730-3734.
[56]Song J,Wang B S. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model[J]. Annals of Botany,2015,115(3) :541-553.
[57]Yip Delormel T,Boudsocq M. Properties and functions of calcium-dependent protein kinases and their relatives in Arabidopsis thaliana[J]. New Phytologist,2019,224(2) :585-604.
[58]Liese A,Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK)[J]. Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013,1833(7) :1582-1589.
[59]Rig6 G,Ayaydin F,Tietz O,et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis[J]. The Plant Cell,2013,25(5) :1592-1608.
[60] Popesecu S C,Popescu G V,Bachan S,et al. Diffrential bindingof calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays[J]. Proceedings of the National Academy of Sciences,2007,104(11): 4730-4735.
[61]Bender K W,Blackburn R K,Monaghan J,et al. Autophosphorylation-based calcium ( Ca2+ ) sensitivity priming and Ca2+/ calmodulin inhibition of Arabidopsis thaliana Ca2+ -dependent protein kinase 28(CPK28)[J]. J. Biol. Chem.,2017,292 (10) :3988-4002.
[62] Wang Y,Liang SP,Xie Q G,et al. Characterization of a calmodulin-regulated Ca 2+ -dependent-protein-kinase-related protein kinase,AtCRK1, from Arabidopsis[J]. Biochem.J.,2004,383 (Pt 1) :73-81.
[63]Hrabak E M,Chan C WM,Gribskov M,et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol.,2003,132(2) :666-680.
[64] Zhang H F,Liu D Y,Yang B,et al. Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABA-responsive element-binding factors [J]. J. Exp.Bot.,2020,71(1) :188-203.
[65] Zhu S Y,Yu X C,Wang X J,et al. Two calcium-dependent protein kinases,CPK4 and CPK11,regulate abscisic acid signal transduction in Arabidopsis[J]. The Plant Cell,2007,19(10) : 3019-3036.
[66]Zhao R,Sun HL,Mei C,et al. The Arabidopsis Ca2+ -dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth[J]. New Phytol.,2011,192(1) :61-73.
[67]Xu J,Tian Y S,PengRH,et al. AtCPK6,a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis[J]. Planta,2010,231(6): 1251- 1260.
[68]AbdElgawad H,Zinta G,Hegab M M,et al.High salinity induces diferent oxidative stress and antioxidant responses in maize seedlings organs[J]. Front. Plant Sci.,2016,7:276.
[69]王浩宇,劉威,鄭墨鈺,等.外源 Ca(NO3)2 對鹽脅迫下大苞 萱草氮代謝及相關基因表達的影響[J].山東農業科學, 2022,54(9) :113-118.
[70] Zou JJ,Li X D,Ratnasekera D,et al. Arabidopsis CALCIUMDEPENDENT PROTEIN KINASE8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress[J]. The Plant Cell, 2015,27(5) : 1445-1460.
[71] Asano T,Hayashi N, Kobayashi M,et al. Arice calcium-dependent protein kinase OsCPK12 oppositely modulates saltstress tolerance and blast disease resistance[J].Plant. J., 2012,69(1) :26-36.
[72]Dubiella U,Seybold H,Durian G,et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proc. Natl. Acad. Sci. U. S. A.,2013,110(21) :8744-8749.
[73] Zhao R,Sun H M,Zhao N,et al. The Arabidopsis Ca 2+ -dependent protein kinase CPK27 is required for plant response to saltstress[J]. Gene,2015,563(2) :203-214.
[74] Zhang HL,Zhang Y N,Deng C,et al. The Arabidopsis Ca 2+ -dependent protein kinase CPK12 is involved in plant response to salt stress[J]. Int. J. Mol. Sci.,2018,19(12) :4062.
[75]Tao X C,Lu Y T. Loss of AtCRKl gene function in Arabidopsis thaliana decreases tolerance to salt[J]. J. Plant Biol.,2013, 56:306-314.
「76]Huang K.Peng L.Liu Y Y.et al. Arabidopsis calcium-denend
ent protein kinase AtCPK1 plays a positive role in salt/drought stress response[J].Biochem.Biophys.Res.Commun.,2018, 498(1) :92-98.
[77]Ma S Y,Wu W H. AtCPK23 functions in Arabidopsis responses todrought and salt stresses[J].Plant Mol.Biol.,2OO7,65 (4):511-518.
[78]FranzS,EhlertB,LieseA,etal.Calcium-dependentproteinkinase CPK21 functions in abiotic stress response in Arabidopsis thaliana[J].Mol.Plant,2011,4(1):83-96.
[79]Geige D,Scherzer S,Mumm P,etal.Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities[J].Proceedings of the National Academy of Sciences,2010,107(17):8023-8028.
[80]Baba AI,Rigó G,Ayaydin F,etal. Functional analysis of the Arabidopsis thaliana CDPK-related kinase family : at CRKl regulates responses to continuous light[J]. Int.J. Mol.Sci., 2018,19(5) :1282.
[81]Latz A,Mehlmer N,Zapf S,et al. Salt stress triggers phosphorylationoftheArabidopsisvacuolar K+ channel TPK1 bycalcium-dependent protein kinases(CDPKs)[J].Mol.Plant, 2013,6(4):1274-1289.
[82]BorkiewiczL,Polkowska-KowalczykL,CieslaJ,etal.Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II[J].Physiologia Plantarum,2020,168(1) :38-57.