中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2025)06-1224-10
Abstract: 【Objective】 Gibberelic acid (GA3),a plant hormone,can affect the growth and development of plants by promoting cell division and elongation.Fruit cracking is one of the major problems leading to decreased yield and quality in Ponkan (Citrus reticulata Blanco) production.The application of GA3 has been found to eectively enhance the toughness and thickness of the fruit peel, preventing fruit cracking. This study focused on Zaomi Ponkan to investigate the impact of different concentrations of GA3 applied at the cell division stage on fruit quality and peel development of Zaomi Ponkan. The main aimof the research was to determine the optimumconcentration of GA3 for Zaomi Ponkan for controlling fruit cracking.Moreover,the study also sought to delve into the physiological mechanisms through which GA3 regulates peel thickness and cell wall components,and reduces fruit cracking.【Methods】 Zaomi Ponkan trees exhibiting good growth and consistency were selected. The experiment was conducted in favorable weather conditions starting at the cell division stage (21 and 28 days after flowering, DAF). The pre-prepared GA3 stock solution was diluted with water to achieve four concentrations: O (control, CK), 50,100,and 200mg?L-1 0.05% Tween-80 was added as an emulsifier to ensure effective absorption. The solutions were applied evenly on the entire trees,and each treatment included eight trees, using 16L of the solution per treatment. The samplings were made at the key developmental stages: the late division stage (70 DAF), the late expansion stage ( 130DAF ),and the maturation stage (190 DAF). Over 10O fruits were measured using a vernier caliper to assess fruit maximum width each time. The collected samples were then analyzed in the laboratory for several parameters,including the fruit size,peel thickness and firmness at maturity stage and cracking rate.Particularly,the study observed the dynamic changes in the peel thickness and cell wall composition of the fruits of the 100mg?L-1GA3 treatment during the period of 30–70 DAF.Using the paraffin sectioning techniques,the differences of cell size and quantity were examined, aiming to elucidate the anatomical reasons behind GA3 -induced peel thickening.【Results】The results demonstrated that after treatment with 50,100,and 200mg?L-1 GA3,the fruit peel became noticeably rougher in the late division stage ,although no significant external changes were noted in the late stage of expansion and the maturation stage. Interestingly, while GA3 applications did not alter the size or weight of the fruit across these developmental stages,a significant increase in peel thickness was observed.During the maturation stage,it was found that the fruit peel hardness of the fruits treated with 50,100,and 200mg?L-1 GA3 was slightly higher (5.38 N, 5.26N ,and 5.41 N,respectively) compared with the control (CK, 4.71 N), though not significantly. Furthermore, the three concentrations of GA3 significantlyreduced the fruitcrackingrate.Compared with the 19.91% fruit cracking rate of the CK,the fruit cracking rates decreased to 10.72% 8.06% and 8.70% for the 50, 100,and 200mg?L-1GA3 treatments,respectively. The fruits of Zaomi Ponkan treated with 100mg?L-1 (204號 GA3 at 21 and 28 DAF,were observed from 30 to 70 DAF. The results showed that at 40 DAF, GA3 treatment significantly promoted thickening of the peel, with the peel thickness treated with 100mg?L-1 (204號 GA3 reaching 3.53mm ,anincreaseofabout 5.7% comparedwith the CK( 3.34mm ).By60DAF,the peel thickness reached its maximum value both in the GA3 treatments and the CK.However, by 70 DAF,although the peel thickness in both sharply decreased, the peel thickness in the GA3 treatments remained greater than that of the CK.The parain section analysis was further used to investigate the physiological and anatomical reasons for the peel thickening caused by GA3 at 40 DAF. The results showed that the number of cells in a unit area ( 1mm×1mm of the epicarp and albedo did not significantly differ between the 100mg?L-1GA3 treatment and the CK. However, the GA3 treatment significantly increased the number of cellayers (162.9 layers)compared with the CK (151.5 layers). Throughout the observation period,the content of hemicellulose in the peel showed an increasing trend,while the lignin content displayed a decreasing trend. However, after the application of 100mg?L-1GA3 ,the overall content of both hemicellulose and lignin in the peel increased.【Conclusion】Applying different concentrations of GA3 during the cell division stage could effectively promote the peel thickening, increase the content of the hemicellulose and lignin,and ultimately reduce the cracking rate of the Zaomi Ponkan fruits, and 100mg?L-1GA3 treatment obtained the higher prevention effect. Detailed analysis revealed that GA3 -induced peel thickening resulted from the enhanced cell layers.Additionally, GA3 also led to an increase in hemicelllose and lignin content.The increase in the peel thickness and the rise in the hemicellulose and lignin content might be important factors in preventing fruit cracking.
Key Words: Zaomi Ponkan; Gibberellin; Peel thickness; Fruit cracking;Cell layers
在全球柑橘總產量中,寬皮柑橘占據重要地位,約占世界柑橘總產量的 32.09%[1] 。碰柑(CitrusreticulataBlanco)作為中國長期以來主栽寬皮柑橘類型之一,因其具有果皮易剝、果肉脆嫩、風味濃郁等優良特性,在鮮食柑橘市場表現突出的商品優勢。早蜜碰柑是辛女碰柑芽變而來的早熟品種,在11月上旬成熟。由于其較早的采收時間,極大地降低了與普通碰柑品種同時上市的競爭力。然而,該品種存在果皮較薄、易裂果的問題,顯著影響其商業價值和食用品質。與早蜜碰柑面臨相同問題的還有當前商品價值極高的品種,如陽光一號[3]、不知火、甘平等。因此,探究一種有效的裂果防控方法對提高產量和改善品質具有至關重要的意義。
柑橘裂果的發生與果皮發育密切相關。研究表明,正常果實果皮細胞排列緊密且有序,而易裂的果實果皮細胞則多表現為松散無序67]。果皮細胞壁的強度和完整性直接影響果實的抗裂性[8-10]。易裂和耐裂品種硬度的比較也證實了易裂果實的果皮硬度明顯較低[1-13]。此外,果皮厚度同樣對柑橘裂果和品質有重要影響。果皮過薄容易導致采前裂果,而果皮太厚容易發生粗皮大果,這兩者都會導致柑橘產量和品質的嚴重下降[415]。赤霉素(gibberellins, GA3? 作為一種重要的植物激素,主要作用是加速細胞的伸長,同時對細胞的分裂也有促進作用[。在生產實踐中,往往通過噴施外源赤霉素來促進果皮增厚從而預防裂果[]。李永杰等[18]研究表明, 10mg?kg-1 赤霉素處理顯著促進甘平果皮增厚,有效抑制裂果發生,且不影響果實內在品質。鄒河清等[也發現,在紅江橙上施用赤霉素能夠促進果皮增厚進而減少裂果發生。以上研究表明,噴施外源赤霉素能夠作為一種有效手段,通過增厚果皮來防控裂果,間接提升柑橘產量和品質。
為探索 GA3 在早蜜柱柑裂果防控中的最適濃度,同時保證果皮的正常發育,筆者在早蜜碰柑果實細胞分裂期開展了系列濃度 GA3 處理,結果發現100mg?L-1GA3 表現出最好的防裂果效果;在此基礎上,進一步分析了該濃度下果皮厚度及細胞壁成分的動態變化規律,旨在揭示GA調控柑橘果皮發育預防裂果的生理機制,以期為生產上裂果防控提供理論依據和實踐指導。
1 材料和方法
1.1材料
試驗于2024年在湖南省湘西土家族苗族自治州瀘溪縣 (110°7′E,28°15′N) 開展,供試材料為枳殼[Poncirustrifoliate(L.)Raf.]砧木高接的早蜜柱柑,其中辛女柱柑作為中間砧。試驗地土壤類型為紫砂質王,早蜜碰柑盛花期觀測記錄為5月1日。
1.2試驗設計
對照(CK)為自然生長狀態下的早蜜碰柑,噴施清水。處理組為50、100和 200mg?L-1GA3 ,并加入0.05% 的吐溫-80作為表面活性劑,使用背負式噴霧器在分裂期噴施2次,即盛花后21和28d(daysafterfullbloom,DAF)。每個處理組8株樹,藥液用量為16L 。為探究分裂期應用GA對不同發育階段果實外觀形態、果皮厚度、硬度和裂果率的影響,采樣時間分別設定為分裂后期(70DAF)、膨大后期(130DAF)和成熟期(190DAF);為探究 100mg?L?1GA3 處理組果皮厚度和細胞壁成分的動態變化,于分裂期(30、40、50、60、70DAF)進行采樣。
1.3 樣品采集
采樣前,使用游標卡尺隨機測量早蜜碰柑樹上100個以上果實的赤道部(橫徑),計算平均值,以平均值上下輕微浮動作為采樣標準;采樣時,使用游標卡尺測定果實橫徑,將符合采樣標準的果實采取下來;采樣后,每個處理組的果實放入裝有冰袋的保溫箱中,當天運送至國家柑橘改良中心長沙分中心進行后續處理。
1.4果實橫徑、果實縱徑、單果質量、果皮厚度的測定
利用游標卡尺測量果實最大橫徑和最大縱徑,使用電子天平測定單果質量,每個處理組至少測量40個果實。
果皮厚度的測量:在果實最大橫徑的位置切開,用體式熒光顯微鏡(徠卡,M205FCA,新加坡)測定切面相對兩點的果皮總厚度,并采用平均值作為單個果實的果皮厚度,每個處理組至少測量20個果實。
1.5 果皮硬度的測定
采用FTCTMS-Tough專業食品物性分析儀(美國)測定果皮硬度。從每個果實上切取3塊約1cm×1cm 的小片進行硬度測定,并取平均值作為該果實的硬度,每個處理組至少測定10個果實。測定程序如下:測試探頭為 p/2 ,測試速度為 1mm?s-1 起始力為 0.375N ,形變量設定為 60% 。
1.6 裂果率統計
在成熟期進行裂果情況的統計,每個處理統計3株樹,裂果總數包括樹上裂果數和落地裂果數,裂果率 1%= 裂果總數/總果數 ×100 。
1.7 細胞壁成分測定
隨機選取10個無病蟲害、一致性好的果實,用手術刀從赤道區域切取大約1/3的總果皮,立即使用液氮速凍,隨后通過研磨儀研磨成粉末后存放在 -80°C 冰箱備用。取出部分樣品,置于烘箱中烘干后用于細胞壁成分的測定。總果膠、纖維素、木質素含量均使用相應試劑盒(G0717W,G0715W,G0708W,格銳思生物)測定。半纖維素含量使用半纖維素含量檢測試劑盒(BC4445,Solarbio)測定。
1.8果皮顯微結構觀察
將CK和 100mg?L-1GA3 處理采摘下來的果實立即置于固定液中,進行石蠟切片,每個處理3個果實,具體方法參考許園園等[2的報道。通過SlideViewer軟件觀察切片圖像,選取代表性區域 (?10 個區域)進行統計,分析細胞大小和細胞層數的差異。
1.9 數據處理
采用GraphPadPrism8對數據進行處理和繪圖,使用AdobePhotoshop2024處理圖片,采用IBMSPSSStatistics26軟件進行差異顯著性分析。
2 結果與分析
2.1不同濃度GA對早蜜碰柑果皮發育的影響
2.1.1 GA3 對早蜜碰柑不同發育階段果皮外觀形態的影響 50,100,200mg?L-1GA3 處理早蜜柱柑后,觀察不同發育階段(70、130和190DAF果實果皮粗糙程度的變化。結果顯示,不同濃度 GA3 處理均可使70DAF果實果皮光滑度下降,呈現粗糙表型;而在130DAF和190DAF果實中,所有 GA3 處理果皮粗糙度與CK相比并無顯著差異(圖1)。
此外,對不同濃度 GA3 處理早蜜柱柑果實的單果質量和橫徑、縱徑進行了分析。結果表明,盛花后70d和 130dGA3 處理與對照果實在單果質量、橫徑、縱徑方面差異不顯著,而 50mg?L-1GA3 處理在盛花后190d的單果質量和縱徑與對照相比顯著減小(圖2)。


2.1.2GA3對早蜜碰柑不同發育階段果皮厚度的影響在同一發育階段的比較中,不同濃度GA處理的早蜜碰柑果皮厚度都呈現顯著增厚。具體表現為,70DAF經50、100和 200mg?L-1GA3 處理后果皮厚度相較于CK分別增加了 9.4%,11.4%,14.4% ;在130DAF時,這一增加比例為 13.1%.9.7%.19.3% ;在190DAF時,增加比例則為 9.9%8.6%.15.6% (圖3)。2.1.3 GA3 對早蜜碰柑果皮硬度的影響成熟期

(190DAF)的果皮硬度反映了果實的易剝程度和貯藏性能。數據顯示,CK組的果皮硬度為 4.71N ,經50、100和 200mg?L-1GA3 處理后,果皮硬度分別增加至 5.38N,5.26N 和 5.41N 。盡管所有GA處理組的果皮硬度均稍有增加,但這些變化并不顯著(圖4)。
2.1.4GA對早蜜碰柑裂果率的影響通過對成熟期(190DAF果實裂果率進行分析,以探索 GA3 預防早蜜柱柑裂果的最適濃度。結果顯示,CK組的裂果率約為 19.91% ,而經50、100和 200mg?L-1GA3 處理后,裂果率分別降低至 10.72%.8.06%.8.70% 。整體而言,不同濃度 GA3 都具有較好的防裂果效果,其中以 100mg?L-1GA3 處理最佳,但各處理間未有顯著差異(表1)。


2.2 100mg?L-1GA3 調控早蜜柱柑細胞分裂期果皮發育的生理機制
2.2.1 GA3 對早蜜碰柑果皮厚度動態發育的影響100mg?L-1GA3 不僅對早蜜柱柑防裂效果最好,且在發育早期(60DAF)果皮便已增厚,并達到頂峰,因而選擇該濃度用來研究分裂期(30、40、50、60、70DAF)果皮發育規律的生理機制。果皮厚度結果顯示,CK和 100mg?L-1GA3 處理組的果皮厚度發育規律一致,表現為先增加后下降的趨勢,隨著果皮發育從30DAF到60DAF逐漸增厚并達到峰值,60DAF之后果皮厚度急劇下降。具體來看,CK在40、50、60、70DAF的果皮厚度分別為3.34、3.40、3.48、2.98mm。與CK相比, 100mg?L-1GA3 處理在相同時間點的果皮分別增厚了 5.7%.10.0%.8.0%.11.4% ,差異極顯著,其中40DAF是果皮厚度差異的關鍵時期(圖5)。
2.2.2 GA3 對早蜜柱柑果皮纖維素、半纖維素、木質素、果膠含量的影響為了探究 GA3 預防裂果與細胞壁成分含量之間的關系,進一步檢測了30\~70DAF的果皮中纖維素、半纖維素、木質素和果膠的含量。結果顯示,經 100mg?L-1GA3 處理后,半纖維素含量在30\~70DAF和木質素含量在50\~70DAF均顯著高于CK,趨勢明顯;相比之下,雖然纖維素含量在50、60DAF顯著低于CK,果膠含量在70DAF顯著高于CK,但整體差異不大(圖6。這些結果表明, GA3 預防裂果可能與果皮半纖維素和木質素含量的提高有關。2.2.3 GA3 對早蜜槿柑果皮結構的影響為了探究GA3 調控果皮增厚的細胞學原因,對果皮厚度差異形成的關鍵時期40DAF的 GA3 處理和CK的果皮分別進行了細胞學觀察。結果顯示,單位面積( ?1mm2. )

內CK和 GA3 處理的外果皮細胞數量分別為2086和2087個,兩者無顯著差異;CK和 GA3 處理的中果皮細胞數量分別為1651和1670個,同樣無顯著差異。統計果皮細胞層數發現,CK果皮的細胞層數約為151.5,而 GA3 處理的果皮約為162.9,細胞層數顯著增加 7.5% 。以上結果表明, GA3 促進早蜜柱柑果皮增厚的細胞學原因是細胞層數的增加,而非細胞面積增大(圖7)。

3討論
裂果嚴重影響柑橘的產量和品質,導致其食用價值和商業價值顯著下降。對農民而言,裂果意味著收入的減少和生產成本的上升,因此防控裂果對提高柑橘產業的整體效益至關重要。研究表明,赤霉素能夠促進果皮增厚,從而有效減緩裂果的發生。賴劍鋒等[2通過赤霉素處理紐荷爾臍橙和陽光一號橘柚后,紐荷爾臍橙的裂果率由 36.63% 下降至4.52% ,而陽光一號橘柚裂果率則從 44.13% 降至13.00% 。代琳等[22在明日見第二次生理落果期后噴施 30mg?L-1GA3 ,發現其能夠顯著促進果皮增厚,從而降低裂果率。筆者在本研究中同樣發現,分裂期噴施 50,100,200mg?L-1GA3 均能有效誘導早蜜柑果皮的增厚,進而顯著抑制裂果的發生。盡管赤霉素單獨使用可以預防裂果,但也有研究顯示赤霉素和其他激素的協同使用[23],以及套袋、合理施肥、均衡供水等[24措施同樣對裂果表現較好的防控效果,這些措施或將可以進一步考慮作為裂果的防控手段。
雖然生產中外施 GA3 能有效防控柑橘裂果的發生,但同時也可能導致其果實發生“粗皮大果”的現象[25]。“粗皮大果”表現為果皮粗糙且增厚,果肉不化渣,可溶性固形物含量較低,從而顯著降低果實的商品價值[26-27]。王智豪[28]發現 50,100mg?L-1GA3 的施用造成紅美人雜柑成花少,且易形成粗皮大果,導致果實汁液、香味和化渣性程度均較低。Lu等也發現, 50mg?L-1GA3 的應用同樣引發了溫州蜜柑的粗皮大果現象。在本研究中,早蜜碰柑分裂期應用外源GA會在早期發育過程中引起果皮粗糙,但隨著果實發育階段的推進,果皮粗糙度逐漸下降,直至果實發育后期基本觀察不到粗糙表型。因此,分裂期外施 50,100,200mg?L-1GA3 對早蜜柱柑果實外觀品質的影響較小。
果皮細胞壁成分的差異也是造成裂果的重要因素[14,29]。溫明霞等[30]研究發現,錦橙裂果果皮中的可溶性果膠含量高于正常果,而水溶性果膠含量呈現相反趨勢。張雅馨[23指出,甘平裂果的發生與纖維素含量無關,但與木質素含量呈顯著正相關。筆者在本研究中發現,早蜜碰柑分裂期 100mg?L-1GA3 處理能夠顯著提高果皮中的木質素和半纖維素含量。這表明, GA3 可能通過提高果皮中的木質素和半纖維素含量,從而賦予其更高的機械強度進而預
防裂果[31]。
赤霉素通過促進細胞分裂和擴展來調節植物器官大小,如葉片擴張[32]、莖的伸長[33-34]、籽粒膨大[35]、根系生長等。值得注意的是,果皮厚度的形成同樣與細胞分裂和擴展具有密切關系[37-38]。鄒河清等[發現,赤霉素噴施于紅江橙后,果皮顯著增厚,主要原因是促進了細胞的分裂。Renaudin等[發現, 200mg?L-1GA3 處理番茄導致果皮顯著增厚,并觀測到中果皮細胞的擴大和拉長。Marti等4發現,干擾赤霉素響應的負調控基因SIDELLA的表達,能夠顯著增加番茄果皮細胞長度。此外,細胞分裂素、生長素等其他激素也可通過促進細胞分裂或擴展來參與果皮的增厚過程[4I-43]。筆者在本研究中發現,100mg?L-1GA3 處理早蜜碰柑促進果皮增厚的關鍵時期是盛花后 40d 。進一步分析發現,該時期外果皮和中果皮的細胞大小無顯著差異,但細胞層數顯著增加了 7.5% ,早蜜柱柑分裂期噴施 GA3 引起的果皮增厚源于細胞層數增加,而非細胞面積增大。
4結論
早蜜碰柑分裂期噴施外源 GA3 能有效促進果皮增厚,提高半纖維素和木質素含量,最終降低裂果率。分裂期 100mg?L-1GA3 處理對果皮增厚的效應在花后 40d 即顯現,其細胞學原因主要是由于細胞層數增多造成的。適宜濃度的GA3通過改變果皮發育特征,有效預防裂果,但其分子機制仍需進一步研究。
參考文獻References:
[1] 齊樂,祁春節.世界柑橘產業現狀及發展趨勢[J].農業展望, 2016,12(12):46-52. QILe,QI Chunjie.Statusquo and development trend of world' scitrus industry[J].Agricultural Outlook,2016,12(12):46-52.
[2] 彭際淼,楊水芝,龍桂友,楊雪華,石軍,鄧子牛,王巖,袁波.柑 桔新品種早蜜碰柑的主要性狀及栽培要點[J].中國南方果樹, 2012,41(4):56-58. PENGJimiao,YANG Shuizhi,LONGGuiyou,YANG Xuehua, SHI Jun,DENG Ziniu,WANGYan,YUANBo.Maincharacteristicsandcultivation tipsof thenewcitrusvariety Zaomi Ponkan[J].SouthChina Fruits,2012,41(4):56-58.
[3] 張文龍,萬潤楚,鄭妮,陳焱,賴恒鑫,余歆,錢春,曹立.柑橘不 育系新品種‘陽光1號'[J].園藝學報,2024,51(9):2221-2222. ZHANGWenlong,WANRunchu,ZHENGNi,CHENYan,LAI Hengxin,YUXin,QIANChun,CAOLi.‘Yangguang1’:A newmonoembryonic sterile line of citrus[J].Acta Horticulturae Sinica,2024,51(9):2221-2222.
[4]王君秀,袁夢,李思靜,袁高鵬,陳焱,彭良志,付行政,曹立,淳 長品.不同柑桔品種的裂果程度及裂果成因研究[J].中國南 方果樹,2017,46(2):63-66. WANG Junxiu, YUAN Meng,LI Sijing,YUAN Gaopeng, CHENYan,PENGLiangzhi,FUXingzheng,CAOLi,CHUN Changpin. Study on the degree and causes of fruit cracking in different citrusvarieties[J]. South China Fruits,2017,46(2):63- 66.
[5] 孫權,謝亮亮,于明華,馬烈,陸奔宇.紅美人、甘平柑橘在昆 山市的引種表現及配套栽培技術[J].上海農業科技,2023(2): 86-88. SUN Quan,XIE Liangliang,YU Minghua,MA Lie,LU Benyu. Performance of introducing‘Hongmeiren’and‘Ganping’citrus in Kunshancity and associatedcultivation techniques[J]. Shanghai Agricultural Science and Technology,2023(2):86-88.
[6] 周秋蓉. Ca+GA3 處理對預防蘆柑裂果的作用及其機理研究[D]. 福州:福建農林大學,2023. ZHOU Qiurong. The effect of Ca+GA3 treatment on preventing fruit cracking in Ponkan and itsmechanism[D].Fuzhou: Fujian Agriculture and Forestry University,2023.
[7] 馬小煥.臍橙果皮內裂發生的解剖結構和礦質營養元素變化 研究[D].重慶:西南大學,2011. MAXiaohuan. Study on the changes of peel albedo microstructureand macroelementcontents in peel of‘Navel’oranges during the development of peel pitting[D]. Chongqing: Southwest University,2011.
[8] 李會佳.番茄裂果性狀的遺傳分析及QTL 定位[D].哈爾濱: 東北農業大學,2016. LI Huijia. Genetic analysis and QTL mapping in tomato cracking[D]. Harbin:Northeast Agricultural University,2016.
[9] 仲釗江,吳震,周蓉,朱為民,楊學東,于筱薇,徐艷,高揚楊,蔣 芳玲.番茄果膠裂解酶基因 SIPL 參與調控裂果機制研究[J]. 園藝學報,2024,51(2):295-308. ZHONG Zhaojiang,WU Zhen,ZHOU Rong,ZHU Weimin, YANG Xuedong,YU Xiaowei,XU Yan,GAO Yangyang,JIANG Fangling. Study on the regulatory mechanism of SIPL gene affecting tomato fruit cracking[J]. Acta Horticulturae Sinica, 2024,51(2):295-308.
[10]吳建陽,何冰,陳妹,武愛龍,李偉才,魏永贊.果實裂果機理 研究進展與展望[J].廣東農業科學,2017,44(4):38-45. WU Jianyang,HEBing,CHENMei,WU Ailong,LIWeicai, WEI Yongzan.Progress and prospects of mechanisms in fruit cracking[J]. Guangdong Agricultural Sciences,2017,44(4): 38- 45.
[11]孫雙雙,杜曉云,王歡,王玉霞,張序,李延菊.甜櫻桃裂果與 果實主要性狀的相關性研究[J].中國果樹,2023(6):26-32. SUN Shuangshuang,DU Xiaoyun,WANG Huan,WANG Yuxia, ZHANG Xu,LI Yanju. Analysis of fruit characters and cracking ability of sweet cherry[J]. China Fruits,2023(6):26-32.
[12]廖南嶠.西瓜果皮硬度及耐裂性基因挖掘與分子標記開發研 究[D].杭州:浙江大學,2022. LIAO Nanqiao. Gene mining and molecular maker developing of rind hardness and cracking resistance in watermelon[D]. Hangzhou:ZhejiangUniversity,2022.
[13]韋蘭潔,陳依麗,李昌杰,黎俊辰,黃馨蕓.火龍果裂果與果實 主要性狀的相關性分析[J].南方農業,2022,16(5):46-49. WEI Lanjie,CHEN Yili,LI Changjie,LI Junchen,HUANG Xinyun.Correlation analysison the main character of pitaya fruits and its dehiscent fruit[J].South China Agriculture,2022, 16(5):46-49.
[14]LI J,CHEN JZ. Citrus fruit-cracking: Causes and occurrence[J]. Horticultural Plant Journal,2017,3(6):255-260.
[15]LU XP,LI FF,XIONG J,CAO XJ,MA XC,ZHANG Z M, CAO S Y,XIE S X.Transcriptome and metabolome analyses provide insights into the occurrence of peel roughing disorder on satsuma mandarin (Citrus unshiu Marc.) fruit[J].Frontiers in Plant Science,2017,8:1907.
[16]CASTRO-CAMBA R,SANCHEZ C,VIDAL N,VIELBA J M. Plant development and crop yield:Therole of gibberellins[J]. Plants,2022,11(19):2650.
[17]JONA R,GOREN R,MARMORA M. Effect of gibberellin on cell-wall components of creasing peel in mature‘Valencia’orange[J].Scientia Horticulturae,1989,39(2):105-115.
[18]李永杰,金國強,淳長品,朱瀟婷,邱曉瑩.柑橘果皮的發育特 征及GA3的防裂效果[J].果樹學報,2021,38(7):1092-1101. LI Yongjie,JIN Guoqiang,CHUN Changpin,ZHU Xiaoting, QIU Xiaoying.Developmental characteristics of citrus peel and the effect of gibberelic acid on fruit cracking[J]. Journal ofFruit Science,2021,38(7):1092-1101.
[19]鄒河清,許建楷.紅江橙的果皮結構與裂果的關系研究[J].華 南農業大學學報,1995,16(1):90-96. ZOU Heqing,XU Jiankai. Studyon therelationship between peel structureandfruit cracking in‘Hongjiang’oranges[J]. Journalof South ChinaAgricultural University,1995,16(1):90- 96.
[20] 許園園,譚世水,張玲,段少偉,郭玲霞,周鐵,李菲菲,韓健,李 先信,王聰田,陳鵬.錦紅冰糖橙大果芽變果實結構解剖、激 素變化和轉錄組分析[J].果樹學報,2024,41(4):611-624. XUYuanyuan,TAN Shishui, ZHANG Ling,DUAN Shaowei, GUO Lingxia,ZHOU Tie,LI Feifei,HAN Jian,LI Xianxin, WANG Congtian,CHEN Peng.Anatomical structure,hormone change,and transcriptome analysis of the large-fruit mutant of Jinhong Bingtang Orange[J]. Journal of Fruit Science,2024,41 (4):611-624.
[21]賴劍鋒,諶鵬飛,劉志文,梅磊,鄒少豐,李昌,丁少華. 3% 赤霉 酸 +mgm 防治柑橘裂果的研究初報[J].江西農業學報,2023, 35(5):30-34. LAI Jianfeng,CHENPengfei,LIU Zhiwen,MEI Lei,ZOU Shaofeng,LI Chang,DING Shaohua. Preliminary study on control of citrus fruit cracking by 3% gibberellic acid and mgm[J]. Acta Agriculturae Jiangxi,2023,35(5):30-34.
[22]代琳,張倫德,周志揚,陳泓臻,黃康,馬晴晴,孫孝賢,熊博. 外源赤霉素、氨基酸鈣處理對‘明日見'柑橘裂果的影響[J].中 國農學通報,2024,40(7):49-55. DAI Lin,ZHANG Lunde, ZHOU Zhiyang,CHEN Hongzhen, HUANG Kang,MA Qingqing,SUN Xiaoxian,XIONG Bo. Effectsof exogenousgibberelin and calcium amino acid on fruit cracking of‘Asumi’citrus[J].Chinese Agricultural Science Bulletin,2024,40(7):49-55.
[23] 張雅馨.外源激素與鈣處理對‘甘平'雜柑裂果防控研究[D]. 武漢:華中農業大學,2023. ZHANG Yaxin. Study on prevention and control of‘Kanpei' citrusfruit cracking by exogenous hormone and calcium treatment[D]. Wuhan:Huazhong Agricultural University,2023.
[24]李娟,陳杰忠.柑橘裂果發生類型、過程及預防對策[J].廣東 農業科學,2011,38(10):32-33. LI Juan,CHEN Jiezhong.The style,processand control of cracking fruit in citrus[J]. Guangdong Agricultural Sciences, 2011,38(10):32-33.
[25]KUBO T,HIRATSUKA S. Relationship between rind roughness andgibberellinsinSatsuma mandarin fruit[J].Journal ofthe Japanese Society for Horticultural Science,20oo,69(6):718- 723.
[26]劉芳,劉永忠,彭抒昂.溫州蜜柑粗皮大果形成過程的解剖學 研究[J].果樹學報,2012,29(5):789-793. LIU Fang,LIU Yongzhong,PENG Shu’ang.Anatomically studyon the formingprocessof rough fruit of Satsuma[J]. Journal of Fruit Science,2012,29(5):789-793.
[27]余歆,張曉楠,趙曉春.柑橘果皮的生物活性物質和重要園藝 性狀[J].園藝學報,2021,48(4):825-836. YU Xin, ZHANG Xiaonan, ZHAO Xiaochun. Bioactive compounds in citruspeel and peel- related important horticultural traits[J].Acta Horticulturae Sinica,2021,48(4):825-836.
[28]王智豪.浙北地區‘紅美人'雜柑不同結果母枝成花及果實品 質研究[D].杭州:浙江大學,2023. WANG Zhihao.Study on flower bud formation and fruit quality ofdifferent female branchesof‘Hongmeiren’citrushybrid cultivated in northern Zhejiang province[D]. Hangzhou: Zhejiang University,2023.
[29]BROWNLEADER MD,JACKSONP,MOBASHERI A,PANTELIDESAT,SUMAR S,TREVAN M,DEYPM.Molecular aspectsofcell wall modificationsduring fruit ripening[J].Critical Reviews in Food Science and Nutrition,1999,39(2):149- 164.
[30]溫明霞,石孝均.錦橙裂果的鈣素營養生理及施鈣效果研究[J]. 中國農業科學,2012,45(6):1127-1134. WEN Mingxia,SHI Xiaojun. Influence of calcium on fruit cracking of Jincheng orange and its physiological mechanism[J]. Scientia Agricultura Sinica,2012,45(6):1127-1134.
[31]李茜玟,孫浩爽,龐學群,張昭其.荔枝裂果研究綜述與展望[J]. 廣東農業科學,2024,51(11):136-148. LIXiwen,SUNHaoshuang,PANGXuequn,ZHANGZhaoqi. nvarinn anu piuopiit vi Iui Hun viauniglg]. Guang\" dongAgricultural Sciences,2024,51(11):136-148.
[32]JATHARV,SAINI K,CHAUHANA,RANIR,ICHIHASHIY, RANJAN A. Spatial control of cell division by GA-OsGRF7/8 module ina leaf explaining the leaf length variationbetweencultivated and wild rice[J].New Phytologist,2022,234(3):867-883.
[33]GAO XH,XIAO SL,YAO QF,WANG YJ,FUXD. An updated GA signaling‘relief of repression’regulatory model[J]. MolecularPlant,2011,4(4):601-606.
[34]張玉博.赤霉素處理對海島棉始果枝發育的影響及相關基因 挖掘[D].阿拉爾:塔里木大學,2024. ZHANG Yubo.Effects of gibberellin treatment on the developmentof cotton branches and related genemining[D].Ala'er: Tarim University,2024.
[35]LU HY,LI X,LIH,HUYF,LIU HM,WEN SJ,LIYP,LIU YH,HUANGHH,YUGW,HUANGYB,ZHANGJJ.Gibberellin induced transcription factor bZIP53 regulates CesAl expression in maize kernels[J].PLoS One,2021,16(3):e0244591.
[36]ACHARD P,GUSTI A,CHEMINANT S,ALIOUA M, DHONDT S,COPPENSF,BEEMSTER G T S,GENSCHIK P. Gibberellin signaling controls cell proliferation rate in Arabidopsis[J]. Current Biology,2009,19(14):1188-1193.
[37]ZHU ZG,LIANGHL,CHENGP,LIFF,WANGY S,LIAO CG,HUZL.The bHLH transcription factorSlPRE2 regulates tomato fruit development and modulates plant response to gibberellin[J].Plant Cell Reports,2019,38(9):1053-1064.
[38]ZHANG S B,XU M,QIU Z K,WANG K T,DU YC,GU L F, CUI X. Spatiotemporal transcriptome provides insights into earlyfruit developmentof tomato (Solanum lycopersicum)[J].Scientific Reports,2016,6:23173.
[39]RENAUDIN JP,CHENICLET C,ROUYERE V,CHEVALIER C,FRANGNE N. The cell pattern of tomato fruit pericarp is quantitatively and differentially regulated by the levelof gibberellin in four cultivars[J]. Journal of Plant Growth Regulation, 2023,42(9):5945-5958.
[40]MARTI C,ORZAEZ D,ELLUL P,MORENO V,CARBONELL J,GRANELL A. Silencing of DELLA induces facultativeparthenocarpy intomato fruits[J].ThePlant Journal,2007, 52(5):865-876.
[41]GAN LJ,SONG MY,WANG XC,YANGN,LIH,LIU XX, LI Y.Cytokinins is involved in regulation of tomato pericarp thickness and fruit size[J].Horticulture Research,2022,9: uhab041.
[42]LIU X,XU T,DONG XF,LIU Y D,LIU ZH,SHI Z H, WANGYL,QIMF,LITL.Theroleofgibberellinsandauxin on the tomato cellayers in pericarp via the expression of ARFs regulatedby miRNAs in fruit set[J].Acta Physiologiae Plantarum,2016,38(3): 77.
[43]SERRANIJC,FOSM,ATARESA,GARCIA-MARTINEZ JL. Effect of gibberellinand auxinonparthenocarpic fruit growth induction in thecv.Micro-Tom of tomato[J].Journal of Plant Growth Regulation,2007,26(3):211-221.