中圖分類號:S667.7 文獻標志碼:A 文章編號:1009-9980(2025)06-1190-10
Abstract: 【Objective】Mango (Mangifera indica L.),an evergreen species of the genus Mangifera in the family Anacardiaceae,is widely cultivated in tropical and subtropical regions worldwide.The dominant mango varieties in China are limited and mainly imported from abroad,resulting in an unbalanced plantation structure and a highly concentrated fruit ripening period.Hybrid breeding is very important in the selection of new mango cultivars,which can be divided into artificial pollination hybridization and natural pollination hybridization. It is possible to speed up the breeding process by performing genotyping on naturally pollinated seedlings of known female parent varieties at the seedling stage to idenuiy ue upual aie paiens. Iauuonai moipnoogical Iuenuucauon is Ieu uue to uence uy elvironmental factors and plant growth conditions.Marker asisted selection, based on DNA polymorphisms among progeny individuals,is a new generation technology for rapid and accurate identification of genotype of seedlings. Simple Sequence Repeat (SSR) markers are abundant, co-dominant, highly polymorphic,easy to utilize,and not influenced by environmental factors or plant morphological characteristics.Fluorescent SSR markers with distinct fluorescent labels (FAM, HEX and ROX) at the 5′ end combined with capillary electrophoresis-based genotyping platforms,offer advantages such as high efficiency,high accuracy and high automation.This study aimed to use fluorescent SSR markers for paternal identification in controlled-polination lines of mango,in order to provide valuable insights for germplasm innovation and selection of new cultivars.【Methods】A total of 113 controlled-polliated sedling progeny and 12 parental varieties were collected as research materials from the germplasm repository of the South Subtropical Crops Research Institute of the Chinese Academy of Tropical Agricultural Sciences.10 pairs of fluorescent SSR markers, previously developed by our research group from the mango genome, were used in combination with capillary electrophoresis,to identify the paternal parent of individual seedling progeny at the seedling stage. The genomic DNA of the samples was extracted using an improved CTAB method. The quality and concentration of the DNA was assessed using a 1% agarose gel and a Nano Drop One (Thermo Scientific). The DNA concentration was uniformly adjusted to 30ng?μL-1 and frozen at -20°C for future use. The PCR amplification reaction system,with a total volume of 20μL ,consisted of 2μL of DNA template, 0.5μL of upstream primer
) 0.5μL of downstream primer (10μmol?L-1) ), 10μL of 2× EasyTaq PCR SuperMix, and 7μL of ultrapure water. The PCR programme consisted of the following steps: pre-denaturation at 94°C for 5min L utes; 35 cycles of 94°C for 30 seconds, 58°C for 30 seconds, and 72°C for 30 seconds; extension at 72°C for 8 minutes; and storage at 4°C for later use. The paternal analysis used the maximum likelihood method,and the implementation of the maximum likelihood method was based on Cervus V3.07 software. 【Results】A total of 54 alleles were detected in 125 mango resources using 10 pairs of SSR primers,with an average of 5.4 alleles per SSR primer. The Shannon information index (I) ranged from 0.926 to 1.428, with an average of 1.185. The mean observed heterozygosity ( (Ho) and expected heterozygosity (He) were 0.689 and 0.632,respectively. The polymorphism information content (PIC) ranged from 0.452 to 0.677, with an average of 0.575. Out of 113 ofsprings, 95 were successfully identified for the optimal paternal parent, with a success rate of 84.07% and a confidence level of over 80% . Of them, 80 were hybrid offsprings,accounting for 84.21% , while 15 were self-pollinated offsprings, accounting for 15.79% . At a 95% confidence level, 47 offsprings successfully identified for the optimal paternal parent, giving a success rate of 41.59% . Of them, 44 were hybrid offsprings,accounting for 93.62% ,and e3 were self-pollinated offsprings,accounting for 6.38% . A UPGMA cluster analysis was performed on 95 offsprings and 10 parental varieties. The results showed that most of the offsprings clustered with either their paternal or maternal parent, showing a clear genetic tendency. The offsprings with Zill as the maternal parent were mostly clustered close to the maternal parent, showing a maternal genetic tendency, for example,H3,H34,and H35 were clustered with the maternal parent Zil. Similarly,almost allthe offsprings with Dashehari as a maternal parent were clustered with the matermal parent, showing a clear maternal genetic tendency. However, H10,H18,and H22 were not clustered closely with either the maternal or paternal parent.【Conclusion】A total of 95 offsprings were matched to the optimal paternal parent, with a success rate of 84.07% and a confidence level of over 80% . The genetic tendency of the progeny towards either maternal or paternal inheritance.This result would provide a reference for mango germplasm innovation and variety breeding. The fluorescent SSR molecular marker technology could quickly and accurately identify the paternal parent of mango hybrid offspring, and would be used as a tool for early screening of hybrid seedlings.
Key Words: Mango; Paternal identification; SSR fluorescent maker; Capillary electrophoresis
忙果(MangiferaindicaL.)是漆樹科忙果屬的常綠果樹,在世界熱帶亞熱帶地區廣泛種植,多異花授粉且主要依賴蠅類等昆蟲進行授粉,其果實肉質鮮嫩、味道香甜且多汁、含有大量維生素和多種微量元素,深受消費者青睞,素有‘熱帶果王'之美譽[-2]。中國是世界第二大忙果生產國,種植區域涵蓋海南、廣東、廣西、云南、四川、福建和貴州等省份3]。2023年,中國大陸忙果栽培面積達4.094萬 hm2 、產量約511.9萬t(農業農村部南亞辦統計數據)。然而,我國忙果主栽品種大多從國外和臺灣地區引進,品種同質化嚴重,導致部分地區過度集中上市,且缺乏具有地域特色的優質品種資源,制約了忙果產業的持續發展。因此,選育具有自主知識產權的忙果優良新品種,對中國忙果產業高質量發展尤為重要。
雜交育種是忙果新品種選育的重要手段,與其他育種方法相比,雜交育種具有育種目標明確、可以快速聚合多個優良性狀等優勢[45]。雜交育種根據授粉方式可分為人工授粉雜交與自然授粉雜交。由于忙果花極小,人工授粉操作難度大,且母本必須為單胚品種,因此真正通過人工授粉雜交途徑獲得的新品種較少[67]。目前大多數忙果栽培品種均是通過自然雜交或實生選育得到的。但完全的自然授粉雜交不可控因素較多,父本鑒定難度大,而將多個親本罩網進行控制授粉,在早期對已知母本品種的控制授粉幼苗進行基因分型以鑒定最優父本是最好的選擇。父本鑒定的傳統方法是形態學標記,鑒定簡單直觀、經濟方便,但表型檢測具有滯后性,所需時間長,易受植株生長狀態及環境條件的影響,對于遺傳變異水平低的雜交后代難以區分,且界定標準難以統一[9-10]。分子標記是以子代個體間DNA差異為基礎的新一代技術,不受環境和生長狀態的限制,可快速準確地匹配子代的候選親本[]。SSR(simplesequencerepeats)標記具有多態性豐富、重復性好、位點多及共顯性等優點,被廣泛應用于忙果品種鑒定[12]、遺傳圖譜構建[8]、遺傳多樣性分析[13]、親緣關系分析[4及雜交種真實性鑒定[15]。傳統的聚丙烯酰胺凝膠電泳SSR分子標記技術,存在工作量大、分辨率低、費時費力等缺點,不適合大批量樣品的檢測,而熒光SSR標記技術具有效率高、準確度高、自動化程度高等優點,已成功應用于多種作物父本鑒定及親緣關系分析[15]。黨志國等[選擇13個主要忙果品種混合種植進行自然授粉,獲得1001個F后代,并使用SSR標記成功進行雜交種鑒定。然而,該研究中授粉環境相對開放,雜交鑒定和親和性評估可能受到外部花粉的影響。因此筆者在本研究中采用將多個品種置于同一罩網內進行控制授粉,并基于熒光SSR標記對忙果控制授粉實生后代進行父本鑒定,以期為忙果雜交育種和分子標記輔助育種提供參考。
1 材料和方法
1.1材料
材料種植于忙果種質資源圃內,選擇12個品種(Irwin、臺農1號、熱農1號、KensingtonPride、Zillate、Palmer、Dashehari、Zill、粵西1號、東鎮紅忙、桂忙1號、Tom-myAtkins)進行混合嫁接,所有品種均置于同一罩網內,通過飼養蒼蠅進行控制授粉,有效阻隔外界花粉的干擾。2024年6一8月,從10個母本品種中成功收獲136個果實,經播種后獲得113株實生后代群體,編號H1\~H113。
1.2 基因組DNA提取
采用改良CTAB法提取113株實生后代及12個候選親本基因組DNA,用 1% 瓊脂糖凝膠和NanoDropOne(ThermoScientific)檢測DNA的質量和濃度,統一調整DNA濃度 (ρ) 為 30ng?μL-1 -20°C 冰箱保存備用。
1.3 SSR引物與PCR擴增
筆者課題組前期以Alphonso參考基因組成功開發忙果SSR標記,從開發的引物中選擇10對峰圖易讀、重復性好、多態性高的SSR引物用于本次研究(表1。試驗所用SSR引物合成與5端不同熒光標記修飾均由上海生工生物工程有限公司完成。
PCR擴增反應體系為 20μL ,包含 2μL DNA模板 (30ng?μL-1),0.5μL 上游引物
,0.5μL 下游引物
, 10μL 2× EasyTaqPCRSuperMix和 7μL 超純水。

PCR反應程序: 94°C 預變性 5min;94°C(30s)/ 58°C(30s)/72°C(30s),3. 5個循環, 72°C 延伸 8min 4°C 保存待用。
PCR產物毛細管電泳檢測:PCR擴增產物經過純化后在ABI3730基因測序儀上進行毛細管電泳,利用GenemapperV4.0軟件進行片段大小讀數;使用Peak Scanner V1.0 軟 件(Applied Biosystems,USA)對獲得的數據進行分析,以確定PCR產物的準確片段大小。
1.4 數據處理
利用GenAlExV6.5軟件計算遺傳多樣性參數,包括等位基因數 (Na) 、有效等位基因數(Ne)、香農信息指數 (I) 、觀察雜合度(Ho)和期望雜合度(He) 。利用CervusV3.07軟件計算多態性信息含量(PIC)、非親排除概率(NEP),并計算累計排除概率(CEP),僅當CEP達到或超過 99% 時,可用于親子鑒定分析[7]。利用PowermakerV3.25計算Nei's遺傳距離,并生成UPGMA聚類樹;利用RV4.3.2語言包ggtree進行UPGMA聚類樹的美化。
1.5 父本鑒定
利用CervusV3.07計算親本及控制授粉實生后代等位基因頻率;在Simulation程序中選擇并運行Paternity子程序,按要求輸入親本及控制授粉實生后代等位基因頻率分析文件,參數設置為:親子模擬10000次,候選父本12.0,候選父本的采樣比0.096,匹配位點比0.99,基因型錯誤率0.01,檢測自花授粉;在ParentageAnalysis程序中選擇運行Paternity子程序,按要求逐步輸入子代及候選父本基因型文件、等位基因頻率分析結果和模擬分析結果,以進行最優父本匹配。
2 結果與分析
2.1SSR位點的多態性及非親排除概率檢測
10對SSR引物在125份忙果資源中(113株忙果實生后代及12個候選父本)檢測到54個等位基因(Na),平均每個標記檢測到5.4個等位基因;有效等位基因數(Ne)變化范圍為2.127\~3.627,平均為2.825,其中G676、G1382、G33和G1151具有較高的有效等位基因數,表明這些位點有較強的檢測效率;香農指數 (I) 變化范圍為 0.926~1.428 ,平均為1.185;觀測雜合度 (Ho) 和期望雜合度 (He) 均值分別為0.689和0.632;多態性信息含量(PIC)變化范圍為0.452\~0.677,平均為0.575,其中7對引物PIC大于0.5,為高多態性引物(表2)。以上結果表明,忙果控制授粉系有豐富的遺傳多樣性。圖1展示了部分后代在熒光引物G1454中的毛細管電泳圖。
基于10對SSR引物計算親權排除概率,結果顯示,當母本與父本基因型未知時,單個位點的非親排除概率(NE-1P)變化范圍在 0.689~0.856 之間;當母本或父本基因型已知時,單個位點的非親排除概率(NE-2P)的變化范圍在 0.515~0.736 之間;當母本與父本基因型已知時,單個位點的非親排除概率(NE-PP)變化范圍為0.319\~0.597(表3)。根據引物的PIC從高到低排序,逐步累計計算10對SSR引物的非親排除概率,隨著位點數量的增加,累計排除概率也相應提高(表3)。10對SSR引物的母本與父本基因型未知單親累計排除概率CE-1P僅達到 92.36% 在已知單個親本或者已知雙親的情況下,10對SSR引物累計排除概率均在 99% 以上(表3)。


2.2 父本鑒定
利用CervusV3.07對113株忙果控制授粉系后代進行父本鑒定,結果顯示,在 80% 和 95% 的置信度下,臨界LOD值分別為1.13和4.36,表明當候選親本的LOD值超過1.13時,鑒定可信度為 80% ;當LOD值超過4.36時,可信度提升至 95% 。在 80% 置信度下,113株忙果后代中有95株子代成功鑒定出最優父本,鑒定成功率為 84.07% 。其中,僅12株子代存在1個錯配位點;在這95株子代中,雜交后代80株,占比 84.21% ,自交后代15株,占比 15.79% 。在 95% 置信度下,有47株子代成功鑒定到最優父本,鑒定成功率為 41.59% 。其中,5株子代存在1個錯配位點;在這47株子代中,雜交后代44株,占比93.62% ,自交后代3株,占比 6.38% (表4)。

2.3親本與忙果實生后代聚類分析
根據10對SSR引物在雜交后代中的擴增結果,對95株鑒定出最優父本的后代及10個親本進行UPGMA聚類分析,并根據后代的母本分組,不同母本后代用不同顏色表示(圖2)。結果顯示,大多數后代與其父本或母本聚集在一起,呈現出明顯的遺傳親緣關系。以Zil為母本的后代大多與母本的遺傳距離較近,表現出偏母本的遺傳趨勢,這些后代通常與ZiⅢ聚集在一起,而不是與其父本聚在一起,如H3、H34、H35等與母本Zil1聚集在一起;以桂忙1號為母本的后代也多數與母本聚在一起,顯示出偏母本的遺傳趨勢,少數子代如H70則更接近父本,表現出偏父本的遺傳趨勢;以Dashehari為母本的后代全部與母本聚集,呈現出典型的偏母本遺傳;以熱農1號為母本的后代也大都表現出偏母本遺傳趨勢;此外,有些后代并未與母本聚集,且與父本的遺傳距離也較遠,表現出較為獨立的遺傳模式,如H10、H18和H22等(圖2)。
3討論
在苗期對實生后代進行父本鑒定,可以通過早期篩選優良后代,減少資源浪費,加快育種進程,從而提高育種效率和精確性[15.18]。SSR分子標記技術已廣泛應用于品種鑒定、遺傳多樣性分析以及動植物的親權分析等領域[9-20]。在父本鑒定方面,王斯琪等[2基于SSR標記技術對棗樹子代苗進行了父本鑒定,探討了不同引物數量對父本鑒定結果的影響,并建立了一套完善的父本鑒定體系。邵文豪等22利用SSR標記技術分析了4個主要栽培品種子代的父本關系,結果顯示主要父本為豆果和小蘋果,并發現城固32具有一定的自交親和性,為油橄欖品種的配置提供了重要參考。筆者在本研究中基于10對SSR標記,在113株控制授粉實生后代中成功鑒定出95株子代的最優父本,鑒定成功率為 84.07% ,且置信度均超過80% ;其中雜交后代80株,占比 84.21% ,自交后代15株,占比 15.79% 。在置信度達到 95% 時,47株子代成功鑒定出最優父本,鑒定成功率為 41.59% ;其中雜交后代44株,占比 93.62% ,自交后代3株,占比6.38% 。研究結果表明,忙果具備雜交結實和自交結實能力,其中以雜交結實為主,且雜交后代的比例高達 84.21% ,顯著高于李春牛等[23在茉莉花中報道的 80.49% 。有研究表明,忙果具有隱蔽自交不親和性,即可以自花授粉,但異花授粉是優先選擇,這可能是造成忙果以雜交結實為主的原因之一[24]。


聚類分析可以系統性地揭示雜交后代群體內部的遺傳多樣性與結構,明確親本與后代之間的遺傳關系,已廣泛應用于龍眼[25]、姜荷花[2、番石榴[27和棗[28]等作物。筆者在本研究中對95株成功鑒定出最優父本的后代及10個親本進行了UPGMA聚類分析,結果表明,大多數后代與其父本、母本聚集在一起,表現出明顯的遺傳傾向。以Zil為母本的后代大多聚集在母本附近,表現出偏母本遺傳,如H3、H34、H35等與母本Zil1聚集在一起;同樣,以桂忙1號為母本的后代大部分也與母本聚集,顯示出偏母本遺傳。已有研究表明,忙果人工雜交群體中部分個體存在偏父本遺傳現象[15],表明遺傳偏向可能因親本組合特異性或遺傳背景差異而有所變化。此外,H10、H18和H22等既未與母本也未與父本緊密聚集,可能與復雜的遺傳背景或突變相關。這些結果直觀地展現了后代的遺傳分類及父母本的遺傳責獻,對雜交群體的遺傳多樣性分析和優良品種的選育具有重要意義。然而,本研究中的實生后代群體規模相對較小,且由于部分品種存在花期不匹配和花粉活力低等問題導致兩個品種未能成功作為有效親本參與雜交。因此,有必要擴大控制授粉實生后代群體數量,為忙果雜交育種和新品種選育提供更堅實的研究基礎。
4結論
筆者在本研究中利用SSR熒光引物結合毛細管電泳技術對柱果控制授粉實生后代進行了父本鑒定,95株實生后代匹配到了最優父本,鑒定成功率為 84.07% ,置信度均在 80% 以上;對鑒定出最優父本的95株后代及10個親本進行聚類分析,結果表明其后代表現為偏母本或偏父本遺傳趨勢,研究結果為忙果種質創新和新品種選育提供了參考依據。
參考文獻References:
[1] THARANATHANR N,YASHODA H M,PRABHA T N. Mango (Mangifera indica L.),“The kingof fruits\":Anoverview[J]. FoodReviewsInternational,2006,22(2):95-123.
[2] XUB,WU SJ.Preservation of mango fruit qualityusing fucoidan coatings[J].LWT-Food Science and Technology,2021,143: 111150.
[3]陳業淵,黨志國,林電,胡美姣,黃建峰,朱敏,張賀,韓冬銀,高 愛平,高兆銀,黃媛媛.中國忙果科學研究70年[J].熱帶作物 學報,2020,41(10):2034-2044. CHEN Yeyuan,DANG Zhiguo,LIN Dian,HU Meijiao, HUANG Jianfeng,ZHU Min,ZHANG He,HAN Dongyin, GAO Aiping,GAO Zhaoyin, HUANG Yuanyuan. Mango scientificresearch in China in the past 7O years[J].Chinese Journal of Tropical Crops,2020,41(10):2034-2044.
[4]羅睿雄,黃建峰,高愛平.我國芒果種質資源研究進展[J].中 國熱帶農業,2013(1):10-13. LUO Ruixiong,HUANG Jianfeng,GAO Aiping. Research progress of mango germplasm resources in China[J]. China Tropical Agriculture,2013(1):10-13.
[5] 卿昊煒,黎明,易晨歆,張樹偉,郭慧勤,彭宏祥,丁峰.荔枝、 龍眼育種研究進展[J].中國南方果樹,2024,53(3):1-6. QING Haowei,LI Ming,YI Chenxin, ZHANG Shuwei,GUO Huiqin,PENG Hongxiang,DING Feng.Research progress of litchi and longan breeding[J]. South China Fruits,2024,53(3):1- 6.
[6] BALLYI S,LU P,JOHNSON PR.Mango breeding[M]. New York:Springer,2009:51-82.
[7]MICHAELVN,CRANEJ,FREEMANB,KUHND,CHAMBERS A H.Mango seedling genotyping reveals potential self-incompatibilityand pollinator behavior[J].Scientia Horticulturae, 2023,308:111599.
[8]KUHN DN,BALLYISE,DILLONNL,INNESD,GROH A M,RAHAMANJ,OPHIRR,COHENY,SHERMANA.Genetic map of mango:A tool for mango breeding[J].Frontiers in Plant Science,2017,8:577.
[9] ZHANGJ,YANGJJ,LVYL,ZHANGXF,XIACX,ZHAO H,WEN CL.Genetic diversity analysisand variety identification usingSSR and SNP markers in melon[J].BMC Plant Biology,2023,23(1):39.
[10]丁燕,木萬福,楊龍,張鵬,管俊嬌.花菜類雜交種純度鑒定 SSR核心引物篩選[J].中國種業,2021(11):79-84. DING Yan,MU Wanfu,YANG Long,ZHANG Peng,GUAN Junjiao.Screening of SSR core primers for purity identification of cauliflower hybrids[J]. China Seed Industry,2021(11):79-84.
[11]張詠琦,王超,許林林,吳娥嬌,李天紅,趙密珍,袁華招.野生 二倍體草莓的 SSR分子標記開發及核心種質的構建[J].園藝 學報,2023,50(11):2365-2375. ZHANG Yongqi,WANG Chao,XU Linlin,WU Ejiao,LI Tianhong,ZHAO Mizhen,YUAN Huazhao.Development of SSR molecular markers and construction of core collection of wild diploid strawberry[J].Acta Horticulturae Sinica,2023,50(11): 2365-2375.
[12]唐玉娟,羅世杏,黃國弟,宋恩亮,李日旺,趙英,張宇,莫永龍, 唐瑩瑩.基于 SSR熒光標記的忙果種質資源遺傳多樣性分析 及分子身份證構建[J].熱帶作物學報,2023,44(11):2292- 2304. TANG Yujuan, LUO Shixing,HUANG Guodi,SONG Enliang, LI Riwang,ZHAO Ying,ZHANG Yu,MO Yonglong,TANG Yingying.Genetic diversity analysis and molecular ID construction of mango germplasm based on SSR fluorescence markers[J]. Chinese Journal of Tropical Crops,2023,44(11):2292-2304.
[13]DILLON NL,BALLY I S E,WRIGHTC L,HUCKS L,INNES DJ,DIETZGEN RG.Genetic diversity of the Australian national mango genebank[J]. Scientia Horticulturae,2013,150: 213- 226.
[14]YAMANAKA S,HOSAKA F,MATSUMURA M,ONOUEMAKISHI Y,NASHIMA K,URASAKI N,OGATA T,SHODA M,YAMAMOTO T. Genetic diversityand relatednessof mango cultivars assessed by SSR markers[J]. Breeding Science,2019, 69(2):332-344.
[15]LI X,ZHENG B,XU W T,MA X W, WANG S B,QIAN M J, WUHX.Identification of F1 hybrid progeniesinmango based on fluorescent SSR markers[J]. Horticulturae,2022,8(12):1122.
[16]黨志國,鄭燕萍,朱敏,陳業淵,高愛平,黃建峰,羅睿雄,余東, 雷新濤.利用 SSR 技術鑒定忙果實生后代真假雜種及其遺傳 特性分析[J].果樹學報,2024,41(12):2397-2407. DANG Zhiguo,ZHENG Yanping,ZHU Min,CHEN Yeyuan, GAO Aiping, HUANG Jianfeng,LUO Ruixiong,YU Dong,LEI Xintao.Identification of true hybrids of open-pollination seedling progenies in mango and geneticcharacterizationof theprogenies using SSR markers[J]. Journal of Fruit Science,2024,41 (12):2397-2407.
[17]VANKAN D M,FADDYMJ. Estimations of the effcacy and reliabilityof paternity assignments fromDNA microsatelite analysis of multiple- sire matings[J].Animal Genetics,1999,30(5): 355-361.
[18]JIA P P,LIU S H,LIN WQ,YU HL,ZHANG X M,XIAO X O, SUN W S,LU X H,WU Q S.Authenticity identification of F1 hybridoffspringandanalysisof genetic diversity in pineapple[J]. Agronomy,2024,14(7):1490.
[19]LI X X,QIAO L J,CHEN BR,ZHENG YJ,ZHI CC,ZHANG SY,PANYP,CHENGZH.SSR markersdevelopment and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm[J].Plant Diversity,2022,44(5):481-491.
[20]王敏,張新浩,崔冉,劉宇,楊莉,李海靜,趙春江.利用微衛星 標記鑒定德州驢親子關系[J].中國畜牧獸醫,2019,46(7): 2003-2011. WANGMin,ZHANG Xinhao,CUI Ran,LIUYu,YANGLi,LI Haijing,ZHAO Chunjiang.Parentage testing of Dezhou donkey withmicrosatellitemarker[J].ChinaAnimal Husbandryamp;VeterinaryMedicine,2019,46(7):2003-2011.
[21]王斯琪,唐詩哲,孔德倉,賀潤平,劉華波,麻麗穎,劉君,王哲, 李穎岳,申連英,龐曉明.利用SSR標記進行棗樹子代苗父本 鑒定[J].園藝學報,2012,39(11):2133-2141. WANG Siqi,TANG Shizhe,KONG Decang,HE Runping,LIU Huabo,MALiying,LIU Jun,WANGZhe,LIYingyue,SHEN Lianying,PANG Xiaoming.Application of SSR markers for the identification of paternal parent for the seedlings of Chiese jujube[J].Acta Horticulturae Sinica,2012,39(11):2133-2141.
[22]邵文豪,王兆山,張建國.基于SSR 標記的油橄欖主要栽培品 種子代父本分析[J].林業科學研究,2020,33(3):22-30. SHAOWenhao,WANGZhaoshan,ZHANGJianguo.Paternity analysisof main olivecultivars progeniesbased on SSR markers[J].ForestResearch,2020,33(3):22-30.
[23]李春牛,蘇群,李先民,黃展文,孫明艷,盧家仕,王虹妍,卜朝 陽.茉莉花全基因組SSR標記開發及其親緣關系鑒定[J].園 藝學報,2024,51(10):2343-2357. LI Chunniu,SU Qun,LI Xianmin,HUANG Zhanwen,SUN Mingyan,LU Jiashi,WANG Hongyan,BU Zhaoyang.SSR molecular markers development and parentage relationship identification based on whole genomic sequences of Jasminum sambac[J].Acta Horticulturae Sinica,2024,51(10):2343-2357.
[24]PEREZV,HERRERO M,HORMAZAJI. Self- fertilityand preferential cross-fertilization in mango (Mangifera indica)[J]. ScientiaHorticulturae,2016,213:373-378.
[25]黃愛萍,鄭少泉.龍眼雜交后代果肉黃酮含量的遺傳傾向研究 與優株篩選[J].熱帶作物學報,2011,32(9):1595-1599. HUANG Aiping,ZHENG Shaoquan.Hereditary tendency of aril flavonoid in longan hybrid progenies and superior selection[J]. Chinese Journalof Tropical Crops,2011,32(9):1595-1599.
[26]江素華,吳雨欣,羅錦榕,葉悅娟,林金水,余惠文,陸鑾眉.姜 荷花雜交子代的SSR鑒定及遺傳多樣性分析[J].熱帶作物學 報,2024,45(5):928-935. JIANG Suhua,WU Yuxin,LUO Jinrong,YE Yuejuan,LIN Jinshui,YUHuiwen,LULuanmei.Identificationand geneticdiversityanalysisof hybrid offsprings ofCurcumaalismatifoliarevealed by SSR markers[J].Chinese Journal of Tropical Crops, 2024,45(5):928-935.
[27]黃婉莉,張冬敏,符喜喜,陳心怡,張朝坤.番石榴雜交F代基 于SRAP標記的鑒定及果實性狀的遺傳傾向分析[J].果樹學 報,2024,41(9):1731-1745. HUANG Wanli,ZHANG Dongmin,FU Xixi,CHEN Xinyi, ZHANG Chaokun.Identification by SRAP and genetic tendency analysis of fruit characteristicsof hybrids in guava[J]. Journal of FruitScience,2024,41(9):1731-1745.
[28]潘依玲,鮑荊凱,陳萬年,吳翠云,王玖瑞,劉孟軍,閆芬芬.棗 JMS2×交城5號F代果實性狀遺傳分析與優系篩選[J].果樹 學報,2023,40(6):1085-1098. PANYiling,BAO Jingkai,CHEN Wannian,WU Cuiyun, WANG Jiurui,LIU Mengjun,YAN Fenfen.Genetic analysis of fruit traits and selection of superior lines in F1 generation of jujube JMS2 x Jiaocheng 5[J]. Journal ofFruit Science,2023,40 (6):1085-1098.