中圖分類號:S668.1; S436.68+4 文獻標志碼:A 文章編號:1009-9980(2025)06-1301-15
Abstract: 【Objective】 Strawberry anthracnose, caused by fungi of the genus Colletotrichum, presents a significant threat to strawberry cultivation in Henan Province, China.The rapid proliferation of this disease has led to considerable yield losses and a decline in fruit quality.The primary objective of this comprehensive study is to identify the species and predominant strains of pathogenic fungi associated with strawbery anthracnose.Additionally, the research aims to evaluate the effcacy,safety,and overall effectiveness of various fungicides in managing this disease.By identifying the most suitable fungicides, agricultural practitioners in Henan province can implement improved disease management strategies that enhance both sustainability and productivity within their strawberry farming operations.【Methods】 To achieve the objectives outlined above, a systematic and multifaceted methodology was employed. This research specifically focused onstrawberryanthracnose attributed to Colletotrichum.Initially,samples exhibiting symptoms of strawberry anthracnose were collected from three major strawberry cultivation regions in Henan province including Zhengzhou,Xinxiang,and Mengzhou.Tissue isolation technique was utilized to extract and purify pathogens from these samples,resulting in pure cultures of the pathogenic fungi.The primary biological characteristics of these isolates were examined with an emphasis on how various environmental factors, such as temperature, pH levels, carbon sources,and nitrogen suuivts, Hucnctu myvtnai giuwuI. muvuiauun txp UHuuvtcu w ueieime uIe pauiugenicity of isolated strains,which involved inoculating detached leaves,petioles,and fruits of strawberries as well as applying spore suspensions onto living strawberry leaf surfaces and integrating spore suspensions into substrates. The concentration of the spore suspension employed in these experiments was standardized at 1.0×105 spores ?mL-1 to ensure consistency and reproducibility of results. Given the lack of effective agents specifically designed for controlling strawberry anthracnose in agricultural production, the mycelial growth rate method was utilized for indoor virulence testing and to evaluate the efficacy of ten selected fungicides.This approach enabled an assessment of the sensitivity of isolated strains to various fungicides,thereby providing valuable insights into potential agents that may be effective in managing this disease.【Results】The findings indicated that allthe five isolated strains derived from strawberry anthracnose samples exhibiting characteristic symptoms from the specified regions were classified as Colletotrichum siamense. The conidia size was (15.95±1.06) μm by (4.49±0.38)μm Among the five strains,designated ZG-2 to ZG-6,strain ZG-2 exhibited the highest level of pathogenicity. Inoculated leaves with strain ZG-2 displayed rot after one week, while the lesion areas caused by the other strains were less than 50% ,indicating a lower pathogenicity in comparison to ZG-2. The C. siamense ZG-2 strain was found to be highly pathogenic to strawberry plants,affecting various plant parts including leaves,fruits,petioles,stem bases,and roots.The infectivity of strain ZG-2 varied across different plant components, petioles and stem bases experienced the most severe damage, followed by leaves, fruits,and roots.Notably,distinct orange spores were observed on detached leaves approximately seven days post-infection,leading to leaf rot.During live inoculation experiments,lesions on the abaxial surface of the leaves were larger and more numerous than those on the adaxial surface,indicating a higher susceptibility of the abaxial side to infection by this strain.Following root infection, plants exhibited inhibited growth characterized by a marked decrease in both leaf and root quantity as well as reduced root lengths,brown lesions appeared on root surfaces compared to controls.Specifically recorded measurements for root length ( 3.72cm ), fresh weight (0.452 g),and dry weight (0.082 g) reflected significant reductions of 40.7% , 43.7% ,and 64.6% respectively when compared with healthy control groups.The occurrence of stem base rot could ultimately lead to mortality in strawberry plants. The biological characteristics of the ZG-2 strain were distinctly notable,as it demonstrated the ability to grow within a temperature range of 15°C to 35°C , with the most rapid mycelial growth rate of 6.2mm per day observed at 27°C .The optimal pH for growth was determined to be 8,and the strain exhibited resilience across a pH range of 4 to 11, indicating strong adaptability to varying acid-base conditions. Soluble starch and peptone were identified as the most effective sources ofcarbon and nitrogen,respectively. The antibacterial efficacy of the ZG-2 strain was assessed with relative accuracy. Among the ten agents tested, propiconazole,cyproconazole,and benzoic-prochloraz displayed effective antibacterial properties, with EC50 values recorded at 0.035μg?mL-1 , 0.048μg?mL-1 ,and 0.089μg?mL-1 ,respectively. Tebuconazole at a concentration of 430g?L-1 exhibited superior control against the pathogen. 【Conclusion】 Strawberry anthracnose has been documented in Henan Province, particularly in Zhengzhou, Xinxiang, and Mengzhou, throughout the entire growth cycle of strawberry plants. This disease results in significant blight and mortality rates thatconsiderably hinder development of the strawberry industry in this region. To elucidate the primary pathogenic fungi afecting strawberries in the Henan Province, DNA was extracted from each isolated and purified fungal strain,subsequently,PCR amplification was performed using the ITS-1F/ITS-4R primers. The obtained sequences were analyzed via BLAST on the NCBI database, revealing strains with 99% similarity to known species.The results indicated that the predominant pathogenic fungal genera in this region include Colletotrichum,Fusarium,Botrytis,Cladosporium,Alternaria,Phytophthora,Pilidium,andOomycetes.Notably,Colletotrichum,thecausative agent of strawberry anthracnose, was identified as a common strain across the three representative regions.A total of fifty-two isolates of the pathogen were collected from strawberry samples in Henan Province. Through polygenic analysis coupled with associated infection studies, C. siamense ZG-2 was identified to be closely related to Anthracis siamensis.It exhibited a self-spreading rate of approximately 72% . Disease resistance evaluation were conducted on seven commercially cultivated strawberry varieties,as wellas three advanced breeding lines (designatedaszx.19.3, zx.60.11,and zx.32.17) selected bytheresearchgroup.The resultsrevealed that the fungal strain C. siamense ZG-2 exhibited pathogenicityacross alltested strawberry varieties.Moreover,significant variations in resistance levels were observed among the different cultivars,each demonstrating distinct capacities to resist pathogen infection. This strain has been classified as a pathogenic species responsible for causing strawberry anthracnose in Henan Province. C.siamense is recognized as a major pathogen affecting various crops throughout China.The findings suggest that pentazolol demonstrates strong inhibitory effects on strawberry anthracnose and may serve as an effective agent for managing this disease.
Key Words: Strawberry anthracnose; Identification of pathogens; Agent screening
草莓(Fragaria × ananassaDuchesne)是小漿果,口感極佳,富含多種對人體有益的必需營養元素1。據聯合國糧食及農業組織(FAO)統計,2021年中國草莓產量為368.25萬t,占全球草莓總產量的1/3以上[2]。然而,草莓生產過程中面臨多種病蟲害的威脅,其中,由炭疽菌屬(Colletotrichum)引起的草莓炭疽病是對草莓生產造成重大影響的真菌病害之一[3]。自1931年在美國首次報道以來[4,草莓炭疽病已在全球范圍內對草莓生產造成了嚴重的經濟損失。該病害主要發生在草莓的育苗期和定植期5,可侵染草莓的各種組織,引起葉片產生黑色或不規則斑點,葉柄、葡富莖和果實出現凹陷的黑色斑點或壞死病變,并導致全株枯死。草莓炭疽病嚴重暴發時,可以在一至兩周內毀滅整個草莓苗圃。在高溫多雨的季節,病原菌侵染更為嚴重。
目前,已報道的炭疽病病原菌(Colletotrichumsp.)共有23種,包含5個復合種(包括C.gloeospo-rioides、C.acutatum、C.boninense、C.dematium和C.truncatum)和兩個單體類(包括C.nigrum和C.coc-codes)[8]。前期研究發現,膠孢炭疽復合種(C.gloeo-sporioides)是中國草莓產區的優勢病原菌[,暹羅炭疽菌(C.siamense)為江蘇草莓產區的優勢種[];果生刺盤孢菌(C.fructicola)為上海和安徽的優勢種]。準確鑒定病原菌是制定有效管理策略的基礎。不同環境和生長介質影響真菌的形態特征,僅通過形態學判斷會影響鑒定結果的準確性[12]。結合形態學鑒定和使用不同類型基因測序構建系統發育樹可分析鑒定具體炭疽屬的物種地位和其他物種的親緣關系,也是目前鑒定病原菌的主要技術方法[13]。此外,對病原菌生物學特性的研究是探索影響其生長發育因素的有效方法。炭疽菌屬真菌不同種或同種不同個體間的生物學特性存在一定差異,比如果生刺盤菌在pH為5\~6時生長活力最強,生長最適溫度為 28°C ,在 15°C 和 35°C 下生長緩慢,在24h 黑暗條件下產孢量最大[4。尖孢炭疽菌在26°C 時菌絲生長速度最快,在 30°C 時產孢量最多,適當光照有利于產生孢子堆[15-16]。
河南是中國草莓主產區之一,炭疽病的發生對當地草莓產業構成了嚴重威脅。利用殺菌劑進行病害防治是預防和控制草莓炭疽病的有效手段,但過度使用殺菌劑可能會產生耐藥菌株。因此,使用不同作用模式的殺菌劑是避免耐藥性產生的關鍵[7]。不同地區的優勢種群及其耐藥性存在差異。目前河南地區有關草莓暹羅炭疽菌生物學特性的報道仍較少,所以針對河南草莓炭疽病病原菌進行深入研究具有重要意義。本研究中從河南鄭州、新鄉和孟州3個草莓主產區采集草莓炭疽病病株,結合形態學和分子生物學鑒定方法,明確草莓炭疽病的病原菌優勢種;同時,篩選評價了10種殺菌劑對該病原菌的防治效果,旨在為草莓炭疽病防治提供指導。
1 材料和方法
1.1材料
2023年5月,從河南鄭州、新鄉、孟州3個草莓主產區種植基地采集具有典型炭疽病癥狀的紅顏草莓植株各20株,用于炭疽病原菌分離鑒定。
1.2 方法
1.2.1病原菌分離純化采用常規組織分離法[分離病原菌,取草莓根部病健交界處組織,切成面積約0.5cm2 的方塊,用 75% 乙醇消毒 60s,2% 的次氯酸鈉消毒 2~3min ,無菌水洗滌3\~4次后,置于馬鈴薯培養基(PDA),在 28°C 恒溫培養箱暗培養3d,用無菌接種針挑取尖端菌絲轉移到新平板上,獲得純化菌株。將純化后的病原菌轉接到新的燕麥培養基(OA)和PDA培養基上, 28°C 黑暗條件下培養7d后觀察菌落的形態。
1.2.2病原菌形態學鑒定將病原菌接種至新的PDA培養基上, 28°C 黑暗培養7d,待菌落產孢后,觀察并記錄菌落的形態、顏色、產孢情況和菌絲生長情況。用無菌水反復沖洗制備孢子懸浮液,置于離心管中, 12000r?min-1 離心,稀釋至 1.0×105 個 ?mL-1 .在顯微鏡下觀察分生孢子,記錄其形態特征并測量分生孢子的大小。
1.2.3病原菌分子生物學鑒定菌株使用CTAB法提取菌絲基因組DNA。選擇核糖體內轉錄間隔序列(ITS)、肌動蛋白(ACT)、3-磷酸甘油醛脫氫酶(GAPDH),鈣調蛋白(CAL)和 β. 微管蛋白(TUB2)基因序列進行測序,5個基因序列對應引物序列如表1,PCR擴增產物送至尚亞生物股份有限公司完成測序。從GenBank數據庫中下載13個炭疽菌屬菌株的序列,通過BLAST比對,按照單基因ITS和多基因ITS、ACT、GAPDH、CAL、TUB2的順序進行序列拼接,利用MEGA11.0選擇最大似然法和GTR+G+I 核苷酸替代模型構建系統發育樹,以自展法(bootstrap)重復1000次檢測系統樹中節點的置信度。
1.2.4致病性測定與離體回接再鑒定采用生長30d的健康無病的紅顏草莓植株進行活體致病性檢測,通過菌餅接種、噴霧接種和澆灌接種3種方法評估分離菌株的致病力。菌餅接種將直徑 5mm 的菌餅貼于刺傷的葉片和果實上,噴霧接種噴施 1.0×105 個 ?mL-1 孢子懸浮液于葉柄和草莓植株表面,澆灌接種將 1mL 相同濃度的孢子懸浮液澆灌于基質中,分別以無菌PDA培養基塊、無菌水和等量無菌水作為對照。接種后,植株置于 28°C,14h 光照 /10h 黑暗交替、 80% 濕度的條件下培養7d,觀察發病情況并重新分離病原菌,每次試驗3次重復。待出現癥狀后,參考1.2.1取交界處組織重新取樣分離并純化。選擇7個栽培品種和3個潛在種質進行抗性鑒定,接種方法采用菌塊接種,接種環境同上,病情指數DI(DiseaseIndex)
(疾病等級 x 該等級植物數量)/(總植物數量 × 最高疾病等級) ×100 。
1.2.5生物學特性鑒定最適溫度和pH測定:用直徑 5mm 的打孔器在菌落邊緣打取菌餅,將其接種在PDA平板上,置于10、15、20、25、26、27、28、29,30和35°C 的培養箱中黑暗培養,在接種第3天和第6天采用十字交叉法測量菌落直徑,計算菌株的菌絲生長速率,確定其最適生長溫度。在滅菌前使用NaOH和HCI調節培養基的pH值,將PDA平板的pH調節為4、5、6、7、8、9,10和11,確定其最適pH,接種和計算方法同最適溫度測定方法一致。
最適氮源和碳源測定:以Czapek培養基為基礎培養基,分別使用尿素、硝酸鈉、硝酸鉀、甘氨酸、無氨基酵母氮源粉(YNB),蛋白脈和硫酸銨替換氮源,共制備6種氮源測試培養基;同時,用蔗糖、棉子糖、果糖、甘露醇、半乳糖、可溶性淀粉和葡萄糖替換碳源,共制備7種碳源測試培養基。將直徑 5mm 菌株菌餅分別接種到含不同碳源和氮源的Czapek平板中央,于 28°C 培養箱中黑暗培養,采用十字交叉法計算菌絲的生長直徑,確定分離菌株菌絲生長的最適碳源和氮源。每個處理3次重復。

1.2.6殺菌劑抑菌效果根據中國農藥信息網(http://www.chinapesticide.org.cn/zwb/dataCenter)數據中心篩選草莓炭疽病針對性藥劑,在有效期的共27條目,根據其化學結構和作用機制分為8個類別,包括甲氧基丙烯酸酯類、二硫代氨基甲酸酯類、咪唑類、苯并咪唑類、三唑類、苯基酰胺類、其他殺菌劑以及復配殺菌劑。當前適用的藥劑主要為復配型藥劑和具有廣譜性殺菌藥劑,但各種類適用藥劑較為單一,選擇商用藥劑參考以上特征測試常規殺菌效果。將滅菌后 55°C 左右的PDA培養基中分別加入不同濃度的殺菌劑,制成含藥劑的培養基,濃度梯度如表2所示。分別接種 5mm 菌餅于不同濃度梯度的藥劑PDA平板上,以未加藥劑的PDA培養基接種菌餅為空白對照,每個濃度 (ρ) 處理3次,每個處理3個重復。接種后置于 28°C 黑暗培養6d,用十字交叉法測量各處理的菌落直徑,計算菌絲生長抑制率。生長抑制率 1%=( 對照菌落直徑一藥劑處理菌落直徑)對照菌落直徑 -0.5)×100 。計算各殺菌劑毒力回歸方程,及抑制中濃度 EC50 ,比較不同殺菌劑對病原菌的抑制活性。
1.2.7數據分析使用SPSS22軟件對試驗數據進行統計分析,采用Duncan氏新復極差法進行差異顯著性檢驗。

2 結果與分析
2.1 田間癥狀描述
在調查地區發現,草莓受到病原菌侵染后,不同時期的癥狀表現不同,見圖1。在草莓炭疽病發病前期,草莓的葉片、葉柄、莖部及匍匐莖等產生黑色病斑;在發病中期病斑出現無規則擴張,并伴隨葉尖或葉緣部分出現焦黃色;在發病后期葉片出現大面積黑色壞死病斑,有黃色或紅色暈圈,根部發生腐爛,最終草莓萎蔫死亡。
2.2 菌株分離
分離純化各菌株后提取DNA,使用ITS-1F/ITS-病的Colletotrichum是3個代表性地區的共性菌株。

2.3 致病性測定
4R進行PCR擴增,獲得序列在NCBI進行Blast,得到相似度 99% 的菌株,各代表菌株信息見表3,菌株形態見圖2。結果表明,河南省地區的草莓主要病原菌株類型包括炭疽屬、鐮孢菌屬、葡萄孢屬、枝孢屬、鏈孢屬、疫霉屬、Pilidium屬、卵菌屬等,其中引起草莓炭疽
菌株ZG-2在PDA和OA培養基上培養表現形態具有明顯的差異,其中在PDA培養基上菌株的生長狀態更好。通過1.2.5方法接種,各純化菌株皆可


致病,但侵染效果存在差異,其中,菌株ZG-2的侵染力最強(圖3-A~C)。
通過1.2.4方法接種,發現菌株ZG-2對草莓不同部位的致病力存在差異。離體菌餅接種是快速檢
A.OA培養基上的菌株形態;B.PDA培養基上的菌株形態;C.各菌株侵染葉片的癥狀。

1ology ofstrains onOA medium;B.Morphologyofstrains onPDA medium; C.Symptoms of infected leaves of eachs測菌株致病性的方法,結果表明接種3d后,葉片和葉柄開始出現淺褐色病斑,7d時出現壞死性潰爛的癥狀(圖4-A~C),果實表面覆蓋有菌絲組織、出現褐色病斑(圖4-D)。活體噴霧接種是研究病原與寄主互作規律的常規方法,結果表明接種3d后,葉片背面出現褐色病斑,且較正面更嚴重(圖4-E~F),5d時病斑面積增加,出現腐爛癥狀(圖4-G),10d后,草莓莖基部呈腐爛癥狀,植株死亡(圖4-H)。根部澆灌接種是研究病原侵染莖基部和根部的重要接種方法,結果表明接種7d后,植株變矮,根長縮短,根系表面出現褐色病斑并有腐爛趨勢(圖4-I~L),根長、鮮質量和干質量分別為 3.72cm?0.452g 和0.082g ,較健康空白對照組顯著降低了 40.7% 、43.7% 和 64.6%(plt;0.05) 。
菌株ZG-2對多個草莓品種和優系品種都具有侵染性,不同品種抵抗侵染的能力存在差異。通過

對市場主栽品種包括紅顏、甜查理、白雪公主、晶瑤、京藏香、紅袖添香、貢品和課題組選育優系zx.19.3、zx.60.11、zx.32.17進行抗性鑒定評級,結果如圖5和表4:貢品、晶瑤、紅顏屬于感病及以上等級的品種;甜查理和白雪公主屬于抗性品種;zx系列中,zx.19.3和zx.60.11屬于中抗品種。菌株ZG-2對多個品種的抗性鑒定結果表明其對草莓品種具有嚴重的侵染性。
綜上,各炭疽菌株均可導致草莓炭疽病的發生,其中菌株ZG-2的侵染力最強,對草莓植株各組織皆有較強的致病能力。莖基部出現腐爛癥狀,會導致植株死亡。從發病部位再次分離純化,獲得了與分離菌株形態相同的菌株。經柯赫氏法則檢驗,鑒定菌株為草莓炭疽病的致病菌。
2.4病原菌的形態學觀察
培養7d時,菌株ZG-2菌落呈白色棉狀,菌絲濃密,菌絲組織下出現分生孢子,邊緣整齊,菌落直徑為 85mm ,平板背面呈白色,中心處菌絲組織略有消亡(圖6-A);12d后菌絲組織消亡,平板表面產生橘黃色黏稠狀分生孢子堆(圖6-B);菌株的分生孢子為單胞,呈圓柱狀,直或稍彎曲,兩端鈍圓,大小為(15.95±1.06)μm×(4.49±0.38)μm (圖6-~D);孢子萌發伸展出芽管,為無隔的管狀構造(圖6-E);附著胞淺褐色至褐色,棍棒狀、橢圓形(圖6-F)。


2.5 菌株分子生物學鑒定
從三個地區分離的炭疽菌中選擇代表性菌株進行ITS序列進化樹分析,各菌株ITS基因序列登錄號為PP126575.1、PP130364.1、PP126579.1、PP126581.1、PP126576.1。將各菌株該基因序列信息與NCBI數據庫中其他膠孢復合種標準菌株相關序列信息進行炭疽屬同源差異比對,進行基于ITS基因序列系統發育樹的比較分析,認定ZG系列2、3、4和5與Colletotrichumsiamense聚為一支。菌株ZG-2的測序結果在NCBI中Blast后,各數據與暹羅炭疽相似度為 99% ,菌株數據提交至GenBank,獲得基因序列登錄號為PP126575.1、PP770549、PP770550、PP761464、PP761465。方法如上,進行基于多基因序列(ITS、TUB2、GAPHD、ACT和CAL)系統發育樹的比較分析。結果如圖7所示,菌株與ColletotrichumsiamenseCBS125378聚為一個進化分支。結合形態學及進化樹分析結果,菌株ZG-2被鑒定為暹羅炭疽菌,命名為ColletotrichumsiamenseZG-2。

2.6草莓C.siamenseZG-2的生物學特性
菌株在 15~35°C 范圍內均能生長,見圖8-A。在 15~28°C 范圍內,隨溫度升高,菌株生長速率呈增長趨勢, 27°C 時生長速率最快,為 6.2mm?d-1 ;溫度超過 28°C 后,生長速率降低,最適生長溫度為 27°C 和 28°C 。pH為4~11時,菌落生長速率為 4~6mm?d-1 ,酸堿適應性較強,見圖8-B。pH為8時,生長速率最快,為 6.23mm?d-1 pH=5 與 pH=10 相比,及 pH=4 與pH=11 相比,生長速率無顯著差異。但在其他酸堿處理間,生長速率差異顯著。
菌株在不同碳源培養基上的適應性不同,見圖8-C。淀粉作為碳源時,菌絲生長狀態最佳,菌落直徑為 7.7cm ;半乳糖作為碳源時,生長狀態最差,菌落直徑為 5.6cm ;除了甘露醇和葡萄糖,其他碳源之間的菌株直徑差異顯著。菌株在不同氮源培養基上適應性不同,見圖8-D。蛋白脈作為氮源時,生長狀態最佳,菌落直徑為 8.0cm ;尿素和無氨基酵母氮源(YNB)的利用效率最差,直徑分別為 5.5cm 和5.7cm ;除了硝酸鉀和甘氨酸,其他氮源之間的菌株直徑差異顯著。
2.7 常用殺菌劑對C.siamenseZG-2的抑制效果
通過室內毒力測定,測得藥劑對菌株ZG-2的抑菌效果不同,如表5。戊唑醇的毒力最強, EC50 為0.035μg?mL-1 ;丙環-咪鮮胺、苯甲-咪鮮胺、咪鮮胺的抑制效果較強, EC50 均低于 0.1μg?mL-1 ;精甲噁霉靈和多菌靈抑制效果較差, EC50 分別為32.9和33.1μg?mL-1 ;其余藥劑呈中等抑制效果, EC50 為2.2~33.1μg?mL-1 。
3討論
炭疽菌屬真菌種類繁多,準確鑒定致病菌種類對研究病害流行規律及制定防治措施至關重要。中國首次在湖南草莓上發現Colletotrichumboninense引起炭疽病,這是該病原菌在全球范圍內首次被報道侵染草莓,這對草莓病害防控具有重要意義[33]。北京地區引起草莓炭疽病的病原菌主要為膠孢炭疽菌(C.gloeosporioides)和尖孢炭疽菌(C.acutatum),其中C.gloeosporioides為優勢菌株[34]。研究報道,墨西哥番荔枝果實上的新真菌Harziaixtarensis與草莓炭疽病存在協同關系,體現真菌病害侵染草莓的復雜性[5]。在云南省健康與炭疽病草莓根際土壤微生物群落結構對比分析中,發現Colletotrichum內的物種導致草莓炭疽病、冠腐病和根腐病等,患病草莓根際土壤中F.oxysporum的相對豐度高,認為該地區種植的草莓可能會被其他潛在真菌病原體感染3。本研究中表3與其結果相似,可能存在多種潛在真菌病害,對草莓的侵染具有復雜性。中國首次報道草莓冠腐病的研究表明,毒性最強的物種是C.siamense和F.oxysporum,其發病率在 50% 以上[],其中C.sia-mense在本研究中得到深入研究。


草莓炭疽病的病原菌主要包括C.gloeosporioi-des、C.acutatum、C.nymphaeae,C.siamense和C.fruc-ticola等多個種。不同地區和氣候條件下,病原菌的種類和分布存在顯著差異,C.acutatum在溫帶地區更為常見,而C.gloeosporioides在熱帶和亞熱帶地區更為普遍[3]。楊洪俊等[分離得到的暹羅炭疽菌,在PDA培養基上的形態,早期菌絲為白色,后期菌絲逐漸由白色轉為灰色,并產生暗黃色分生孢子堆。本研究分離得到的暹羅炭疽菌,在PDA培養基上的形態,早期菌絲為白色,后期菌絲逐漸消失,并在早期即可產生橘黃色分生孢子堆,推測與江蘇省等地區分離的暹羅炭疽菌之間存在差異。ITS序列在膠孢復合種內的分辨率較低,尤其是在區分C.gloeosporioides和C.siamense等近緣種時,需要結合多基因系統(如TUB2、ACT、GAPDH等)發育分析,以提高鑒定的準確性[3。本研究結合形態學特征,ITS、TUB2、GAPHD、ACT和CAL測序結果和系統發育分析,鑒定發現暹羅炭疽菌的ZG-2菌株與一般暹羅炭疽菌有較大差異。隨著分子技術的發展,越來越多的新種被發現并被描述。近年來從草莓上分離的C.nymphaeae和C.fructicola等新種的生物學特性和致病機制尚需進一步研究[40]。
化學防治是控制草莓炭疽病害的有效手段。目前生產上廣泛使用的殺菌劑主要有咪鮮胺、氟啶胺、代森錳鋅和苯醚甲環唑等[4],由于不同地區優勢種群和環境不同,對化學藥劑的敏感程度也不同。姚錦愛等4發現福建省的草莓炭疽病菌群體對吡唑醚菌酯較敏感,然而,本研究中在河南省篩選出ZG-2致病菌株對吡唑醚菌酯的敏感性較差,其 EC50 為16.719μg?mL-1 。南京地區 75% 肟菌-戊唑醇和 10% 苯醚甲環唑對病原菌的相對抑制效果較好[43],對江蘇省、湖北省、浙江省病原菌抑制較好的則為氟啶胺,丙環-咪鮮胺和戊唑醇[444g],而本研究中戊唑醇抑菌效果好,其 EC50 為 0.035μg?mL-1 。本研究中篩選出幾種對暹羅炭疽菌抑制效果較好的化學藥劑,包括戊唑醇、丙環-咪鮮胺、苯甲-咪鮮胺和咪鮮胺,這些藥劑的 EC50 在 0.035~0.607μg?mL-1 之間,可以作為防治炭疽病的推薦藥劑。
4結論
近年來,河南草莓炭疽病發生嚴重,阻礙草莓產業的發展。通過柯赫氏法則驗證、形態學特征觀察和多基因系統進化分析,證明了暹羅炭疽菌(C.sia-mense)是引起河南草莓炭疽病的優勢病原菌。戊唑醇對草莓炭疽病具有極強抑制作用,可作為炭疽病菌的潛在防治藥劑。
參考文獻References:
[] GIAMPIERIF,TULIPANIS,ALVAREZ-SUAREZ JM, QUILESJL,MEZZETTI B,BATTINO M. The strawberry:
Composition,nutritional quality,and impact on human health[J]. Nutrition,2012,28(1):9-19.
[2]HERNANDEZ-MARTINEZNR,BLANCHARDC,WELLS D,SALAZAR-GUTIERREZ M R. Current state and future perspectives of commercial strawberry production: Areview[J]. Scientia Horticulturae,2023,312:111893.
[3] 姜秋同,張爽,朱洪坤,趙麗娜.草莓病害的發生與防治措施[J]. 現代農村科技,2023(7):49-50. JIANG Qiutong,ZHANG Shuang,ZHU Hongkun,ZHAO Lina. Occurrence and control measures of strawberry diseases[J]. Modern Rural Science and Technology,2023(7):49-50.
[4]BROOKS A N. Anthracnose of strawberry caused by Colletotrichumfragariae,n.sp.[J].Phytopathology,1931,21(7):739-744.
[5]FREEMAN S,KATAN T. Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel[J].Phytopathology,1997,87(5):516-521.
[6] CHUNG PC,WU HY,WANG Y W,ARIYAWANSA HA,HU HP,HUNG TH,TZEAN S S,CHUNG CL.Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnosein Taiwanand descriptionofanewspecies,Colletotrichum miaoliense sp.nov.[J].Scientific Reports,2020,10(1):14664.
[7] ADHIKARI TB,CHACONJG,FERNANDEZ G E,LOUWS FJ.First report of anthracnose causing both crown and fruit rot ofstrawberrybyColletotrichumsiamensein northCarolina[J]. Plant Disease,2019,103(7):1775.
[8]JIY,LI X,GAO Q H,GENG CN,DUAN K. Colletotrichum species pathogenic to strawberry:Discovery history,global diversity,prevalence in China,and the host range of top two species[J].Phytopathology Research,2022,4(1):42.
[9] 侯圣凡,華戰迎,劉峻杰,董振飛,馮澤坤,閆佳琪,王紅清.我 國草莓膠孢炭疽菌的多基因聯合鑒定與致病性分析[J].中國 農業大學學報,2022,27(4):82-94. HOU Shengfan,HUA Zhanying,LIU Junjie,DONG Zhenfei, FENG Zekun,YAN Jiaqi,WANG Hongqing.Multi-gene joint identification and pathogenicityanalysisof Colletotrichum gloeosporioides complex of strawberry in China[J]. Journal of ChinaAgricultural University,2022,27(4):82-94.
[10]楊洪俊,張旭,陳佳佳,孫朋朋,張石林,王鈞銘,王媛花,顏志 明.草莓炭疽病病原鑒定及拮抗菌株篩選[J].江蘇農業科學, 2024,52(3):147-152. YANG Hongjun, ZHANG Xu,CHEN Jiajia,SUN Pengpeng, ZHANG Shilin,WANG Junming,WANG Yuanhua,YAN Zhiming.Identification of pathogen and screening of antagonistic strains for strawberry anthracnose[J]. Jiangsu Agricultural Sciences,2024,52(3):147-152.
[11]宋麗麗,張麗勍,高清華,段可.草莓果生刺盤孢菌的生物學特 性及致病性測定[J].上海農業學報,2019,35(6):88-96. SONG Lili,ZHANG Liqing,GAO Qinghua,DUAN Ke. Biological characteristics and pathogenicity of strawberry Colletotrichum fructicola[J].Acta Agriculturae Shanghai,2019,35(6): 88-
[12]DE LIGNE L,VIDAL-DIEZ DE ULZURRUN G,BAETENS J M,VANDENBULCKEJ,VANACKERJ,DEBAETSB. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions[J].IMAFungus,2019,10(1):7.
[13]李晶,仇芳,張超,王玉梓,謝昌平.海南白沙和儋州油梨葉部 及果實炭疽病菌的鑒定[J].果樹學報,2023,40(7):1443-1454. LI Jing,QIU Fang,ZHANG Chao,WANG Yuzi,XIE Changping.Identification of pathogen species of avocado (Persea americanaMill.) leafand fruit anthracnosein BaishaandDanzhou,Hainan[J].Journal ofFruit Science,2023,40(7):1443-1454.
[14]張艷婷.草莓莖基腐病的病原菌鑒定、生物學特性及生物-化 學協同控制技術[D].杭州:浙江農林大學,2021. ZHANG Yanting.Etiology,biological characteristics and biochemical control of strawberry crown rot[D]. Hangzhou:Zhejiang Aamp;FUniversity,2021.
[15]XIE L,ZHANG J Z,WAN Y,HU D W. Identification of Colletotrichum spp. isolated from strawberry in Zhejiang Province and Shanghai City,China[J]. Journal of Zhejiang University. Science.B,2010,11(1):61-70.
[16] 沈會芳,楊祁云,謝祥恩,鄧海濱,陳鳳鳳,孫大元,蔣尚伯,林 壁潤.辣椒尖孢炭疽菌生物學特性研究[J].廣東農業科學, 2021,48(5):110-117. SHEN Huifang,YANG Qiyun,XIE Xiang'en,DENG Haibin, CHEN Fengfeng,SUN Dayuan, JIANG Shangbo,LIN Birun. Studyon biological characteristics of Colletotrichum acutatum in pepper[J].Guangdong Agricultural Sciences,2021,48(5): 110-117.
[17]PRUTHVIRAJ,EKABOTE SD,PATILB,RAMESHAN, ONKARAPPA S.In vitro and invivo evaluation of fungicides against anthracnose disease on pomegranate (Punica granatum L.)caused by Colltotrichum gloeosporioides[J]. Crop Protection,2024,178:106598.
[18]方中達.植病研究方法[M].3版.北京:中國農業出版社, 1998. FANG Zhongda. Methodology for plant pathology[M]. 3rd ed. Beijing:China Agriculture Press,1998.
[19]WHITE T J,BRUNS T,LEE S,TAYLOR J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M].New York,USA:Academic Press,1990.
[20]CARBONE I,KOHN LM.A method for designing primer sets forspeciation studiesin filamentous ascomycetes[J].Mycologia,1999,91(3):553-556.
[21]TEMPLETON MD,RIKKERINK E HA,SOLON SL,CROWHURSTRN. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata[J]. Gene,1992,122(1):225-230.
[22]WEIR B S,JOHNSTONPR,DAMMU. The Colletotrichum gloeosporioides speciescomplex[J].StudiesinMycology,2012, 73:115-180.
[23]O'DONNELL K,CIGELNIK E. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus fusarium are nonorthologous[J].Molecular Phylogenetics and Evolution,1997,7(1):103-116.
[24]DILLA-ERMITA C J,GOLDMAN P H,JAIME J H,RAMOS G,PENNERMANKK,HENRYPM.First report of Fusarium oxysporum f. sp. fragariae race 2 causing Fusarium wilt of strawberry (Fragaria x ananassa) in California[J].Plant Disease,2023.
[25]DEBODE J, VAN HEMELRIJCK W,HEUNGENS K,MAES M,CREEMERS P.First report of Pilidium concavum causing Tan-brown rot on strawberry fruit in Belgium[J]. Plant Disease, 2011,95(8): 1029.
[26] 趙景楠,馬喆,耿文龍,劉正坪,尚巧霞,趙曉燕,陸家蘭,魏艷 敏.新病害草莓褐色葉斑病病原菌細胞壁降解酶研究[J].中 國農學通報,2014,30(31):261-266. ZHAO Jingnan, MA Zhe, GENG Wenlong,LIU Zhengping, SHANG Qiaoxia,ZHAO Xiaoyan,LU Jialan,WEI Yanmin. Cell wall degrading enzymes from a new Pilidium concavum Tan-brown leaf spot of strawberry[J]. Chinese Agricultural Science Bulletin,2014,30(31):261-266.
[27]閆奕彤,孫浚源,李福鑫,張桂軍,閆哲,黃中喬,高慧鴿,畢揚. 草莓褐色葉斑病病原菌Pilidiumlythri鑒定及室內防治藥劑 篩選(英文)[J].農藥學學報,2023,25(5):1076-1084. YAN Yitong,SUN Junyuan, LI Fuxin, ZHANG Guijun, REN Zhe,HUANG Zhongqiao,GAO Huige,BI Yang. Identification ofPilidium lythri and screening of fungicidesin vitro[J].Journal ofPesticide Science,2023,25(5):1076-1084.
[28]CHAMORRO M,AGUADO A,DE LOS SANTOS B. First report of root and crown rot caused by Pestalotiopsisclavispora (Neopestalotiopsis clavispora) on strawberry in Spain[J].Plant Disease,2016,100(7):1495.
[29]YOUSEFSA M,ALIA M,ELSHERBINY EA,ATWA AA. Morphological,genetic andpathogenicvariabilityamong Botrytis cinerea species complex causing gray mold of strawberry[J].Physiological and Molecular Plant Pathology,2024,134: 102395.
[30]GUBLER WD,FELICIANO A J,BORDAS AC,CIVEROLO EC,MELVINJA,WELCHNC.Firstreportofblossomblight of strawberrycaused by Xanthomonas fragariaeandCladosporiumcladosporioides in California[J].Plant Disease,999,83(4): 400.
[31]LEE HB,KIM C J,YU S H. First report of strawberry fruit rot causedbyAlternaria tenuissima in Korea[J].Plant Disease, 2001,85(5): 563.
[32]MARINMV,RATTIMF,PERES NA,GOSSEM.NeW genotypes of Phytophthora nicotianaefound on strawberry inFlorida[J].Phytopathology,2024,114(4):743-751.
[33]BI Y,GUO W,ZHANG G J,LIU S C,CHEN Y. First report of Colletotrichum truncatumcausinganthracnoseof strawberryin China[J].Plant Disease,2017,101(5):832.
[34]王步云,喬巖,張濤,鄭書恒,趙磊,萬敏,李恒羽,王吐虹.北 京地區草莓炭疽病病原鑒定及生物防治藥劑篩選[J].河南農 業科學,2019,48(4):88-92. WANG Buyun,QIAO Yan, ZHANG Tao, ZHENG Shuheng, ZHAO Lei, WAN Min,LI Hengyu,WANG Tuhong. Identification of pathogens causing strawberry anthracnose and screening of biopesticides in Beijing area[J]. Journal of Henan Agricultural Sciences,2019,48(4):88-92.
[35]VILLANUEVA-ARCE R,DE JESUS YANEZ-MORALES M, ALANIS- MARTINEZ I, SILVA- ROJAS H V,VALDEZCARRASCOJM.Novel Harzia ixtarensisfungusonAnnona cherimola fruitinMexicoanditssynergisticrelationshipwith Colletotrichum fragariae[J].Plant Disease,2023,07(6):1794- 1808.
[36]SUDF,CHEN SY,ZHOU W X,YANGJY,LUO ZW, ZHANGZR,TIANYX,DONGQE,SHENXM,WEISJ, TONG JY,CUI X L. Comparative analysis of the microbial community structures between healthy and anthracnose-infected strawberry rhizosphere soils using illumina sequencing technologyin Yunnan Province,southwest of China[J].Frontiers in Microbiology,2022,13:881450.
[37]ZHANGYT,YUH,HUMH,WUJY,ZHANG CQ.Fungal pathogens associated with strawberry crown rot disease in China[J]. Journal ofFungi,2022,8(11): 1161.
[38]MORKELIUNE A,RASIUKEVICIUTEN,VALIUSKAITE A. Meteorological conditions in a temperate climate for Colletotrichumacutatum,strawberrypathogen distributionand susceptibility of different cultivars to anthracnose[J].Agriculture,2021, 11(1):80.
[39]SCHOCH C L,SEIFERT K A,HUHNDORF S,ROBERT V, SPOUGEJL,LEVESQUECA,CHENW,CONSORTIUMF B.Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J].Proceedings of theNational Academy of Sciences of the United States ofAmerica,2012,109(16):6241-6246.
[40]WANGNY,FORCELINIBB,PERESNA.Anthracnosefruit and root necrosis of strawberry are caused by a dominant specieswithintheColletotrichumacutatum speciescomplex in the United States[J].Phytopathology,2019,109(7):1293-1301.
[41]王豐,張舒媛,盧潔,馬躍.草莓炭疽病研究進展[J].沈陽農業 大學學報,2023,54(4):490-501. WANGFeng,ZHANG Shuyuan,LUJie,MAYue.Research developments onstrawberry anthracnose[J].Journal of Shenyang Agricultural University,2023,54(4):490-501.
[42]姚錦愛,賴寶春,黃鵬,侯翔宇,余德億.福建省草莓炭疽病菌 對吡唑醚菌酯的敏感性及與其他藥劑的交互抗性[J].植物保 護學報,2022,49(4):1263-1268. YAO Jin'ai,LAI Baochun,HUANG Peng,HOU Xiangyu,YU Deyi. Sensitivity to pyraclostrobin and cross-resistance against sixfungicides in strawberry anthracnose pathogen Colletotrichumgloeosporioides fromFujian Province[J].JournalofPlant Protection,2022,49(4):1263-1268.
[43]唐冬蘭,唐泉,蔣立奔,宋芹芹,曹榮祥.6種殺菌劑對2種草 莓炭疽病菌室內毒力測定[J].江蘇農業科學,2022,50(12): 106-113. TANGDonglan,TANGQuan,JIANG Liben,SONGQinqin, CAORongxiang. Indoor virulence determination of six kindsof fungicides against two strains of strawberry anthracnose[J]. JiangsuAgricultural Sciences,2022,50(12):106-113.
[44]曾祥國,向發云,張鵬,韓永超,吳潤玲,顧玉成,王晴芳.十三 種殺菌劑對草莓膠孢炭疽菌的室內毒力測定[J].湖北農業科 學,2012,51(23):5369-5371. ZENG Xiangguo,XIANG Fayun,ZHANG Peng,HAN Yongchao,WU Runling,GU Yucheng,WANG Qingfang. Toxicity test of 13 types of fungicides for strawberry anthracnose in laboratory[J].Hubei Agricultural Sciences,2012,51(23): 5369- 5371.
[45]鄔,王曉琳,黃潔雪,刁春友,閆曉陽,吉沐祥.7種殺菌劑對 草莓膠孢炭疽菌和灰霉病病菌的室內毒力測定[J].江蘇農業 科學,2019,47(20):129-133. WU Jie,WANG Xiaolin,HUANG Jiexue,DIAO Chunyou, YAN Xiaoyang,JI Muxiang. Determination of indoor virulence ofseven fungicidesagainstColletotrichumgloeosporioidesand Botrytis cinerea[J]. Jiangsu Agricultural Sciences,2019,47(20): 129-133.
[46] 徐英,馬森,楊奎,李瑋,李曉東,郝樹林. 40% 戊唑醇懸浮劑對 草莓炭疽病的毒力測定及田間防效[J].農藥,2017,56(11): 853-855. XUYing,MASen,YANGKui,LIWei,LIXiaodong,HAOShulin.The toxicity determinationand field efficacy trialsof tebuconazole 40% SC against Fragaria ananassa colletotrichum[J]. Agrochemicals,2017,56(11):853-855.