999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

大興安嶺北段庫中地區(qū)早白堊世花崗巖鋯石U-Pb年代學(xué)、地球化學(xué)特征及其地質(zhì)意義

2025-08-27 00:00:00尹業(yè)長(zhǎng)姜朋鄭博楊云寶李成祿劉陽劉兆龍劉旭顯范玉超趙忠海
關(guān)鍵詞:庫中白堊鋯石

關(guān)鍵詞:花崗巖;鋯石 U-Pb 定年;地球化學(xué);I型花崗巖;早白堊世;庫中;大興安嶺北段doi:10.13278/j.cnki.jjuese.20250151 中圖分類號(hào):P59;P588.1 文獻(xiàn)標(biāo)志碼:A

Abstract: The widespread Mesozoic granitoids in the Great Xing'an Range play a pivotal role in deciphering the tectonic-magmatic evolution of Northeast China. To constrain the emplacement age, petrogenesis,and tectonic setting of granites in the northern segment of the Great Xing'an Range,this study conducts integrated petrographic,LA - ICP- MS zircon U - Pb geochronological, zircon Hf isotopic,and whole-rock geochemical investigations on the Kuzhong granitic pluton. Zircon U - Pb geochronology yields a crystallization age of (136.5±1.7)Ma , placing the magmatic event in the Early Cretaceous.Whole-rock geochemical data reveal that the pluton represents a highly fractionated calcalkaline I-type granite,characterized by high silica (w(SiO2)=70.40%-73.54%) ,elevated alkalis (20 (w(Na2O+K2O)=8.77%-9.30%) ,enrichment in large-ion lithophile elements (e.g.,Rb,Ba),and depletion in high-field-strength elements (e.g.,Nb,Ti,P). Chondrite-normalized rare earth element patterns exhibit right-dipping trends with pronounced negative Eu anomalies. The homogeneous zircon Hf isotopic compositions (εHf(t)=5.1-8.8 , mean 6.7) suggest magma derivation predominantly from partial melting of juvenile lower crust. Synthesizing regional tectonic evidence,we propose that the Kuzhong granite formed in a post-orogenic extensional setting following the closure of the MongolOkhotsk Ocean,overprinted by lithospheric thinning and asthenospheric upweling driven by PaleoPacific plate rollback. This thermotectonic process facilitated melting of juvenile lower crustal materials, ultimately generating highly fractionated calc-alkaline I- type granites.

Key words: granite; ziron U - Pb dating; geochemistry; I - type granite; Early CretaceousKuzhong;Northern Great Xing'an Range

0 引言

大興安嶺地處蒙古一鄂霍茨克與環(huán)太平洋構(gòu)造域交匯區(qū),其中生代構(gòu)造-巖漿活動(dòng)是解析東北亞板塊相互作用與深部物質(zhì)循環(huán)的關(guān)鍵窗口[1-5]。區(qū)域構(gòu)造格架主要由洋盆閉合形成的造山帶奠定[,蒙古一鄂霍茨克洋北向低角度俯沖作用從晚泥盆世持續(xù)至早侏羅世,南向俯沖作用則導(dǎo)致其東南緣額爾古納一興安地塊發(fā)生大規(guī)模中生代巖漿響應(yīng)[7-9]由于華北一阿穆爾陸塊的相對(duì)旋轉(zhuǎn)運(yùn)動(dòng),蒙古一鄂霍茨克洋最終呈現(xiàn)顯著的西早東晚“剪刀式\"不對(duì)稱閉合特征[10-11]:西段可能于二疊紀(jì)—三疊紀(jì)完成拼貼[12-15],而東段(大興安嶺北部)的閉合時(shí)限仍存爭(zhēng)議,主要存在早—中侏羅世[16-18]、中侏羅世末[19-22]和晚侏羅世—早白堊世[23-27]轉(zhuǎn)換期三種觀點(diǎn)。另外,古太平洋板塊向歐亞大陸的俯沖作用驅(qū)動(dòng)了華北克拉通破壞事件[28-30],而其初始俯沖的時(shí)間仍存在顯著爭(zhēng)議,主要觀點(diǎn)包括:早二疊世[31-32]、晚三疊世[33-34]、晚三疊世—早侏羅世[35-37]和早侏羅世[38-41]。這一系列不同的認(rèn)識(shí)表明大興安嶺中生代花崗巖具有復(fù)雜的成因機(jī)制,可能受不同構(gòu)造體制控制或疊加改造,進(jìn)一步加強(qiáng)和完善該區(qū)域花崗巖的系統(tǒng)研究顯得十分必要。

庫中地區(qū)位于大興安嶺北段,是探討蒙古一鄂霍茨克與環(huán)太平洋構(gòu)造域時(shí)空耦合過程及其深部響應(yīng)的典型研究區(qū)。目前學(xué)術(shù)界對(duì)庫中地區(qū)構(gòu)造-巖漿活動(dòng)的研究較少,前人[42]以區(qū)內(nèi)瑪尼圖組火山巖為研究對(duì)象,探討了巖漿源區(qū)和構(gòu)造背景。本文以庫中地區(qū)花崗巖體為研究對(duì)象,開展了巖相學(xué)、鋯石U-Pb年代學(xué)、Hf同位素分析和巖石地球化學(xué)等研究,探討了庫中地區(qū)花崗巖體的形成時(shí)代、巖石成因及地質(zhì)意義,以期為大興安嶺北部早白堊世構(gòu)造一巖漿演化提供新資料。

1 區(qū)域地質(zhì)背景及巖石學(xué)特征

1.1 區(qū)域地質(zhì)背景

庫中地區(qū)地處大興安嶺北段,大地構(gòu)造上屬于額爾古納地塊南緣[42],緊鄰新林—喜桂圖縫合帶(圖1a)。區(qū)內(nèi)除沿河谷分布的第四系外,主要以中生代地層為主,包括上侏羅統(tǒng)滿克頭鄂博組、瑪尼圖組和中侏羅統(tǒng)塔木蘭溝組。

區(qū)內(nèi)斷裂構(gòu)造發(fā)育,主體呈NE和NW向展布,包括庫中林場(chǎng)南斷裂、庫爾濱斷裂、奇力濱林場(chǎng)斷裂等,這些共軛斷裂系統(tǒng)共同控制著區(qū)域巖漿-熱液活動(dòng)的時(shí)空展布。區(qū)內(nèi)中生代巖漿侵入活動(dòng)強(qiáng)烈,侵入巖多與火山巖共生,并與同期火山巖具有相同巖漿源區(qū)和構(gòu)造背景[43]。侵入巖多呈不規(guī)則的小巖株?duì)畛雎队趨^(qū)域南部,主要巖性包括晚侏羅世花崗斑巖、正長(zhǎng)花崗巖、堿長(zhǎng)花崗斑巖,早白堊世堿長(zhǎng)花崗巖、石英正長(zhǎng)斑巖等(圖1b)。

1.2 巖石學(xué)特征

本次在大興安嶺庫中地區(qū)共采集花崗巖新鮮樣品6件,樣品KZ-01和KZ-02采自西南部花崗巖露頭,該巖體出露面積約 7.0km2 ,侵入滿克頭鄂博組。樣品 KZ-03.KZ-04.KZ-05 和KZ-06采自中東部花崗巖露頭,該巖體出露面積約 6.5km2 ,同樣侵入滿克頭鄂博組。在兩處采樣點(diǎn)均采集未受風(fēng)化-蝕變作用影響的新鮮樣品,具體采樣位置見圖1b。

采自庫中地區(qū)的巖石樣品均為堿長(zhǎng)花崗巖,樣品新鮮面呈灰白色,粗粒結(jié)構(gòu)(主要礦物粒徑為 1.0~ 5.0mm, ,塊狀構(gòu)造(圖2a)。礦物組成為鉀長(zhǎng)石(約60% )、石英(約 30% )斜長(zhǎng)石(約 8% )和黑云母(約2% (圖2b),未見堇青石、石榴子石等富鋁礦物。鉀長(zhǎng)石鏡下呈自形一半自形板狀,粒徑為 2.0~ 5.0mm ,負(fù)低突起,發(fā)育典型卡爾斯巴雙晶(圖2c),一級(jí)灰白干涉色;石英無色透明,他形粒狀,粒徑為

1.0~3.0mm ,正低突起,無解理,一級(jí)黃白干涉色,波狀消光顯著,充填于長(zhǎng)石晶隙(圖2c);斜長(zhǎng)石鏡下呈半自形板柱狀,粒徑為 1.5~4.0mm ,負(fù)低突起,發(fā)育聚片雙晶(圖2d);黑云母深棕褐色,片狀,粒徑為 0.5~1.2mm ,具一組極完全解理,多色性顯著(圖2c)。

2 樣品測(cè)試

2.1 樣品預(yù)處理

對(duì)采集的6件巖石樣品均開展了全巖地球化學(xué)分析。先通過顎式破碎機(jī)進(jìn)行粗碎,隨后使用瑪瑙研缽將粗碎樣品研磨至細(xì)粉末(200目),用于后續(xù)全巖主量元素和微量元素分析。

對(duì)樣品KZ-06開展鋯石U-Pb定年,預(yù)處理工作由科薈測(cè)試(天津)科技有限公司完成。首先采用重液浮選技術(shù)從粉碎后的樣品中分離富集鋯石;隨后在雙目顯微鏡下手選透明、自形、無裂隙且無包裹體的鋯石顆粒,通過環(huán)氧樹脂制靶,并拋光至核部暴露;最后通過陰極發(fā)光(CL)成像,優(yōu)選出振蕩環(huán)帶清晰、無復(fù)雜核邊結(jié)構(gòu)的顆粒用于激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)分析。

2.2 分析測(cè)試

2.2.1 鋯石U-Pb測(cè)年

LA-ICP-MS鋯石U-Pb測(cè)年由科薈測(cè)試(天津)科技有限公司完成。激光剝蝕采用NewWaveResearch NWR193UC型 193nmArF 準(zhǔn)分子激光剝蝕系統(tǒng),激光束斑直徑為 32μm ,剝蝕頻率為 6Hz ,能量密度約為 3J/cm2 。離子信號(hào)采集使用ThermoScientificiCAPRQ型電感耦合等離子體質(zhì)譜儀(ICP-MS)。氮?dú)庾鳛閯兾g載氣,通過T型接頭與氬氣混合后進(jìn)入電感耦合等離子體源。單點(diǎn)分析包括約20s背景信號(hào)(氣體空白)采集及45s樣品信號(hào)采集。鋯石標(biāo)樣GJ-1作為U-Pb定年外標(biāo),每 5~10 個(gè)樣品點(diǎn)分析一次;NISTSRM610作為U、Th、Pb元素質(zhì)量分?jǐn)?shù)外標(biāo)。 U-Th-Pb 同位素比值的時(shí)間漂移通過線性插值法(基于GJ-1標(biāo)樣數(shù)據(jù))進(jìn)行批內(nèi)校正,GJ-1的外部精度優(yōu)于0.5% 。諧和圖繪制及加權(quán)平均年齡的計(jì)算使用IsoplotR軟件[44進(jìn)行。

2.2.2 鋯石Hf同位素分析

鋯石Hf同位素分析由科薈測(cè)試(天津)科技有限公司完成。原位Lu-Hf同位素測(cè)試區(qū)域與U一Pb定年區(qū)域一致,采用ThermoScientificNeptune

圖1東北地區(qū)大地構(gòu)造簡(jiǎn)圖(a)和庫中地區(qū)地質(zhì)簡(jiǎn)圖(b)

Fig.1 Tectonic sketch map of Northeast China (a)and geological sketch map of the Kuzhong area (b)

Plus型MC-ICP-MS聯(lián)用GeolasHD型 193nm ArF 準(zhǔn)分子激光剝蝕系統(tǒng)進(jìn)行測(cè)試,在測(cè)試進(jìn)程中加裝信號(hào)平滑裝置并以氮?dú)猓ㄝd氣)來提高Hf的靈敏度。激光束斑直徑為 44μm ,剝蝕頻率為 8Hz 輸出能量密度為 7.0J/cm2 ,使用ICPMSDataCal軟件[44]進(jìn)行數(shù)據(jù)處理。

2.2.3 全巖主量、微量及稀土元素分析

全巖主量、微量及稀土元素分析由武漢上譜分析科技有限責(zé)任公司完成。主量元素含量通過X射線熒光光譜儀(XRF;RigakuZSXPrimusII型)測(cè)定,采用 Li2B4O7 熔劑制備熔融玻璃片;微量及稀土元素含量通過電感耦合等離子體質(zhì)譜儀(ICP-MS;Agilent7700e型)測(cè)定,樣品經(jīng) HNO3-HF 混合酸消解。主量元素測(cè)定精度通過中國(guó)國(guó)家標(biāo)準(zhǔn)物質(zhì)GBW07103(GSR-1驗(yàn)證(誤差 lt;±5% ),稀土元素與微量元素測(cè)定精度通過標(biāo)樣AGV-2、BHVO-

圖2庫中花崗巖體野外(a)、手標(biāo)本(b)及鏡下顯微 (c,d) 照片F(xiàn)ig.2Field (a),hand specimens (b),and microscopic (c,d) photographs of Kuzhong granite

2、BCR-2和RGM-2監(jiān)控(誤差 lt;±5% 。

3 分析結(jié)果

3.1 鋯石U-Pb年代學(xué)

對(duì)樣品KZ-06進(jìn)行了鋯石U-Pb定年分析(表1),鋯石陰極發(fā)光圖像(CL)顯示鋯石形狀為自形一半自形,其中自形鋯石為長(zhǎng)柱狀,長(zhǎng)寬比介于2:1~3:1 之間,具有明顯的振蕩生長(zhǎng)環(huán)帶特征(圖3a)。 Th/U 值為 0.44~0.71 ,其內(nèi)部結(jié)構(gòu)特征與典型巖漿結(jié)晶鋯石一致。本次共分析了12顆鋯石顆粒,U-Pb所有分析點(diǎn)年齡均落在 206Pb, /238-207Pb/235U 的諧和線上或鄰近區(qū)域(圖3b),鉛丟失可忽略。鋯石的加權(quán)平均年齡為 (136.5± 1.7)Ma(圖3c),表明庫中花崗巖形成于早白堊世。

3.2 鋯石Hf同位素

對(duì)樣品KZ-06中的10顆鋯石進(jìn)行了Hf同位素分析,結(jié)果列于表2。 εHf(Ωt) 值范圍為 5.1~ 8.8,176Hf/177Hf 值范圍為 0.282 847~0.282 949 fLu/Hf 值范圍為一 0.98~-0.89 ,一階段模式年齡( TDM1) 為 582~431Ma ,二階段模式年齡( TDM2 )為839~605Ma 。

3.3主量、微量及稀土元素特征

庫中地區(qū)6件花崗巖樣品的全巖主量、微量及稀土元素分析結(jié)果見表3。樣品 w ( SiO2 )為70.40%~73.54% ,變化范圍較小,屬高硅花崗巖;w(Al2O3 )為 12.76%~13.66% , w ( Na2O+K2O) (20為 8.77%~9.30% ,顯示出富堿特征; w (CaO)為0.33%~0.57% , w ( TiO2 )為 0.25%~0.48% .τω(Fe2O3 為 2.99%~4.77% zμ(MgO) 為 0.23%~ 0.55% 為 0.04%~0.12% , w ( MnO 為0.11%~0.22% ,質(zhì)量分?jǐn)?shù)較低。

庫中花崗巖 為 (100.26~207.50)× 10-6 ,LREE/HREE值為 7.58~10.41 。 (La/Yb)N 為 3.15~11.94 ,輕重稀土元素分餾顯著。球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式曲線相近,顯示出同源巖漿演化特征,總體呈輕稀土元素(LREE)富集、重稀土元素(HREE)平坦的右傾型(圖4a)。銪負(fù)異常明顯,表明源區(qū)有斜長(zhǎng)石的殘留或結(jié)晶。

表1庫中花崗巖 LA-ICP-MS 鋯石U-Pb定年數(shù)據(jù)

Table1 LA-ICP-MS U-Pb data of zircons from Kuzhong granite

圖3庫中花崗巖鋯石CL圖像(a)、U-Pb年齡諧和圖(b)和加權(quán)平均年齡圖(c)Fig.3Zircon CL images (a),U-Pb concordia diagram (b),and weighted mean age plot (c) from Kuzhong granite

表2庫中花崗巖鋯石Hf同位素分析結(jié)果

Table 2 Zircon Hf isotopic results of Kuzhong granite

注: 176Yb/177Hf(corr) 表示同質(zhì)異位素干擾校正參數(shù); 176Hf/177HfCHUR(T) 表示在鋯石結(jié)晶時(shí)代 (T) 時(shí),球粒隕石均一儲(chǔ)庫的Hf同位素理論比值。

庫中花崗巖 w (Rb)為 (130~196)×10-6 為 (201~727)×10-6 ,大離子親石元素相對(duì)富集(圖4b)。 為 (18.03~26.07)×10-6 ,高場(chǎng)強(qiáng)元素相對(duì)虧損(圖4)。過渡金屬元素中, 為 (7.5~11.9)×10-6 , τw(Ni) 為 (0.60~2.93)× 10-6 為 (1.11~2.51)×10-6 ,質(zhì)量分?jǐn)?shù)相對(duì)較低。

3.4 巖體形成溫度

使用Miller等[48]修正后的鋯石飽和溫度 (Tzr )模擬公式對(duì)巖體形成溫度進(jìn)行了估算,公式如下: TZr= 其中: 代表全巖中 Zr 的質(zhì)量分?jǐn)?shù);M 為陽離子質(zhì)量分?jǐn)?shù)比值,計(jì)算前需對(duì)全巖Si、Al.Fe,Mg?Ca,Na?K.P 元素陽離子數(shù)進(jìn)行歸一化處理,再將歸一化后數(shù)據(jù)代入公式 M=w(Na+K+ 。庫中花崗巖體鋯石飽和溫度計(jì)算結(jié)果如表4所示,所有樣品溫度為 733.54~ 751.04°C ,符合花崗質(zhì)巖漿鋯石結(jié)晶典型溫度范圍0 700~900°C )。

4討論

4.1 巖石成因及源區(qū)特征

花崗巖的巖石成因分類對(duì)理清其物質(zhì)來源及構(gòu)造意義至關(guān)重要[49-53]。本次研究的6件花崗巖樣品具有相似的年齡、巖石類型和地球化學(xué)特征。在TAS圖解(圖5a)中,庫中地區(qū)樣品均落入花崗巖區(qū)域,且分布于堿性巖系列區(qū)。所有樣品都具有高硅(w(SiO2)=70.40%~73.54%) ,低 MgO (0.23%~ 0.55% 、 Cr((7.5~11.9)×10-6 )、Ni( (0.60~ 2.93)×10-6) 質(zhì)量分?jǐn)?shù),表明它們不是M型花崗巖[47]。鋁指數(shù)(A/CNK)1.1為I型和S型花崗巖的分界線[54]。在A/NK-A/CNK圖解(圖5b)中,球粒隕石標(biāo)準(zhǔn)化值據(jù)文獻(xiàn)[45];原始地幔標(biāo)準(zhǔn)化值據(jù)文獻(xiàn)[46];大興安嶺區(qū)域研究數(shù)據(jù)據(jù)文獻(xiàn)[47]。

表3庫中花崗巖主量、微量及稀土元素分析結(jié)果

Table 3 Whole rock major, trace and rare earth element compositions of the granites in Kuzhong area

注:主量元素質(zhì)量分?jǐn)?shù)單位為 % ;微量和稀土元素質(zhì)量分?jǐn)?shù)單位為 10-6 6

圖4庫中花崗巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式圖(a)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)

Fig.4Chondrite-normalized REE distribution paterns (a)and primitive mantle-normalized trace element spider diagrams (b of Kuzhong granite

表4庫中花崗巖鋯石飽和溫度計(jì)算結(jié)果

Table 4Calculation results of zircon saturation temperatures for Kuzhong granite

所有庫中樣品均位于準(zhǔn)鋁質(zhì)—弱過鋁質(zhì)區(qū)域,揭示了這些花崗巖的鋁飽和特征,且A/CNK值介于0.96~1.03 之間,與S型花崗巖[40]的A/CNK特征(A/CNKgt;1.1) 不一致。此外,在這些花崗巖中沒有發(fā)現(xiàn)典型的富鋁礦物(如堇青石、原生白云母或紅柱石),進(jìn)一步排除了S型花崗巖[56-57]的可能性。

w(K2O)-w(SiO2) 圖解(圖5c)顯示,庫中樣品均落入高鉀鈣堿性系列區(qū)。然而部分A型花崗巖可能因源區(qū)富鉀(如古老富鉀地殼的部分熔融)或分異作用影響,呈現(xiàn)高鉀鈣堿性特征[52,58],故不能完全排除A型花崗巖的可能性。A型花崗巖普遍被認(rèn)為是無水、堿性、非造山環(huán)境下形成的花崗巖[59]堿性礦物(如鐵榴輝巖和鐵榴石)的存在對(duì)識(shí)別A型花崗巖起著重要作用,而在庫中花崗巖樣品中沒有觀察到這些礦物。

解析花崗巖的巖槳源區(qū)特征是探尋其巖石成因的關(guān)鍵[60-64]。前人針對(duì)大興安嶺中生代巖漿活動(dòng)提出的源區(qū)組成模型包括:幔源熔體、新生地殼部分熔融及古老地殼物質(zhì)再造[47,65-68]。庫中花崗巖的鋯石Hf同位素組成可為源區(qū)性質(zhì)的約束提供重要依據(jù): εHf(t) 值范圍為 5.1~8.8 (主體集中于7附近,平均值為6.7), 176Hf/177Hf 值范圍為 0.282847~ 0.282949,二階段模式年齡為 839~605Ma 。在鋯石Hf同位素圖解(圖6)上,樣品點(diǎn)均落入了中亞造山帶顯生宙火成巖范圍內(nèi),指示其源區(qū)以顯生宙新增生的下地殼物質(zhì)為主。此外,庫中花崗巖的球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式圖(圖4a)呈右傾型(輕稀土元素富集、重稀土元素虧損)及明顯負(fù)銪異常(反映熔融源區(qū)存在斜長(zhǎng)石殘留或巖漿演化過程中斜長(zhǎng)石分離結(jié)晶),與經(jīng)歷先期分異作用的下地殼源區(qū)部分熔融特征一致。

高分異花崗巖是地球上重要的巖漿產(chǎn)物,記錄了大陸地殼的起源和分異過程[70-71]。從圖7a、b的地球化學(xué)變化特征來看,庫中花崗巖樣品具有典型高分異特征。在圖7c中隨著 SiO2 質(zhì)量分?jǐn)?shù)的增加 P2O5 質(zhì)量分?jǐn)?shù)顯著降低,為典型的I型花崗巖趨勢(shì)。在圖7d中Th和Rb質(zhì)量分?jǐn)?shù)之間的正相關(guān)關(guān)系也支持了這一點(diǎn)。此外,庫中花崗巖具有高硅、富堿、富集大離子親石元素、虧損高場(chǎng)強(qiáng)元素、輕稀土元素顯著富集且輕重稀土元素強(qiáng)烈分餾等特征,鋯石飽和溫度介于 之間,與典型A型花崗巖巖石地球化學(xué)特征具有明顯區(qū)別。綜上所述,本文認(rèn)為庫中花崗巖為高度分異的I型花崗巖。

圖6庫中花崗巖鋯石Hf同位素圖解

4.2 構(gòu)造意義

庫中花崗巖的早白堊世結(jié)晶年齡 (136.5± 1.7)Ma) 為該區(qū)構(gòu)造事件時(shí)限提供了約束,該年齡處于中國(guó)東北廣泛發(fā)育的晚中生代巖漿活動(dòng)期,是典型的后造山I型花崗巖代表[73-75]。諾敏大山地區(qū)早白堊世高分異I型花崗巖( (129.5±0.4)Ma) 的地球化學(xué)特征(高硅、富堿、負(fù)銪異常)及源區(qū)部分熔融屬性[30],印證了蒙古—鄂霍茨克碰撞后伸展環(huán)境在早白堊世持續(xù)存在。

高分異I型花崗巖的形成可能與多種構(gòu)造環(huán)境有關(guān),包括活動(dòng)大陸邊緣、碰撞后伸展交替的構(gòu)造環(huán)境及造山環(huán)境[76]。前人[77-78]研究認(rèn)為晚中生代大興安嶺地區(qū)的巖漿活動(dòng)受蒙古一鄂霍茨克洋閉合與古太平洋板塊俯沖共同影響。蒙古一鄂霍茨克洋東側(cè)在早一中侏羅世期間閉合,引發(fā)研究區(qū)地殼橫向縮短與垂向加厚,形成逆沖推覆構(gòu)造系統(tǒng),導(dǎo)致前中生代巖層發(fā)生褶皺及動(dòng)力變質(zhì)作用(發(fā)育長(zhǎng)英質(zhì)糜棱巖與混合巖, 182~174Ma)[79] ,并誘發(fā)中酸性巖漿活動(dòng)(如S型花崗巖)[40]

圖7庫中花崗巖巖石類型判別圖解

Fig.7 Rock-type discrimination diagram for Kuzhong granite

與此同時(shí),古太平洋板塊自晚三疊世( 203~ 201Ma, 開始向歐亞大陸俯沖[34,80],并于晚侏羅世進(jìn)入快速俯沖階段,其影響范圍擴(kuò)展至大興安嶺地區(qū),致使中國(guó)東部整體處于擠壓構(gòu)造環(huán)境[81-82]。至晚侏羅世末期,古太平洋板塊俯沖方向調(diào)整及動(dòng)力因素變化(如板片后撤、應(yīng)力減弱等),導(dǎo)致區(qū)域應(yīng)力場(chǎng)由擠壓轉(zhuǎn)為伸展[75,83]。這一轉(zhuǎn)變促使早白堊世早期巖石圈發(fā)生減薄、壓力梯度降低,軟流圈物質(zhì)大規(guī)模上涌[84-87],引發(fā)下地殼物質(zhì)重熔,最終形成了區(qū)域廣泛分布的巖槳巖。庫中花崗巖構(gòu)造判別圖解(圖8)顯示,庫中花崗巖形成于造山后伸展構(gòu)造背景。奇力濱地區(qū)同時(shí)代火山巖 (142~141Ma) 的殼幔相互作用特征(地幔楔熔融 + 地殼混染)[42],進(jìn)一步佐證了與本文模型一致的軟流圈上涌引發(fā)的巖石圈伸展背景。

基于現(xiàn)有研究,本文認(rèn)為:庫中地區(qū)早白堊世形成的花崗巖是受蒙古一鄂霍茨克洋閉合晚期造山后作用的殘余影響,疊加古太平洋板塊俯沖帶動(dòng)力學(xué)調(diào)整所引發(fā)的伸展環(huán)境下的巖漿活動(dòng)共同作用的結(jié)果。軟流圈上涌為新生下地殼熔融提供了熱動(dòng)力條件(圖9),并最終形成了高分異鈣堿性I型花崗巖。

圖8庫中花崗巖構(gòu)造環(huán)境判別圖解

Fig.8 Tectonic discrimination diagrams for Kuzhong granite

圖9庫中花崗巖成因模式圖

Fig.9Petrogenetic model for Kuzhong granite

5 結(jié)論

1)LA-ICP-MS鋯石U-Pb定年結(jié)果表明庫中花崗巖成巖年齡為 (136.5±1.7)Ma ,形成于早白堊世。

2庫中花崗巖具有高硅、富堿、準(zhǔn)鋁質(zhì)—弱過鋁質(zhì)、大離子親石元素富集、高場(chǎng)強(qiáng)元素虧損及顯著Eu負(fù)異常,鋯石飽和溫度介于 之間,歸類為高分異鈣堿性I型花崗巖。鋯石 ≡Hf(Πt) 平均值為6.7,指示巖漿源區(qū)以新增生下地殼部分熔融為主。

3)庫中花崗巖形成于蒙古—鄂霍茨克洋閉合后的造山后伸展環(huán)境,疊加古太平洋板塊俯沖后撤引發(fā)的巖石圈減薄與軟流圈上涌。

參考文獻(xiàn)(References):

[1] 宮昀迪,李碧樂,李治華,等.大興安嶺北段小柯勒河花崗斑巖脈成因及地質(zhì)意義:鋯石U-Pb年齡、巖石地球化學(xué)及Hf同位素制約[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2021,51(6):1753-1769.Gong Yundi,Li Bile,Li Zhihua,et al.Petrogenesisand Geological Significance of Granite Porphyry Dikefrom Xiaokelehe in North Da Hinggan Mountains:Constraints from Zircon U - Pb Age,Geochemistryand Hf Isotopic Composition[J]. Journal of JilinUniversity(Earth Science Edition),2021,51(6):1753-1769.

[2] 梁琛岳,劉永江,李偉,等.大興安嶺北段伸展隆升樣式:來自科洛—嘎拉山韌性變形帶的證據(jù)[J].巖石學(xué)報(bào),2018,34(10):2873-2900.Liang Chenyue,Liu Yongjiang,Li Wei,et al. TheExtensional Uplift Style of North Part of the DaHingganMountains:Evidencesfrom DuctileDeformation ZoneofKeluo-Galashan[J]. ActaPetrologica Sinica,2018,34(10):2873-2900.

[3]Zhu M,Pastor-Galán D,Miao L,et al. Evidence forEarly Pennsylvanian Subduction Initiation intheMongol-Okhotsk Ocean from the Adaatsag Ophiolite(Mongolia)[J].Lithos,2023,436/437:106951.

[4]CognéV A,Jean-Pascal C,Harbert W P.Evolution ofthe Mongol-Okhotsk Ocean as Constrained by NewPalaeomagnetic Data from the Mongol-Okhotsk SutureZone,Siberia[J].Geophysical Journal International,2002,148(1):34-57.

[5]Zhai D G,Williams-Jones A E,Liu JJ,et al. TheGenesis of the Giant Shuangjianzishan Epithermal Ag- Pb- Zn Deposit,Inner Mongolia,Northeastern China[J].Economic Geology,2020,115(1):101-128.

[6]劉永江,馬永非,馮志強(qiáng),等.中亞造山帶東段古生代山彎構(gòu)造[J].地質(zhì)學(xué)報(bào),2022,96(10):3468-3493.Liu Yongjiang,Ma Yongfei, Feng Zhiqiang,et al.Paleozoic Orocline in the Eastern Central AsianOrogenic Belt[J]. Acta Geologica Sinica,2022,96(10):3468-3493.

[7]楊雅軍,楊曉平,江斌,等.大興安嶺中生代火山巖地層時(shí)空分布與蒙古一鄂霍茨克洋、古太平洋板塊俯沖作用響應(yīng)[J].地學(xué)前緣,2022,29(2):115-131.Yang Yajun,Yang Xiaoping,Jiang Bin,et al. SpatioTemporal Distribution of Mesozoic Volcanic Strata inthe Great Xing'an Range: Response to the Subductionof the Mongol-Okhotsk Ocean and Paleo-Pacific Ocean[J].Earth Science Frontiers,2022,29(2):115-131.

[8]梁琛岳,劉永江,宋志偉,等.黑龍江虎林雜巖變形樣式與時(shí)代:對(duì)中國(guó)東北東部早白堊世古太平洋板塊俯沖的啟示LJ」.巖石學(xué)報(bào),2020,36(3):685-702.Liang Chenyue,Liu Yongjiang,Song Zhiwei,et al.Deformation Pattern and Age of Hulin Complex inHeilongjiang Province:Implications for Subduction ofthe Palaeo-Pacific Plate during the Early Cretaceous,Eastern NE China[J]. Acta Petrologica Sinica,2020,36(3):685-702.

[9]Yang H,Ge WC,Yu Q,et al. Zircon U- Pb - HfIsotopes,Bulk-Rock Geochemistry and Petrogenesis ofMiddle to Late Triassic I- Type Granitoids in theXing’an Block,Northeast China:Implications forEarly Mesozoic Tectonic Evolution of the CentralGreat Xing’an Range[J]. Journal of Asian EarthSciences,2016,119:30-48.

[10]趙盼,徐備,陳巖.蒙古-鄂霍茨克洋:演化過程和最終閉合[J].中國(guó)科學(xué):地球科學(xué),2023,53(11):2541-2559.Zhao Pan,Xu Bei,Chen Yan.Evolution and FinalClosure of the Mongol-Okhotsk Ocean[J]. ScienceChina:Earth Sciences,2023,53(11):2541-2559.

[11]Khanchuk A,Didenko A N,Popeko L, et al.Structure and Evolution of the Mongol OkhotskOrogenic Belt[M]. Stuttgart: Borntraeger SciencePublishers,2015.

[12]陳志剛,李永勝,于曉飛,等.大興安嶺北段小柯勒河花崗斑巖地球化學(xué)、Hf同位素組成及鋯石U-Pb定年[J].地學(xué)前緣,2021,28(4):267-282.Chen Zhigang,Li Yongsheng,Yu Xiaofei, et al.Characterization of the Xiaokelehe Granite Porphyryin the Northern Great Xing’an Range[J]. EarthScience Frontiers,2021,28(4):267-282.

[13]高源,鄭常青,姚文貴,等.大興安嶺北段哈多河地區(qū)駱駝脖子巖體地球化學(xué)和鋯石U-Pb年代學(xué)[J].地質(zhì)學(xué)報(bào),2013,87(9):1293-1310.Gao Yuan, Zheng Changqing,Yao Wengui,et al.Geochemistry and Ziron U-Pb Geochronology of theLuotuobozi Pluton in the Haduohe Area in theNorthern Daxing'anling[J]. Acta Geologica Sinica,2013,87(9):1293-1310.

[14]Sun D Y,Gou J,Wang T H,et al. Geochronologicaland Geochemical Constraints on the Erguna MassifBasement, NE China-Subduction History of theMongol-Okhotsk Oceanic Crust[J]. InternationalGeology Review,2013,55(14):1801-1816.

[15]Tang J,Xu W L,Wang F,et al. Geochronology,Geochemistry, and Deformation History of LateJurassic-Early Cretaceous Intrusive Rocks in theMesozoic Tectonic Evolution of the Mongol-OkhotskOrogenic Belt[J]. Tectonophysics,2015,658:91110.

[16]Zorin Y A.Geodynamics of the Westemn Part of theMongolia Okhotsk Collisional Belt, Trans-BaikalRegion (Russia) and Mongolia[J]. Tectonophysics,1999,306:33-56.

[17]Yi Z,Liu Y,Meert JG. A True Polar WanderTrigger for the Great Jurassic East AsianAridification[J].Geology,2019,47:1112-1116.

[18] Sorokin A A, Zaika V A,Kudryashov N M. Timingof Formation and Tectonie Seting of PaleozoicGranitoids in the Eastern Mongol Okhotsk Belt:Constraints from Geochemical,U - Pb,and HfIsotope Data[J]. Lithos,2021,388:106086.

[19]Jahn B M,Capdevila R,Liu D Y. Sources ofPhanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical andNdIsotopic Evidence,and Implications for PhanerozoicCrustal Growth[J]. Journal of Asian Earth Sciences,2004,23(5):629-653.

[20]李宇,丁磊磊,許文良,等.孫吳地區(qū)中侏羅世白云母花崗巖的年代學(xué)與地球化學(xué):對(duì)蒙古-鄂霍茨克洋閉合時(shí)間的限定[J].巖石學(xué)報(bào),2015,31(1):56 -66.Li Yu, Ding Leilei, Xu Wenliang,etal.Geochronology and Geochemistry of Muscovitegranitein Sunwu Area,NE China: Lmplications for theTiming of Closure of the Mongol-Okhotsk Ocean[J].Acta Petrologica Sinica,2015,31(1): 56-66.

[21]Wang T,Guo L, Zhang L, et al. Timing andEvolutionofJurassic-CretaceousGranitoidMagmatisms in the Mongol-Okhotsk Belt andAdjacentAreas, NE Asia: ImplicationsforTransition from Contractional Crustal Thickening toExtensional Thinning and Geodynamie Setings [J].Journal of Asian Earth Sciences,2015,97(2):365392.

[22]Li Y,Xu W L,Tang J,et al. Geochronology andGeochemistry of Mesozoic Intrusive Rocks in theXingan Massif of NE China: Implications for theEvolution and Spatial Extent of the Mongol-OkhotskTectonic Regine[J]. Lithos,2018,304(4):57-73.

[23]Kravchinsky V A,Cogne J P,Harbert W P,et al.Evolution ofthe Mongol-Okhotsk OceanasConstrained by New Palaeomagnetie Data from theGeophysical Journal International, 20o2,148(3):34-57.

[24]Pei JL,Sun Z M,Liu J,et al. A PaleomagnetieStudy from the Late Jurassie Volcanics ( 155Ma) ,North China: Implications for the Width of Mongol-Okhotsk Ocean[J]. Tectonophysics,2011,510(4):370 -380.

[25] Yang Y T,Guo Z X, Song C C,et al. A Short-Livedbut Significant Mongol-Okhotsk Collisional Orogenyin Latest Jurassic-Earliest Cretaceous[J]. GondwanaResearch,2015,28:1096-1116.

[26]劉金龍,周永恒,吳瓊,等.內(nèi)蒙古扎蘭屯北部地區(qū)早白堊世酸性火山巖鋯石U-Pb 年代學(xué)和地球化學(xué)研究[J].地質(zhì)學(xué)報(bào),2019,93(12):3111-3124.Liu Jinlong, Zhou Yongheng, Wu Qiong, et al.Zircon U - Pb Geochronology and Geochemistry ofthe Lower Cretaceous Felsic Volcanic Rocks in theNorthern Zhalantun Region,Inner Mongolia[J]. ActaGeologica Sinica,2019,93(12):3111-3124.

[27]Ren Q, Zhang S,Wu Y,et al. New Late Jurassic toEarly Cretaceous Paleomagnetic Results from NorthChina and Southern Mongolia and Their Implicationsfor the Evolution of the Mongol-Okhotsk Suture[J].Journal of Geophysical Research: Solid Earth,2018,123(2): 370 -398.

[28]Deng C Z,F(xiàn)u A Z,Geng H Y,et al. Low- δ18 O andNegative δ199Hg Felsic Igneous Rocks in NE China:Implications for Early Cretaceous Orogenic Thinning[J]. Chemical Geology,2023,633:121569.

[29] Gao S,Chen W F,Ling HF,et al. A Latest JurassicA - Type Granite in the Middle of Inner Mongolia:Petrogenesis and Tectonic Implications[J]. Lithos,2021,394/395:106167.

[30]任永健,張成信,張明明,等.大興安嶺北段諾敏大山地區(qū)早白堊世侵入巖地球化學(xué)特征及其構(gòu)造意義[J].地質(zhì)論評(píng),2022,68(6):2103-2114.Ren Yongjian, Zhang Chengxin, Zhang Mingming,et al. Geochemical Characteristics andTectonicSignificance of Early Cretaceous Intrusions in theMount Nuomin Area, Northern Great HingganMountains[J]. Geological Review,2022,68(6):2103 -2114.

[31]Yang H,Ge W C, Zhao G C,et al. Early Permian-Late Triassic Granitic Magmatism in the Jiamusi-Khanka Massif, Eastern Segment of the CentralAsian OrogenicBeltand ItsImplications[J].Gonawana Kesearcn,zv1?,z/(4): I?uy -1?33.

[32]BiJH,Ge W C,Yang H,et al.Geochronology andGeochemistry of Late Carboniferous-Middle PermianI- and A- Type Granites and Gabbro-Diorites in theEastern Jiamusi Massif,NE China: Implications forPetrogenesis and Tectonic Setting[J]. Lithos,2016,266:213-232.

[33]Wilde S A, Zhou JB. The Late Paleozoic to MesozoicEvolution of the Eastern Margin of the Central AsianOrogenic Belt in China[J]. Journal of Asian EarthSciences,2015,113:909-921.

[34]Wu F Y, Sun D Y,Ge WC,et al. Geochronology ofthe Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):1 -30.

[35]Yarmolyuk V V,Nikiforov A V, Kozlovsky A M,etal. Late Mesozoic East Asian Magmatic Province:Structure, MagmaticSignature, FormationConditions[J].Geotectonics,2019,53(4):500 -516.

[36]于躍江,趙忠海,李新鵬,等.張廣才嶺北部早侏羅世花崗巖年代學(xué)、地球化學(xué)特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(4):1224-1247.Yu Yuejiang, Zhao Zhonghai,Li Xinpeng,et al.Geochronology,GeochemistryandGeologicalSignificance of Early Jurassic Granites in NothernZhangguangcaiMountains[J]. JournalofJilinUniversity(Earth Science Edition),2024,54(4):1224 -1247.

[37]Zhou J B,Li L. The Mesozoic Accretionary Complexin Northeast China: Evidence for the AccretionHistory of Paleo-Pacific Subduction[J]. Journal ofAsian Earth Sciences,2017,145:91-100.

[38]唐杰,許文良,王楓,等.古太平洋板塊在歐亞大陸下的俯沖歷史:東北亞陸緣中生代-古近紀(jì)巖漿記錄[J].中國(guó)科學(xué):地球科學(xué),2018,48(5):549-583.Tang Jie, Xu Wenliang, Wang Feng, et al.Subduction History of the Paleo-Pacific Slab BeneathEurasian Continent: Mesozoic-Paleogene MagmaticRecords in Northeast Asia[J]. Science China: EarthSciences,2018,48(5):549-583.

[39]Wang Z H,Ge W C,Yang H,et al. Petrogenesisand Tectonic Implications of Early Jurassic VolcanicRocks of the Raohe Accretionary Complex,NE China[J].Journal of Asian Earth Sciences,2Ol7,134:262-280.的制約[J].巖石學(xué)報(bào),2013,29(2):339-353.Xu Wenliang, Wang Feng, Pei Fuping, et al.Mesozoic Tectonic Reimes and Regional Ore FormingBackground in NE China: Constraints from Spatialand Temporal Variations of Mesozoic Volcanic RockAssociations[J]. Acta Petrologica Sinica,2013,29(2):339 -353.

[41]Guo F. Geological Records of the Pacific PlateSubduction in the Northeast Asian ContinentalMagin: An Overview[J]. Bulletin of MineralogyPetrology and Geochemistry,2016,35(6):1082-1092.

[42]崔玉斌,王凱,何付兵,等.大興安嶺北段奇力濱地區(qū)瑪尼吐組火山巖年代學(xué)、地球化學(xué)特征及其構(gòu)造意義[J].地質(zhì)學(xué)報(bào),2021,95(11):3301-3316.Cui Yubin,Wang Kai, He Fubing,etal.Geochronology and Geochemical Characteristics ofVolcanic Rocks from the Manitu Formation in theQilibin Area, Northern Great Xing'an Range and ItsGeological Significance [J]. Acta Geologica Sinica,2021,95(11):3301-3316.

[43]楊曉平,江斌,楊雅軍.大興安嶺早白堊世火山巖的時(shí)空分布特征[J].地球科學(xué),2019,44(10):32373251.Yang Xiaoping, Jiang Bin, Yang Yajun. Spatial-Temporal Distribution CharacteristicsofEarlyCretaceous Volcanic Rocks in Great Xing' an RangeArea[J]. Earth Science,2019,44(10):3237-3251.

[44]Vermeesch P. Isoplot R : A Free and Open Toolboxfor Geochronology[J]. Geoscience Frontiers, 2018,9(5):1479-1493.

[45]Sun S S,Medonough W F. Chemical and IsotopicSystematics of Oceanic Basalts: ImplicationsforMantle Composition and Processes [J]. GeologicalSociety of Special Publication,London,1989,42(1):313-345.

[46]Boynton W V. Cosmochemistry of the Rare EarthElements: Meteorite Studies[M]. Amsterdam:Elsevier,1984.

[47]Wan L,Lu C, Zeng Z,et al. Nature and Significanceof the Late Mesozoic Granitoids in the Southern GreatXing'an Range, Eastern Central Asian Orogenic Belt[J]. International Geology Review,2018,61(5):584-606.

[48] Miller C F,Mcdowell S M,Mapes R W. Hot andTemperatures ana Preservation ol Inneritance_j」.Geology,2003,31(6):529-532.

[49]曹錦山,張新遠(yuǎn),歐陽光文,等.松潘—甘孜造山帶南緣青海省秋智地區(qū)晚三疊世花崗巖體成因及構(gòu)造背景[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2025,55(2):483-502.Cao Jinshan, Zhang Xinyuan, Ouyang Guangwen, etal. Petrogenesis and Tectonic Setting of Late TriassieGranites in Qiuzhi Area,Qinghai Province, SouthernMargin of Songpan-Garze Orogenie Belt[J]. Journalof Jilin University (Earth Science Edition),2025,55(2):483-502.

[50]楊愛雪,呂水,許曼,等.冀東高家店巖體鋯石年代學(xué)和微量元素地球化學(xué)特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2025,55(2):503-524.Yang Aixue, Lu Shui, Xu Man, et al. ZirconChronologyandTraceElementGeochemicalCharacteristics and Their Geological Significance ofGaojiadian Pluton in Eastern Hebei Province,China[J]. Journal of Jilin University (Earth ScienceEdition),2025,55(2):503-524.

[51]葛文春,隋振民,吳福元,等.大興安嶺東北部早古生代花崗巖鋯石U-Pb 年齡、Hf同位素特征及地質(zhì)意義[J].巖石學(xué)報(bào),2007,23(2):423-440.Ge Wenchun, Sui Zhenmin, Wu Fuyuan, et al.Zircon U-Pb Ages,Hf Isotopic Characteristics andTheir Implications of the Early Paleozoic Granites intheNortheasternDaHingganMountains,Northeastern China [J]. Acta Petrologica Sinica,2007,23(2):423-440.

[52]Barboni M, Bussy F. Petrogenesis of MagmaticAlbite Granites Associated to Cogenetic A - TypeGranites: Na-Rich Residual Melt Extraction from aPartially Crystallized A - Type Granite Mush[J].Lithos,2013,177:328-351.

[53]于泓超,和鐘鏵,隋振民,等.大興安嶺中部塔爾氣中侏羅世碰撞后花崗質(zhì)巖石的確定及地質(zhì)意義[J].巖石學(xué)報(bào),2020,36(12):3721-3740.Yu Hongchao,He Zhonghua, Sui Zhenmin,et al.Determination and Geological Implication of theMiddle Jurassc Post-Colisional Granitoids in TaergiArea, Central Great Xing’an Range[J]. ActaPetrologica Sinica,2020,36(12):3721-3740.

[54]Chappell B W,White A JR. I- and S - TypeGranites in the Lachlan Fold Belt[J]. GeologicalSociety of America Special Papers,1992,272:1-26.巖體的成因及構(gòu)造意義:鋯石U-Pb 年代學(xué)、巖石地球化學(xué)的約束[J].現(xiàn)代地質(zhì),2025,39(3):728-751.Wu Xiaohe, Zhang Juquan,Duan Zhanzhan,et al.The Genesis and Tectonic Significance of JiandengIntrusive Rock in the Central North China Craton:Constraints from Zircon U- Pb Chronology andPetrogeochemistry[J].Geoscience,2025,39(3):728 -751.

[57]陳耀新,劉文恒,王凱興,等.甘肅青山堡中牌細(xì)粒花崗巖成因與構(gòu)造環(huán)境:鋯石U-Pb 年齡和全巖元素組成制約[J].現(xiàn)代地質(zhì),2024,38(1):170-182.Chen Yaoxin,Liu Wenheng,Wang Kaixing,et al.Petrogenesis and Tectonic ImplicationsoftheZhongpai Fine-Grained Granitein Qingshanbao,Gansu:Constraints from Geochemistry and ZirconU-Pb Chronology[J].Geoscience,2024,38(1):170 -182.

[58]Wu F Y,Sun D Y,Li H M.A- Type Granites inNortheasternChina:AgeandGeochemicalConstraints on Their Petrogenesis[J]. ChemicalGeology,2002,187:143-173.

[59]Eby G N. Chemical Subdivision of the A - TypeGranitoids: Petrogenetic and Tectonic Implications[J].Geology,1992,20(7):641-644.

[60]Tang J,Xu W L,Wang F,et al. Geochronology andGeochemistry of Neoproterozoic Magmatism in theErguna Massif, NE China: PetrogenesisandImplications forthe Breakupofthe RodiniaSupercontinent[J]. Precambrian Research,2013,224:597-611.

[61]Zhang Y T,Sun F Y,Wang S,et al.Geochronologyand Geochemistry ofLate Jurassic toEarlyCretaceous Granitoids in the Northern Great Xing'anRange,NE China: Petrogenesis and Implications forLate Mesozoic Tectonic Evolution[J]. Lithos,2018,312/313:171-185.

[62]符安宗,李成祿,石國(guó)明,等.黑龍江多寶山地區(qū)晚泥盆世A型花崗斑巖年代學(xué)、地球化學(xué)特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024,54(3):811-827.Fu Anzong, Li Chenglu, Shi Guoming, et al.Geochronology, GeochemistryandGeologicalProvince[J]. Journal of Jilin University(EarthScience Edition),2024,54(3):811-827.

[63]顧玉超,陳仁義,杜繼宇,等.大興安嶺南段黃崗梁地區(qū)早白堊世正長(zhǎng)花崗巖成因及構(gòu)造啟示:鋯石U-Pb 年齡、巖石地球化學(xué)和 Sr-Nd-Pb 同位素證據(jù)[J].地質(zhì)通報(bào),2025,44(1):91-116.Gu Yuchao, Chen Renyi,Du Jiyu,et al. Petrogenesisand Tectonic Implications of the Early CretaceousSyenogranite in Huanggangliang Area, SouthernGreat Hinggan Range: Evidence from Zircon U - PbAges,Petrogeochemistry and Sr - Nd- Pb Isotopes[J].Geological Bulletin of China,2025,44(1):91 -116.

[64]孫銘徽,李向雨,劉錦,等.華北克拉通遼東半島晚三疊世林家溝巖體的成因及構(gòu)造意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2025,55(3):826-842.Sun Minghui, Li Xiangyu, Liu Jin, etal.Petrogenesis and Geological Significance of the LateTriassic Linjiagou Pluton in Liaodong Peninsula,North China Craton[J]. Journal of Jilin University(Earth Science Edition),2025,55(3):826-842.

[65]武廣,陳衍景,孫豐月,等.大興安嶺北端晚侏羅世花崗巖類地球化學(xué)及其地質(zhì)和找礦意義[J].巖石學(xué)報(bào),2008,24(4):899-910.Wu Guang,Chen Yanjing, Sun Fengyue, et al.Geochemistry of the Late Jurassic Granitoids in theNorthern End Area of Da Hinggan Mountains andTheir Geological and Prospecting Implications [J].Acta Petrologica Sinica, 2008,24(4): 899-910.

[66]徐智濤,李萌萌,孫景貴,等.大興安嶺得耳布爾地區(qū)中侏羅世流紋巖成因及成巖地球動(dòng)力學(xué)背景[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53(3):866886.Xu Zhitao,Li Mengmeng, Sun Jinggui,et al.Genesis and Diagenetic Geodynamic Background ofMiddle Jurassic Rhyolites in Derbur Area,GreatXing'an Range[J]. Journal of Jilin University (EarthScience Edition),2023,53(3):866-886.

[67]Zhang J H,Gao S,Ge W C,et al. Geochronology ofthe Mesozoic Volcanic Rocks in the Great Xing’anRange, Northeastern China: ImplicationsforSubduction-InducedDelamination[J]. ChemicalGeology,2010,276(3): 144-165.

[68]尹志剛,張躍龍,杜玉春.大興安嶺北部早白堊世上庫力組流紋巖的地球化學(xué)特征及成因[J].吉林大學(xué)子報(bào)(地球忤字锨),乙013,43(3):7δ8-790.Yin Zhigang, ZhangYuelong, DuYuchun.Geochemical Characteristics and Tectonic Setting ofRhyolitesofthe Early CretaceousShangkuliFormation,North Daxing'anling[J]. Journal of JilinUniversity(Earth Science Edition),2013,43(3):788 -796.

[69]Yang J H,Wu F Y,Shao J,et al. Constraints on theTiming of Uplift of the Yanshan Fold and ThrustBelt,North China[J]. Earth and Planetary ScienceLetters,2006,246:336-345.

[70]Zhang N,Li G,Liu Z H,et al. Late MesozoicMagmatism and Tectonic Significance of the KeliheArea in the Northern Great Xing’an Range[J].Geological Journal,2021,57(3):1311-1336.

[71]Wu F Y,Jahn B M,Wilde S A,et al. HighlyFractionated I- Type Granites in NE China(Ⅱ):Isotopic Geochemistry and Implications for CrustalGrowth in the Phanerozoic[J].Lithos,2003,67(3/4):191-204.

[72]Whalen J B,Currie K L,Chappell B W. A - TypeGranites: Geochemical Characteristics,Discrimination and Petrogenesis[J]. Contributions toMineralogy and Petrology,1987,95(4): 407-419.

[73]王興安,徐仲元,劉正宏,等.大興安嶺中部柴河地區(qū)鉀長(zhǎng)花崗巖的成因及構(gòu)造背景:巖石地球化學(xué)、鋯石U-Pb同位素年代學(xué)的制約[J].巖石學(xué)報(bào),2012,28(8): 2647-2655.Wang Xing'an,Xu Zhongyuan,Liu Zhenghong,etal. Petrogenesis and Tectonic Setting of the K-Feldspar Granites in Chaihe Area,Central GreaterXing'anRange:ConstraintsfromPetro-Geochemistry and Zircon U- Pb Isotope Chronology[J].Acta Petrologica Sinica,2012,28(8): 2647 -2655.

[74]Ouyang H G, Mao J W,Santosh M,et al.Geodynamic Setting of Mesozoic Magmatism in NEChina and Surrounding Regions: Perspectives fromSpatio-TemporalDistributionPatternsofOreDeposits[J]. Journal of Asian Earth Sciences,2013,78:222-236.

[75]Wang F, Zhou X H, Zhang L C,et al. Late MesozoicVolcanism in the Great Xing'an Range (NE China) :Timing and Implications for the Dynamic Setting ofNE Asia[J]. Earth and Planetary Science Letters,2006,251(1/2):179-198.

[76]Wu F Y,Jahn B M,Wilde S A. Highly FractionatedI- Type Granites in NE China(I): Geochronologyand Petrogenesis[J]. Lithos, 2003,66: 241- 273.

[77]Zhao P,Jia Z H,Xu B,et al.Late Triassic InitialClosure of the Mongol-Okhotsk Ocean in the WesternSegment:ConstraintsfromSedimentological,Detrital Zircon Ages and Paleomagnetic Evidence[J].Gondwana Research,2024,125:110-129.

[78]Wei D, Jiang S H,Liu J,et al. Mesozoic MagmaticArc in East Asian Continental Margin Triggered byPaleo-Pacific Plate Subduction: ConstraintsfromGravity and Magnetic Anomalies[J]. Tectonophysics,2022,844:229625.

[79] Dong S W,Zhang Y Q,Zhang F Q,et al. LateJurassic-Early Cretaceous Continental Convergenceand Intracontinental Orogenesis in East Asia: ASynthesis of the Yanshan Revolution[J]. Journal ofAsian Earth Sciences,2015,114:750-770.

[80] WuFY , Zhao G C,Sun D Y,et al. The HulanGroup: Its Role in the Evolution of the Central AsianOrogenic Belt of NE China[J]. Journal of Asian EarthSciences,2007,30(3):542-556.

[81]吳華英,張連昌,周新華,等.大興安嶺中段晚中生代安山巖年代學(xué)和地球化學(xué)特征及成因分析[J].巖石學(xué)報(bào),2008,24(6):1339-1352.Wu Huaying,Zhang Lianchang,Zhou Xinhua,et al.Geochronology and Geochemical Characteristics ofLate Mesozoic Andesites in the Central Da HingganMountains,and Its Genesis [J]. Acta PetrologicaSinica,2008,24(6):1339-1352.

[82] Ji Z,Meng Q A,Wan C B,et al. GeodynamicEvolution of Flat-Slab Subduction of Paleo-PacificPlate:Constraints from Jurassic Adakitic Lavas inthe Hailar Basin,NE China[J].Tectonics,2019,38:4301-4319.

[83]Ouyang HG,Mao JW,Zhou Z H,et al. LateMesozoic Metallogeny AndintracontinentalMagmatism, Southern Great Xing'an Range,Northeastern China[J].Gondwana Research, 2015,27: 1153 -1172.

[84]Zhang FQ,Chen HL,Yu X,et al.Early CretaceousVolcanism in the Northern Songliao Basin, NEChina,andItsGeodynamicImplication[J].Gondwana Research,2011,19(1):163-176.

[85]Tian D X,Ge WC, Yang H,et al. Lower CretaceousAlkali Feldspar Granites in the Central Part of theGreatXing'anRange,NortheasternChina:Chronology, Geochemistry and Tectonic Implications

[J].Geological Magazine,2015,152(3):383-399.[86] 張連昌,陳志廣,周新華,等.大興安嶺根河地區(qū)早白堊世火山巖深部源區(qū)與構(gòu)造-巖漿演化:Sr-Nd-Pb-Hf同位素地球化學(xué)制約[J].巖石學(xué)報(bào),2007,23(11):2823-2835.ZhangLianchang,Chen Zhiguang,Zhou Xinhua,etal.Characteristics of Deep Sources and Tectonic-MagmaticEvolutionoftheEarly CretaceousVolcanics in Genhe Area,Da-Hinggan Mountains:Constraints of Sr - Nd - Pb - Hf IsotopicGeochemistries[J]. Acta Petrologica Sinica,2o07,23(11):2823-2835.

[87] 張興洲,劉洋,曾振,等.大興安嶺北部士 :130Ma 火山巖的地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2017,47(1):1-13.Zhang Xingzhou,Liu Yang,Zeng Zhen,et al.TheGeological Implications of ±130 Ma Volcanic Rocksin theNorthernDa Hinggan Mountains[J]. Journal ofJilin University(Earth Science Edition),2Ol7,47(1):1-13.

[88] Batchelor R A, Bowden P. PetrogeneticInterpretation ofGranitoid Rock Series UsingMulticationicParameters[J]. Chemical Geology,1985,48:43-55.

猜你喜歡
庫中白堊鋯石
勃利雙興銅礦床侵人巖年代學(xué)、巖石地球化學(xué)特征及巖石成因
遼西小孤山金礦床賦礦凝灰?guī)r的年代學(xué)、巖石地球化學(xué)特征及其地質(zhì)意義
棲霞西陡崖礦區(qū)侵入巖體鋯石 U-Pb年齡和氧同位素特征
尋龍中國(guó)
常綠闊葉林不同方式采伐32年后土壤種子庫特征
廣西植物(2025年6期)2025-07-28 00:00:00
主站蜘蛛池模板: 日韩大片免费观看视频播放| 性色生活片在线观看| 一级爱做片免费观看久久| 国产小视频网站| 国产成人av一区二区三区| 日韩AV无码免费一二三区| 国产裸舞福利在线视频合集| 亚洲一区二区精品无码久久久| 国产高清在线精品一区二区三区 | 老司机久久99久久精品播放| 熟妇人妻无乱码中文字幕真矢织江| 成人一区专区在线观看| 免费不卡视频| 一本大道香蕉中文日本不卡高清二区 | 亚洲成人精品| AV无码国产在线看岛国岛| 孕妇高潮太爽了在线观看免费| 亚洲国产精品日韩av专区| www.91中文字幕| 青青青亚洲精品国产| 久久大香香蕉国产免费网站| 久久精品视频一| 日韩最新中文字幕| 国产综合在线观看视频| 91免费观看视频| 国产jizz| 天天躁夜夜躁狠狠躁图片| 久精品色妇丰满人妻| 亚洲无码高清一区| 性欧美在线| 国产乱子伦视频在线播放| 72种姿势欧美久久久久大黄蕉| 被公侵犯人妻少妇一区二区三区| 精品一區二區久久久久久久網站| 国产高清毛片| 国产乱人伦偷精品视频AAA| 1级黄色毛片| 国产福利免费在线观看| 激情综合网激情综合| 麻豆精品在线播放| 女同久久精品国产99国| 国产成人艳妇AA视频在线| 成人福利在线免费观看| 四虎影院国产| 国产sm重味一区二区三区| 久久久久国产一区二区| 欧美日韩久久综合| 亚洲天堂视频网| 婷婷激情五月网| 国产成人亚洲精品蜜芽影院| 日韩欧美在线观看| 亚洲swag精品自拍一区| 日韩视频免费| 国产精品专区第1页| 影音先锋丝袜制服| 色成人综合| 免费国产在线精品一区| 99热这里只有精品5| 亚洲二三区| 精品乱码久久久久久久| 亚洲永久视频| 国产情侣一区二区三区| 国产精品亚洲片在线va| 亚洲精品大秀视频| 色吊丝av中文字幕| 国产H片无码不卡在线视频| 三上悠亚一区二区| 成人午夜网址| 九九免费观看全部免费视频| 污污网站在线观看| 亚洲三级片在线看| 这里只有精品在线播放| 九色在线观看视频| 亚洲欧美另类专区| 夜精品a一区二区三区| 在线人成精品免费视频| 欧美日本激情| 毛片国产精品完整版| 亚洲国产天堂久久九九九| 五月婷婷激情四射| 亚洲码一区二区三区| 欧美视频在线不卡|