中圖分類號:Q945.18 文獻標識碼:A DOI編碼:10.3969/j.issn.1006—6500.2025.07.001
Abstract:Mitogenactivatedproteininases(MPKs)arekeysignalregulatorsinplants,nvolediniticalphysiologicalpro suchasgrowthanddevelopment,stressresponses,andhormonesignal transduction.AsdownstreameffctorsintheMPKcascade, MPKsregulatedspecificsubstratesroughphosphorylation,preciselycontrolingvariousphysiologicalprocesseswithntell, enabling plants toapidlyrespondtoenvironmentalchangesandenhanceadaptability.Thisreviewsummarizedrecentresearchon plant MPKsandtheir interactions with substrates,analyzedtheactionmechanismsofrepresentativeMPKsandtheirimpactoplant physiologicalprocesss.DuetoteigconservationofMPKscrossdiferentplantspeies,thisresearchprovdesvuablerfereces for studies on other plants and offers new perspectives for further research on plant MPK signaling.
Key Words: plant; MPKs; MPK substrates; interactions; growth and development; stress response
絲裂原活化蛋白激酶(mitogen-activated proteinkinases,MPKs)級聯(lián)是細胞信號轉導中的一個重要途徑,在植物中廣泛參與調節(jié)多種生物學過程,包括生長發(fā)育、免疫反應以及環(huán)境脅迫等。MAPK通路由三類激酶組成:絲裂原活化蛋白激酶激酶激酶(MPKKKs)絲裂原活化蛋白激酶激酶(MPKKs)和絲裂原活化蛋白激酶(MPKs),其激活過程通過磷酸化逐級傳遞信息,最終引發(fā)細胞的生理反應[2-3]。MPK級聯(lián)通路通過激活下游激酶和底物,進一步傳遞信號并調控細胞內(nèi)的多種生物學過程,從而使植物能夠迅速響應外界環(huán)境變化,調整自身的生理狀態(tài),并提高適應能力。
近年來,MPK信號通路下游激酶與底物之間的相互作用逐漸成為研究的熱點。許多底物通過MPKs的磷酸化作用在植物的生長發(fā)育、免疫及應激反應中發(fā)揮重要作用。深人了解MPKs與特定底物的相互作用機制,對于揭示植物在應激反應和發(fā)育過程中的分子機制具有重要意義。特別是在農(nóng)業(yè)領域,研究MPK信號通路及其底物相互作用的機制,以期為提高植物抗逆性和改良作物性能提供新的思路和技術支持。本文旨在總結植物MPKs及其與底物相互作用的研究進展,并探討未來研究的方向。鑒于MPKs在不同植物物種中具有高度的保守性,這為其他植物的相關研究提供了重要的理論依據(jù),同時也為植物信號傳導領域的深人探索提供了新思路。
1植物MPKs的組成與分類
植物MPKs包含11個蛋白激酶亞結構域(I~
XI),其中結構域 VII 和VIII 的保守性尤為顯著。MPKs的激活依賴于上游激酶MPKKs對其活化環(huán)(T環(huán))中的Thr-X-Tyr(TXY)基序的磷酸化作用,該基序位于催化亞結構域VII和VIII之間。進一步研究表明,MPKKs的活性受MPKKKs調控,后者通過磷酸化MPKKs中的絲氨酸/蘇氨酸殘基激活MPKKs,從而形成MPKKKs-MPKKs-MPKs級聯(lián)信號通路。
根據(jù)磷酸化基序類型及系統(tǒng)發(fā)育分析,植物MPKs可分為 A,B,C,D 四個亞家族。其中,A、B、C亞家族成員均含有TEY(Thr-Glu-Tyr)磷酸化基序,而D亞家族則具有植物特有的TDY(Thr-Asp-Tyr)基序,且其C末端序列較長,與哺乳動物和酵母p38MPK同源性較高(如AtMPK8、AtMPK9)l6-8。擬南芥
20個MPK基因依據(jù)系統(tǒng)發(fā)育關系被劃分為4個亞家族:A亞型(AtMPK3/6/10)B亞型(AtMPK4/5/11/12/13)C亞型(AtMPK1/2/7/14)和D亞型(AtMPK8/9/15/16/17/18/19/20) Xin 等研究表明,A亞家族MPKs(如AtMPK3和AtMPK6)不僅參與植物免疫應答和非生物脅迫響應,還在生長發(fā)育調控中發(fā)揮重要作用[。Nagy等指出D亞家族成員AtMPK9表現(xiàn)出自激活特性,能夠通過自主磷酸化其TDY基序中的Thr和Tyr殘基實現(xiàn)不需要上游MPKK的激活。
Ichimura等和Mohanta等分別通過多物種比較和大規(guī)模序列分析建立了植物MPKs的分類體系,為相關研究提供了重要參考。表1列出了不同植物物種中MPKs基因的亞家族分類情況。
表1部分植物MPKs的分類和數(shù)量
Tab.1 Classification of MPKs in some plant species

2 MPKs與底物的相互作用
2.1MPKs—底物模塊在植物生長發(fā)育中的作用
在植物的生長發(fā)育過程中,MPKs與轉錄因子之間的相互作用已被證明是調節(jié)氣孔發(fā)育及花粉發(fā)育等過程的重要機制。以氣孔發(fā)育為例,MPK3/6已被證實能夠與SPCH和SCRM相互作用,從而調節(jié)氣孔的發(fā)育。其中SPCH是一種bHLH轉錄因子,在氣孔發(fā)育的起始階段發(fā)揮關鍵作用[28]。SCRM通過其雙分部位結構直接與MPK3/6結合,招募并調控
SPCH的磷酸化及降解,從而啟動氣孔分化過程2。此外,MPK3/6還通過磷酸化WRKY2/34轉錄因子,調控成熟花粉中脂質體的積累,進而影響花粉發(fā)育[30。最近有研究進一步揭示了MPK3/6與CPK5/CPK6的協(xié)同作用,兩者分別通過磷酸化WRKY33的不同位點,增強其轉錄活性和DNA的結合能力,共同調控花青素合成3,這在植物生長調節(jié)中起到重要作用。其中,MPK3/6磷酸化WRKY33的N端Ser位點對其功能具有重要影響。
除轉錄因子外,MPKs通過特異性磷酸化不同功能蛋白精確調控多個關鍵發(fā)育環(huán)節(jié)。研究表明,
MPK6通過雙重機制參與發(fā)育調控:一方面磷酸化生長素轉運蛋白PIN1蛋白的 Ser337 位點調控植株的分枝模式32,另一方面在生殖發(fā)育中通過磷酸化抑制磷脂酰肌醇激酶PIP5K6活性,降低PIP2水平,破壞花粉管頂端的膜轉運和膨壓調節(jié),最終導致花粉管極性生長缺陷,影響生殖過程[33]。同時,MPK3/6能通過磷酸化細胞極性蛋白BASL和信號支架蛋白MASS,建立氣孔譜系細胞的不對稱分裂模式,精確控制氣孔發(fā)育過程4。此外,MPK4不僅通過磷酸化微管結合蛋白 MAP65-1 維持細胞骨架動態(tài)平衡[35,還在保衛(wèi)細胞中通過其激酶活性參與氣孔免疫防御3,展現(xiàn)了該激酶的多效性調控特征。這些研究揭示了MPKs信號網(wǎng)絡通過差異化的磷酸化策略在植物發(fā)育中的多層次調控作用,如表2所示,系統(tǒng)地展示了MPKs與底物在植物各個發(fā)育階段中的具體功能。
表2MPKs與底物在植物生長發(fā)育中的作用 Tab.2Reported interactions between MPKs and Substrates in plant growth and development

2.2MPKs—底物模塊在植物生物脅迫中的作用
植物在生物脅迫條件下的防御機制也依賴于MPKs與轉錄因子的相互作用,不僅包括對免疫基因的調控,還涉及氣孔開閉、抗病性等多方面的免疫機制。例如,擬南芥CAMTA3作為植物免疫負調節(jié)劑的轉錄因子,在經(jīng)過MPK3/6磷酸化 flg22 處理后,會產(chǎn)生雙重作用:一方面使CAMTA3蛋白不穩(wěn)定,另一方面促進其從核到細胞質的轉運[42]。這表明CAMTA3在面對不同類型的脅迫時可能通過不同分子途徑調節(jié)植物的免疫反應。此外,MYB44通過與MPK3/6的啟動子結合,促進其表達,而激活后的MPK3/6可磷酸化MYB44并增強其轉錄活性,從而形成正反饋機制,增強植物對病原的免疫反應[43]。研究發(fā)現(xiàn),棉花中的Raf樣激酶GhRAF39_1能夠輔助調控GhMPK9磷酸化GhWRKY4Oa,被激活的GhWRKY40a可促進防御基因表達,并調節(jié)氣孔開閉,從而增強棉花對枯萎病的抗性[44]。在蘋果中,MdMPK3通過直接與MdWRKY17相互作用并磷酸化其特定殘基來調節(jié)MdWRKY17的活性,從而調控MdDMR6基因的表達,促進水楊酸(SA)的降解,降低對葉斑病的抗性[45]。
此外,MPK3和MPK6還能與多種功能性蛋白相互作用,通過多層次的調控網(wǎng)絡增強植物防御能力。研究表明,MPK3/6不僅磷酸化免疫反應相關蛋白 SGT1a/b 直接激活防御反應,從而顯著提高植物對青枯病的抗性4;還能通過正反饋調節(jié)磷酸化上游MPKKK5,放大防御信號47。MPK3通過特異性識別膜蛋白Exo70B2并調控其與自噬標記蛋白ATG8的相互作用,促進Exo70B2的自噬途徑降解[48,而MPK6則通過磷酸化修飾免疫調控蛋白AHL13的穩(wěn)定性,從而顯著提升植物免疫應答能力[4]。值得注意的是,水稻OsMPK6通過磷酸化OsEDR1的S861位點,促使其不穩(wěn)定化,從而解除對OsMPKK10.2的抑制作用,最終顯著增強對細菌性條斑病的抗性[50。這些發(fā)現(xiàn)揭示了MPK3/6通過多重分子機制協(xié)同增強植物抗病性的調控模式,為理解植物環(huán)境適應機制提供了新視角。
2.3MPKs—底物模塊在植物非生物脅迫中的作用
植物在非生物脅迫下的反應同樣與MPKs及其底物的相互作用密切相關。研究表明,MPK3/6作為該網(wǎng)絡的核心組分,通過特異性磷酸化不同底物來協(xié)調植物的脅迫響應。在鹽脅迫條件下,MPK3通過磷酸化修飾脂質轉運蛋白AZI1,調節(jié)其在細胞中的定位和穩(wěn)定性,從而影響植物對鹽脅迫的響應5]。同時,Yan等[52研究發(fā)現(xiàn)MPK3/6還通過負向調控轉錄因子ARR1/10/12的磷酸化水平并促進其降解,進而增強植物的耐鹽性。在干旱脅迫響應中,MPK3/6展現(xiàn)出多層次的調控功能。該激酶通過磷酸化轉錄抑制因子IAA15來調控側根發(fā)育動態(tài),使植物能夠優(yōu)化其根系構型以適應水分脅迫環(huán)境[53]。Wang等[54進一步研究表明,MPK3/6對IAA8/9的磷酸化修飾能夠增強這些蛋白的穩(wěn)定性,進而抑制生長素信號通路的活性,最終調節(jié)植物的干旱響應。這些發(fā)現(xiàn)不僅揭示了MPK3/6在不同非生物脅迫響應中的核心作用,更展現(xiàn)了植物MPKs與底物互作網(wǎng)絡實現(xiàn)環(huán)境適應的分子機制。
無論是在生物脅迫還是非生物脅迫的條件下,MPKs與底物的相互作用均通過適應性調控發(fā)揮關鍵作用。如表3所示,展示了MPKs與底物在植物生物脅迫和非生物脅迫中的作用,深入解析這些蛋白互作的結構基礎與功能效應,將為作物抗逆性改良提供新的分子靶點。
表3MPKs與底物在植物生物脅迫和非生物脅迫中的作用
Tab.3Reported interactions between MPKs and Substrates in plant responses to biotic and abiotic stress

2.4MPKs—底物模塊在植物激素信號傳導中的作用MPKs與底物的相互作用也在植物激素信號傳
導中發(fā)揮著關鍵作用。例如,在擬南芥中,MKK4/5激活MPK1/2,MPK1通過磷酸化NPR1,促進其單體
化,調節(jié)水楊酸(salicylicacid,SA)信號傳導與葉片衰老過程75。研究表明,MPK6能通過多重機制參與植物激素網(wǎng)絡調控:一方面,MPK6直接磷酸化PIN1蛋白以調控生長素極性運輸;另一方面,MPK3/6通過修飾ACS2/6活性影響乙烯生物合成。MPKs與底物的相互作用在激素信號傳導上展現(xiàn)出廣泛的交叉調控能力。
在水稻中,OsMPK6磷酸化OsWRKY53可增強其DNA結合和轉錄激活活性,這對其調節(jié)谷粒大小以及油菜素內(nèi)酯(brassinosteroids,BR)信號傳導至關重要78。此外,OsMPK6還可通過磷酸化其另一底物DST來增強其轉錄活性,刺激OsCKX2的表達,導致生殖分生組織中細胞分裂素積累減少,進而使每穗粒數(shù)減少[79]。在玉米中,ZmMPK6則通過磷酸化ZmWRKY104,調控脫落酸(abscisicacid,ABA)誘導的抗氧化防御功能,從而增強玉米的抗旱性,減輕干旱引起的氧化損傷[80。這些研究展示了MPKs在植物激素信號傳導中的多重作用,突顯了其在調節(jié)植物生長和應激反應中的復雜性。
表4MPKs與底物在植物激素信號傳導中的作用
Tab.4Reported interactions between MPKs and Substrates in plant hormone signaling pathways

3MPKs與底物的識別與鑒定
3.1MPKs識別底物的分子機制
MPKs與底物形成復合物時,必須依賴于特異性對接相互作用[82。MPKs底物的識別主要通過其結構上的特定氨基酸序列,以及磷酸化作用對底物功能的調節(jié)。作為脯氨酸引導的絲氨酸/蘇氨酸蛋白激酶,MPKs通過短小的MPK停泊位點與底物的結合83。MPKs的CD結構域位于催化結構域外的C末端,包含一簇帶負電荷的氨基酸殘基,有助于與底物N末端的D位點(含有堿性氨基酸殘基)結合[84。D位點是底物識別的關鍵,通常由一簇堿性殘基(如賴氨酸和精氨酸)以及一個疏水基序(如亮氨酸、異亮氨酸或纈氨酸)組成,這些氨基酸特征通過靜電和疏水相互作用增強底物與MPKs的結合親和力,并穩(wěn)定底物的結合5。Jiang等提出具有相似D位點結構的蛋白質可作為候選MPKs底物。這一特性不僅促進了MPK的底物特異性識別,也為底物的篩選和鑒定提供了重要的線索。
3.2MPKs底物的鑒定方法
篩選并鑒定MPKs底物是理解MPK信號功能和潛在機制的關鍵。當前,常用的技術包括酵母篩庫[87]、高通量蛋白質陳列[88]磷酸化蛋白質組學[89] .ATP-γ- S標記法親和純化與質譜聯(lián)用(AP-MS)鄰近標記與質譜結合(PL-MS)92I、MPK級聯(lián)特異性抑制劑 U0126[64] 等,這些技術通過檢測蛋白質相互作用、磷酸化水平或直接標記底物來識別MPKs的潛在底物,側重于大規(guī)模檢測和初步篩選。磷酸化蛋白質組學能夠廣泛捕捉磷酸化事件,但其操作較為復雜,且需要精密設備和大量時間。AP-MS和PL-MS方法也在捕捉底物篩選方面效果顯著,但它們無法直接提供底物的磷酸化位點信息,因此需要額外的磷酸化富集步驟進行進一步分析。
經(jīng)過大規(guī)模篩選方法能夠識別潛在的底物并確定其磷酸化位點,但無法提供對特定底物和MPKs相互作用的直接驗證。因此,在篩選之后,通常采用更為精確的驗證與功能確認方法進一步確認和細化MPKs與底物之間的相互作用。常見的方法包括酵母雙雜交(Y2H)、免疫沉淀(IP)、免疫共沉淀(Co-IP)尺寸排阻色譜(SEC)和雙分子熒光互補(BiFC)等技術[91-93]
隨著技術的不斷發(fā)展,新的方法如激酶客戶測定法(KiC)被提出,以提高底物識別的效率和準確性。KiC法結合了利用體外磷酸化反應和高分辨率質譜,能夠高效識別MPK激酶的底物,尤其適合進行大規(guī)模、高通量的底物篩選工作,從而顯著提高了篩選的速度和準確性,為底物篩選提供了有效的途徑。Bahk等成功應用此方法,識別了MPK3和MPK6的多個新底物。此外,磷酸化一抗壞血酸過氧化物酶鄰近標記技術(pAPEX)結合了鄰近標記和磷酸化富集,能夠在細胞內(nèi)空間特異性地標記MPKs的直接底物,并通過質譜分析精準確定磷酸化位點。pAPEX技術不僅提高了底物識別的特異性和準確性,而且操作較為簡便,具有更高的靈敏度和效率,為深入探討MPKs與底物的相互作用提供了新的方法和視角。Zhang等9通過結合pAPEX技術,成功識別了MAPK1和PKA的候選底物,并發(fā)現(xiàn)了C15orf39作為MAPK1的一個新底物。MPKs與底物的相互作用鑒定方法是一個多層次的過程,既包括大規(guī)模篩選,也需要細致的點對點驗證。隨著這些方法的不斷發(fā)展,未來我們將能更精準地揭示MPKs與其底物的復雜關系,推動植物信號傳導研究進入新階段。
4展望
盡管目前已有學者在擬南芥等模式植物中鑒定出部分MPK底物,未來的研究需要進一步關注不同植物種類間MPKs信號通路的異同與多樣性。隨著全基因組測序和磷酸化蛋白質組學技術的進步,這些方法將為更多MPK底物的鑒定提供有力支持。然而,該領域仍存在幾個關鍵挑戰(zhàn):首先,如何建立準確高效的MPK底物篩選體系以適應不同植物物種;其次,MPKs信號通路的復雜性和交叉調控仍然有待深入解析。此外,雖然已有研究揭示了部分MPK底物在植物生長發(fā)育和逆境響應中的作用,但對于不同植物中MPK底物功能差異的研究仍顯不足。未來需要開展跨物種比較研究,闡明植物MPK通路的物種特異性及其生物學意義。
MPK信號通路的研究不僅具有重要的理論價值,更具有廣闊的農(nóng)業(yè)應用前景。深入理解MPKs與底物的相互作用機制,將有助于開發(fā)新型植物抗逆調控策略,進而提高作物抗逆性和產(chǎn)量。因此,未來研究既要注重基礎理論的突破,也要重視成果轉化,推動農(nóng)業(yè)生物技術的發(fā)展。
參考文獻:
[1]FUSF,CHOUWC,HUANGDD,etal.Transcriptional regulation of arice mitogen-activated protein kinase gene, OsMAPK4,in response to environmental stresses[J].Plant
and Cell Physiology,2002,43(8):958-963.
[2] CHEONGYH,KIMKN,PANDEYGK,et al.CBL1, a calcium sensor that differentially regulates salt,drought, and cold responses in Arabidopsis [J].The Plant Cell,2003, 15(8): 1833-1845.
[3] RODRIGUEZ M C S,PETERSEN M, MUNDY J. Mitogen-activated protein kinase signaling in plants [J]. Annual Review of Plant Biology,2010,61: 621-649.
[4] HIRT H. Multiple roles of MAP kinases in plant signal transduction[J]. Trends in Plant Science,1997,2(1):11-15.
[5] TENA G,ASAI T, CHIU WL, et al. Plant mitogen-activated protein kinase signaling cascades[J].Current Opinion in Plant Biology,2001,4(5): 392-400.
[6]MORRISON D K.MAP kinase pathways[J]. Cold Spring Harbor Perspectives in Biology,2012,4(11): a011254.
[7] ZHANG M M,ZHANG SQ.Mitogen-activated protein kinase cascades in plant signaling[J]. Journal of Integrative Plant Biology,2022, 64(2): 301-341.
[8] Ichimura K,Shinozaki K,Tena G,et al. MAPK Group. Mitogen-activated protein kinase cascades in plants:a new nomenclature [J]. Trendsin Plant Science,2O02,7(7): 301-308.
[9] MOHANTA T K,ARORA P K,MOHANTA N,et al. Identification of new members of the MAPK gene familyin plants shows diverse conserved domains and novel activation loop variants[J]. BMC Genomics,2015,16(1): 58.
[10] XIN J,LI C L,NING K X,et al.AtPFA-DSP3,an atypical dual -specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity[J].Plant,Cellamp; Environment,2021,44 (5): 1534-1548.
[11] NAGY S K, DARULA Z, K?LLAI B M, et al. Activation of AtMPK9 through autophosphorylation that makes it Independent of the canonical MAPK cascades [J]. Biochemical Journal,2015,467(1): 167-175.
[12] CHEN L H,HU W,TAN SL,et al.Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon[J].PLoS One,2012, 7(10): e46744.
[13]LIANGWW,YANGB,YUBJ,etal.Identification and analysis of MKK and MPK gene families in canola (Brassica napus L.)[J]. BMC Genomics, 2013,14: 392.
[14]WANGJ,PAN CT,WANGY,etal.Genome-wide identification of MAPK,MAPKK,and MAPKKK gene familiesand transcriptional profilinganalysisduring development and stress response in cucumber[J].BMC Genomics,2015,16(1): 386.
[15]WFIWCHAI77YIFVC talRininfor
identificationand transcriptprofileanalysisofthe mitogen -activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca[J]. PLoS One, 2017,12(5):e0178596.
[16] YIN ZJ,ZHU WD,ZHANG X P,et al.Molecular characterization,expression and interaction of MAPK, MAPKK and MAPKKK genes in upland cotton [J]. Genomics,2021,113(1 Part 2): 1071-1086.
[17] MCNEECE BT, SHARMA K, LAWRENCE G W,et al. The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the Glycine max defense response to Heterodera glycines[J].Plant Physiology and Biochemistry,2019,137:25-41.
[18] ZHANG XY,WANGL M,XU XY,et al.Genome-wide identification of mitogen-activated protein kinase gene familyin Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton[J]. BMC Plant Biology,2014,14: 345.
[19] ZHANG S Z,XU RR,LUO XC,et al.Genome-wide identification and expression analysis of MAPKand MAPKK gene family in Malus domestica[J]. Gene,2013, 531(2): 377-387.
[20] LIUH,LIXY,HEF,etal.Genome-wideidentification and analysisof abiotic stress responsivenessof the mitogen-activated protein kinase gene family in Medicago sativaL.[J].BMC Plant Biology,2024,24(1): 800.
[21] ZHANG X T,CHENG T C,WANG G H, et al. Cloning and evolutionary analysis of tobacco MAPK gene family [J].Molecular Biology Reports,2013,40(2): 1407-1415.
[22] ROHILA J S,YANG Y N. Rice mitogen -activated protein kinase gene family and its role in biotic and abiotic stress response [J]. Journal of Integrative Plant Biology,2007, 49(6): 751-759.
[23] NICOLE M C,HAMEL L P,MORENCY MJ,et al. MAP -ping genomic organization and organ -specific expression profiles of poplar MAP kinases and MAP kinase kinases[J]. BMC Genomics,2006,7(1):223.
[24]KONG FL,WANGJ,CHENG L,et al.Genome-wide analysis of the mitogen -activated protein kinase gene family in Solanum lycopersicum [J]. Gene,2012,499(1): 108-120.
[25] LIAN W W, TANG Y M, GAO S Q, et al. Phylogenetic analysis and expression pattrns of the MAPK gene family inwheat (Triticum aestivumL.)[J].Journal of Integrative Agriculture,2012,11(8):1227-1235.
[26] CAKIR B,KILICKAYA O. Mitogen -activated protein kinase cascades in Vitis vinifera[J].Frontiers in Plant Science,2015,6:556. []L analysis of mitogen-activated protein kinase gene family in maize[J].Plant Molecular Biology Reporter,2013,31 (6): 1446-1460.
[28] LAMPARDGR,MACALISTERCA,BERGMANNDC. Arabidopsis stomatal initiation is controlled by MAPKmediated regulation of the bHLH SPEECHLESS [J]. Science,2008,322(5904): 1113-1116.
[29] PUTARJUNAN A,RUBLE J, SRIVASTAVA A,et al. Bipartiteanchoring ofSCREAMenforcesstomatal initiation by coupling MAP kinases to SPEECHLESS [J]. Nature Plants,2019,5(7): 742-754.
[30] ZHENGY P,DENG XX,QUAL,et al.Regulation of pollen lipid body biogenesis by MAPkinases and downstream WRKY transcription factors in Arabidopsis [J].PLoS Genetics,2018,14(12):e1007880.
[31]ZHOUJG,WANG XY,HEYX,et al.Differential phosphorylation of the transcription factor WRKY33 by theprotein kinasesCPK5/CPK6 andMPK3/MPK6 cooperativelyregulatescamalexinbiosynthesisin Arabidopsis[J]. Plant Cell,2020,32(8): 2621-2638.
[32] DORY M, HATZIMASOURA E,KALLAI B M,et al. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants[J]. FEBS Letters,2018,592(1):89-102.
[33]MENZEL W, STENZEL I,HELBIGL M,et al.A PAMPtriggeredMAPK cascadeinhibitsphosphatidylinositol 4,5-bisphosphate production by PIP5K6 in Arabidopsis thaliana [J].The New Phytologist,2019,224 (2):833- 847.
[34] XUE X Y,BIAN C,GUO X Y,et al. The MAPK substrate MASS proteins regulate stomatal development in Arabidopsis[J]. PLoS Genetics,2020,16(4): e1008706.
[35] ZHOU S,CHEN Q H,LI X Y,et al. MAP65 -1 is required for the depolymerization and reorganizationof cortical microtubules in the response to salt stress in Arabidopsis[J].Plant Science,2017,264:112-121.
[36] LIN CW,DAIDW,ZHAO GM, et al.Identification of MPK4 interacting proteins in guard cells[J]. Journal of Proteomics,2023,281:104903.
[37] ZHANG Y,GUO X Y,DONG J. Phosphorylation of the polarity protein BASL differentiates asymmetric cell fate through MAPKs and SPCH[J]. Current Biology,2016,26 (21): 2957-2965.
[38] ZHAO F,ZHENG Y F, ZENG T, et al.Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required foranther development[J]. PlantPhysiology, 2017 17374): 2265-2277
[39]BECK M,KOMISG,MULLERJ,et al.Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2and3 and mitogen -activated protein kinase 4 are essential for microtubule organization [J]. The Plant Cell, 2010,22(3): 755-771.
[40]LI S N,WANG W Y,GAO JL,et al. MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis [J].The Plant Cell,2016, 28(11): 2866-2883.
[41] SASABE M,SOYANO T,TAKAHASHI Y,et al. Phosphorylation of NtMAP65-1 by a MAP kinase downregulatesitsactivityofmicrotubulebundlingand stimulates progression of cytokinesis of tobacco cells [J]. Genes amp; Development,2006,20(8): 1004-1014.
[42]JIANGXY,HOEHENWARTERW,SCHEELD,etal. Phosphorylation of the CAMTA3 transcription factor triggers its destabilization and nuclear export [J].Plant Physiology,2020,184(2): 1056-1071.
[43] WANG FH, YANG F, ZHU D F,et al.MYB44 plays key roles in regulating plant responses to abiotic and biotic stress,metabolism,and development [J]. Journal of Plant Biochemistry and Biotechnology,2024,33(4):462- 473.
[44]MI X Y,LI W X,CHEN C,et al.GhMPK9 - GhRAF39_1-GhWRKY4Oa regulates the GhERF1b- and GhABF2 -mediated pathways to increase cotton disease resistance[J]. Advanced Science,2024, 11(29): 2404400.
[45] SHAN D Q,WANG C Y,ZHENG X D,et al. MKK4- MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple [J].Plant Physiology,2021,186(2):1202-1219.
[46]YU G,XIAN L,XUE H,et al.A bacterial effector protein prevents MAPK -mediated phosphorylation of SGT1 to suppress plant immunity [J].PLoS Pathogens, 2020,16(9): e1008933.
[47]WANG W, CHEN SL, ZHONG G T, et al. MITOGENACTIVATED PROTEINKINASE3enhances disease resistance of edrl mutants by phosphorylating MAPKKK5 [J].Plant Physiology,2024,194(1): 578-591.
[48] BRILLADA C, TEH O K,DITENGOU FA, et al.Exocyst subunit Exo7oB2 is linked to immune signaling and autophagy[J]. The Plant Cell,2021,33(2): 404-419.
[49]RAYAPURAM N, JARAD M,ALHORAIBI H M,et al. Chromatin phosphoproteomics unravels a function for AThook motif nuclear localized protein AHL13 in PAMPtriggeredimmunity[J].Proceedingsof the National Academy of Sciences of the United States of America, 2021,118(3): e2004670118.
[50]MA H G,LIJ,MA L,et al.Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raflike kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance[J]. Molecular Plant, 2021, 14(4): 620-632.
[51] PITZSCHKE A,DATTA S,PERSAK H. Mitogen - activated protein kinase -regulated AZI1 -an atractive candidate for genetic engineering [J]. Plant Signaling amp; Behavior,2014, 9(2): e27764.
[52]YANZW,WANGJX,WANGFX,etal.MPK3/6- induced degradation of ARR1/1O/12 promotessalt tolerance in Arabidopsis [J].EMBO Reports,2021,22 (10): e52457.
[53]KIM SH,BAHK S,NGUYEN N T,etal. Phosphorylation of the auxin signaling transcriptional repressor IAA15 by MPKs is required for the suppression of root development under drought stress in Arabidopsis [J].Nucleic Acids Research,2022,50 (18):10544- 10561.
[54] WANG C Y,LI X X, ZHAO H, et al. Mitogen
activated protein kinases 3/6 reduce auxin signaling via stabilizing indoleacetic acid -induced proteins 8/9 in plant abiotic stressadaptation [J]. International Journal of Molecular Sciences,2025,26(5): 1964.
[55] LATRASSE D, JeGU T,LI H C,et al. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity[J]. Genome Biology,2017,18(1): 131.
[56] FURLAN G, NAKAGAMI H, ESCHEN -LIPPOLD L, et al.Changes in PUB22 ubiquitination modes triggered by MITOGEN -ACTIVATED PROTEIN KINASE3 dampen the immune response [J]. The Plant Cell,2017,29(4): 726-745.
[57] DJAMEI A,PITZSCHKE A, NAKAGAMI H, et al. Trojan horse strategy in Agrobacterium transformation:abusing MAPK defense signaling [J]. Science,2007,318(5849): 453-456.
[58] SHEIKH A H, ESCHEN-LIPPOLD L, PECHER P, et al. Regulation of WRKY46 transcription factor function by Mitogen-Activated protein kinases in Arabidopsisthaliana [J].Frontiers in Plant Science,2016,7: 61.
[59] GUO HL,F(xiàn)ENGPQ,CHI W,et al.Plastid-nucleus communication involvescalcium -modulated MAPK signalling[J]. Nature Communications,2016,7(1):12173.
[60] LI FJ,CHENG C,CUI FH,et al.Modulation of RNA polymerase II phosphorylation downstream of pathogen perception orchestrates plant immunity [J]. Cell Host amp; Microbe,2014,16(6): 748-758.
[61] MENC X 7 XII I HF Y Xet al. Phnsnhorvlation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. The Plant Cell,2013,25(3):1126-1142.
[62] WANG F,SHANG YF,F(xiàn)AN BF,et al.Arabidopsis LIP5,apositiveregulatorofmultivesicularbody biogenesis,isa critical target of pathogen-responsive MAPK cascade inplant basal defense[J]. PLoS Pathogens,2014,10(7): e1004243.
[63] PECHER P, ESCHEN-LIPPOLD L,HERKLOTZ S, et al. TheArabidopsisthaliana mitogen -activated protein kinases MPK3 and MPK6 target a subclass of VQmotif'-containing proteins to regulate immune responses [J].New Phytologist,2014,203(2): 592-606.
[64] LIB,JIANG S,YU X,etal.Phosphorylation of trihelix transcriptional repressor ASR3byMAPKINASE4 negatively regulates Arabidopsis immunity [J]. The Plant Cell, 2015,27(3): 839-856.
[65] WANG D,CHAI G H,XU L,et al.Phosphorylation - mediated inactivation ofC3H14 by MPK4 enhances bacterial-triggered immunity in Arabidopsis [J].Plant Physiology,2022,190(3): 1941-1959.
[66] ZHANG ZB,LIU Y N,HUANG H,et al.The NLR protein SUMM2 senses the disruption of an immune signaling MAP kinase cascade via CRCK3 [J].EMBO Reports,2017,18(2):292-302.
[67]QIUJL,F(xiàn)IIL BK,PETERSENK,etal.Arabidopsis MAP kinase4 regulatesgene expressionthrough transcription factor release in the nucleus [J]. The EMBO Jourmal,2008,27(16): 2214-2221.
[68] ROUX M E, RASMUSSEN M W,PALMA K, et al. The mRNA decay factor PAT1 functions in apathway including MAP kinase 4 and immune receptor SUMM2[J]. The EMBO Journal,2015,34(5): 593-608.
[69] KANGS N,YANG F,LIL,et al.The Arabidopsis transcription factor BRASSINOSTEROID INSENSITIVE1- ETHYL METHANESULFONATE -SUPPRESSOR1 isa direct substrate of MITOGEN-ACTIVATED PROTEIN KINASE6 and regulates immunity [J]. Plant Physiology, 2015,167(3): 1076-1086.
[70]BETHKEG,UNTHANT,UHRIGJF,et al.Flg22 regulates the release ofan ethylene response factor substrate from MAP kinase6in Arabidopsis thaliana via ethylenesignaling[J].Proceedings of theNational Academy of Sciences of the United States of America, 2009,106(19): 8067-8072.
[71] VOLZ R,KIM S K,MI JN,et al. INDETERMINATEDOMAIN 4(IDD4) coordinates immune responses with plant-growth in Arabidopsis thaliana[J]. PLoS Pathogens, 2019, 15(1): e1007499.
[72] CHUJO T, MIYAMOTO K,OGAWA S,et al. Overexpression of phosphomimic mutated OsWRKY53 leads to enhanced blast resistance in rice [J].PLoS One, 2014, 9(6): e98737.
[73] LI N,YANG Z Y,LI J,et al.Two VQ proteins are substrates of the OsMPKK6 -OsMPK4 cascade inrice defense against bacterial blight[J].Rice,2021,14(1):39.
[74] JALMI S K,SINHA A K. Functional involvement of a mitogen activated protein kinase module,OsMKK3- OsMPK7-OsWRK30 in mediating resistance against Xanthomonas oryzae in rice[J]. Scientific Reports,2016,6 (1): 37974.
[75] ZHANG JJ, GAO J, ZHU Z, et al. MKK4/MKK5-MPK1/ MPK2 cascade mediates SA-activated leaf senescence via phosphorylation ofNPR1 in Arabidopsis[J].Plant Molecular Biology,2020,102(4/5): 463-475.
[76]RAVELO-ORTEGA G,LOPEZ -BUCIO J S,RUIZ - HERRERA L F, et al. The growth of Arabidopsis primary root isrepressed by severaland diverse amino acids through auxin -dependent and Independent mechanisms and MPK6 kinase activity [J].Plant Science,2O21,302: 110717.
[77]LI GJ,MENG X Z,WANG RG,et al.Dual -level regulation of ACC synthase activity by MPK3/MPK6 cascade and itsdownstream WRKY transcription factor during ethylene induction in Arabidopsis[J].PLoS Genetics,2012, 8(6): e1002767.
[78] TIANXJ,HE ML,MEI EY, et al.WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size[J]. The Plant Cell, 2021, 33(8): 2753-2775.
[79] GUO T,LU Z Q,SHAN J X,et al. ERECTA1 Acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade tocontrolspikeletnumberby regulating cytokinin metabolism in rice [J].Plant Cell,2020,32 (9):2763- 2779.
[80] ZHAOLL,YANJW,XIANG Y,et al.ZmWRKY104 transcriptionfactorphosphorylatedbyZmMPK6 functioning in ABA -Induced antioxidant defense and enhance drought tolerance in maize [J].Biology,2021,10 (9): 893.
[81]WANG C,HE X W,LIY Z,et al.The cotton MAPK kinase GhMPK2O negativelyregulatesresistanceto Fusarium oxysporum by mediating the MKK4-MPK20- WRKY40 cascade[J]. Molecular Plant Pathology,2018, 19(7): 1624-1638.
[82]TANOUET,ADACHI M,MORIGUCHI T,et al.A conserved docking motif in MAP kinases common to substrates,activators and regulators[J].Nature Cell Biology, 2000,2(2): 110-116.
[83]DOCZI R,BOGRE L. The quest for MAP kinase substrates:gaining momentum[J].Trendsin Plant Science, 2018,23(10): 918-932.
[84]ALEXA A,EMBERO,SZABOI,etal.Peptide based inhibitors of protein binding to the mitogen -activated protein kinase docking groove[J]. Frontiers in Molecular Biosciences,2021,8:690429.
[85]BARDWELLL,SHAHK.Analysis ofmitogen-activated protein kinase activation and interactionswith regulators and substrates[J].Methods,2006,40(3):213-223.
[86] JIANGM,ZHANGYZ,LIP,etal.Mitogen-activated protein kinase and substrate identification in plant growth and development [J]. International Journal of Molecular Sciences,2022,23(5):2744.
[87]BAI FW.The roles of the small pMEKK subfamily comprisingMAPKKK19,20 and 21 in Arabidopsis thaliana[D]. Montréal: Universitéde Montréal,2018.
[88]TRINHTB,XIAOQ,PEIDH.Profilingthesubstrate specificity of protein kinases by on-bead screening of peptide libraries[J].Biochemistry,2013,52(33):5645- 5655.
[89]KAUR P,ANAND A,BHAT A,et al.Comparative phosphoproteomic analysis unravelsMAPK1 regulated phosphoproteins in Leishmania donovani[J].Journal of Proteomics,2021,240:104189.
[90] CHI Y,CLURMAN B E. Mass spectrometry -based identificationofprotein kinasesubstratesutilizing engineered kinases and thiophosphate labeling[J].Current Protocols in Chemical Biology,2010,2(4):219-234.
[91]LEISSING F,MISCH N V,WANG X R,etal. Purification of MAP-kinase protein complexesand identification of candidate components by XL-TAP-MS [J].Plant Physiology,2021,187(4):2381-2392.
[92] KIMDI,BIRENDRA KC,ZHU WH,et al.Probing nuclearpore complex architecture with proximity dependentbiotinylation[J].Proceedingsofthe National Academy of Sciences of the United States of America, 2014,111(24):E2453-E2461.
[93]STRUKS,JACOBSA,SANCHEZ MARTIN-FONTECHA E,et al.Exploring the protein -protein interaction landscape in plants[J]. Plant,Cell amp; Environment,2019, 42(2):387-409.
[94]BAHK S,AHSAN N,ANJ,et al.Identificationof mitogen-activated protein kinases substrates in Arabidopsis usingkinaseclientassay[J].PlantSignalingamp;Behavior, 2024,19(1): 2326238.
[95] ZHANG T,F(xiàn)ASSL A,VAITES L P,et al. Interrogating kinase-substrate relationshipswith proximity labeling and phosphorylation enrichment [J].Journal ofProteome Research,2022,21(2):494-506.