中圖分類號:TN911.7;TB566 文獻標識碼:A文章編號:2096-4706(2025)16-0008-07
Research on Multi-scale Feature Extraction Methods for Underwater Acoustic Target Recognition
SUN Dan
(InnovationInstituteofEngineeringEducationandEngineeringCulture,Hunan InstituteofEngineering,Xiangtan 411104, China)
Abstract: Underwater acoustic target recognition is an important research topic in the field of underwater acoustic informationprocesing.Itsfeatureextractionandrecognitionfacechallengessuchascomplexunderwateracousticenvironment andvariabletargetfeatures.Inthispaper,theteoreticalbasis,algorithmimplementationandperformancecharactersticsoftwo multi-scale feature extraction methods basedon Mel-frequency Cepstral Coeffcients (MFCC)and Hilbert-Huang Transform (HHT)are analyzedin depth.Theresearch shows that the MFCCmethod realizes the nonlinear mapping through the auditory perception characteristics basedonthe Mel frequencyscaleand the short-time Fourier transform,and effectively expreses the spectral characteristicsof theunderwateracoustic signal.The HHTmethod is basedontheadaptive decompositionframework, whichcanaccuratelycapture the dynamiccharacteristicsofunderwateracoustic targets.Aimingat thespecialrequirements ofunderwater acoustic target recognition,this paper proposes optimization strategies such as parameter optimization based on time-frequencyresolution trade-offand componentscreening basedon energy-frequency distribution,and establishesa systematiccomparativeaalysis framework fromthreedimensionsofcomputationalcomplexityfeatureexpresionabilityand environmental adaptability, which provides a theoretical basis for the selection of methods in practical applications.
Keywords: underwater acoustic target recognition; feature extraction; MFCC; HHT; multi-scale analysis
0 引言
水聲目標識別是水聲信息處理領域的重要研究課題,對海洋資源開發、海域安全監測、水下目標探測等具有重要的現實意義。隨著海洋開發活動的日益頻繁和海洋安全形勢的日趨復雜,發展高效可靠的水聲目標識別技術已成為當前研究的重點和難點。
傳統的水聲目標識別方法主要依賴人工設計的特征提取算法,如線譜分析、包絡檢測等。這些方法在特定條件下取得了一定成效,但也存在明顯局限性:特征提取過度依賴專家經驗,難以全面捕捉復雜信號特征;固定的算法框架對環境變化適應性差,在復雜海況下性能顯著下降;處理大規模數據的能力有限,難以滿足實時識別需求;對信號的非平穩特性和非線性特征缺乏有效表達手段。
近年來,多尺度特征分析方法提供了新思路,其中,基于Mel頻率倒譜系數(MFCC)的方法借鑒了語音識別的成功經驗,通過模擬聽覺感知機制實現特征提取,具有抗低頻噪聲性能,可在一定程度上抑制低頻水下環境噪聲以突出目標信息[;基于希爾伯特-黃變換(HHT)的方法則提供了自適應的時頻分析框架,其數據驅動特性特別適合處理非平穩信號,為水聲目標的動態特征提取提供了有效工具。
本文系統分析了MFCC和HHT兩種多尺度特征提取方法的理論基礎、算法實現和性能特點。研究的邊際貢獻在于:深入分析兩種方法在水聲目標識別中的應用價值和內在機理;針對水聲信號特點提出基于時頻分辨率權衡的參數優化和基于能量-頻率分布的分量篩選等優化策略;建立從計算復雜度、特征表達能力和環境適應性三個維度的理論對比分析框架。這項研究不僅有助于深化對水聲目標特征提取理論的理解,為實際系統的特征選擇提供重要理論依據,同時通過優化設計研究,也為水聲目標識別系統的性能提升提供了新的技術途徑。
1水聲目標特征提取的相關研究
近年來,針對水聲目標識別的特殊需求,特征提取方法的研究主要沿著兩個方向發展。首先,基于聽覺感知機制的特征提取方法逐漸成為研究熱點。馬元鋒等[利用模擬人耳聲信號處理過程的CcGC濾波器組模型開展研究,結果表明聽覺特征在低信噪比條件下表現出優異的抗噪聲能力。Zhang等[3基于聲矢量傳感器的研究證實,MFCC特征及其微分特征可有效用于水下目標識別。連梓旭等[4以模仿人耳聽覺感知機理為基礎,提出的Gammatone頻率瞬時幅頻系數特征提取方法展現出較強的抗噪性能。吳晏辰等[5]的對比研究發現,GFCC 算法在海洋強干擾環境下具有更好的抗噪性和更高的目標識別率。
其次,基于經驗模態分解算法(EmpiricalModeDecomposition,EMD)的特征提取方法也備受關注。王鋒等[最早將HHT方法引入水聲信號處理中,提出HHT變換相比傳統方法,在處理非線性、非平穩的水下目標噪聲信號時具有顯著優勢。鞠東豪等[7]針對傳統經驗模態分解中的模態混疊問題,提出了基于變分模態分解的特征提取方法,通過自適應頻帶切割顯著提高了特征提取的準確性。Yang等[提出了基于完備集成經驗模態分解的選擇性噪聲輔助方法(CEEMDASN),該方法在分解信號時考慮了高頻間歇分量的影響,進一步改善了特征提取性能。Niu等[提出的選擇性噪聲輔助經驗模態分解方法(SN-EMD),通過判斷信號是否包含高頻間歇分量來決定是否添加輔助噪聲,在降低計算復雜度的同時保持了較好的分解性能。
考慮到水聲目標識別的實際需求,本文選擇MFCC和HHT兩種典型方法進行深入研究。MFCC方法基于聽覺感知原理,能高效提取頻譜特征且計算復雜度較低;HHT方法基于自適應分解框架,能精確捕捉信號的動態特性。這兩種方法在技術特點上形成互補,為水聲目標特征提取提供了完整的解決方案。下文將對這兩種方法的理論基礎、算法實現、特征屬性及優化策略進行深入分析,并通過系統的對比研究探討它們在不同應用場景下的適用性。
2 多尺度特征提取方法
2.1基于MFCC 的特征提取
基于Mel頻率倒譜系數(MFCC)的特征提取方法源于語音識別領域,其理論基礎主要建立在短時傅里葉變換和人耳聽覺感知特性之上[10]。短時傅里葉變換將時域信號轉換到頻域,為后續基于Mel頻率尺度的頻譜分析提供基礎。Mel尺度的引入模擬了人耳基底膜的非線性感知特性,在低頻段提供較高的頻率分辨率,而在高頻段則相對較低,這一特性與水聲目標的輻射噪聲能量主要集中于低頻段的特點高度吻合。
水聲目標輻射噪聲與語音信號的相似性為MFCC方法在水聲領域的應用奠定了基礎。兩類信號均來源于振動系統,具有復雜的發聲機制和顯著的時變特性。對于水聲目標而言,其輻射噪聲包含機械振動、螺旋槳噪聲等多種聲源的疊加。同態分析能夠有效分離這些聲源特征,而基于聽覺感知的非線性映射則可以突出目標的關鍵頻譜特征,從而為目標識別提供可靠的特征表達[1]。
2.1.1 算法原理
基于Mel頻率倒譜系數(MFCC)的特征提取算法通過一系列非線性變換,實現從物理頻率到聽覺感知頻率的映射。算法包含預處理、能量譜計算、Mel濾波、對數壓縮和離散余弦變換五個關鍵步驟,每個步驟均有其特定的理論依據和處理目標,具體如圖1所示。

預處理階段通過預加重和加窗分幀,確保信號的局部平穩性。預加重采用的一階高通濾波器為
,該濾波器利用差分運算補償高頻分量的衰減,這對于保持水聲目標高頻細節特征具有重要意義。隨后的Hamming窗函數分幀處理如式(1)所示:

Hamming窗的主瓣寬度和旁瓣衰減特性適合水聲信號分析,能夠有效減少頻譜泄漏并提高頻率分量的可分辨性[4,其時域波形如圖2所示。
圖2Hamming窗時域波形

能量譜計算首先通過短時傅里葉變換獲取頻譜特征,再對其平方得到信號的能量譜: P(f)=|X(f)|2 其中
, X(f) 為信號
的短時傅里葉變換結果。這一步將時域信號映射到頻域,為后續的聽覺特性分析奠定基礎。在水聲目標識別中,能量譜包含了機械振動、螺旋槳噪聲等關鍵特征信息。
Mel濾波是該方法最具特色的步驟,如圖3所示,其描述了聲音音調與頻率的關系。
圖3MeI頻率與實際頻率的關系

式(2)給出了Mel頻率與實際頻率的關系,體現了一種非線性轉換特性:

這種映射在低頻段具有較高的頻率分辨率,與水聲目標主要特征集中在低頻段的特點相吻合。濾波器輸出表示為:
,其中, Hi(n) 為第i 個濾波器, N 為信號的總長度。因此,這一步得到了帶通濾波器的能量輸出特征。
對數壓縮和離散余弦變換(DCT)完成從聽覺域到特征空間的最終映射。通過非線性對數關系對濾波器組的輸出進行壓縮,使得:(204號
,獲得能量特征向量,同時將乘性運算轉化為加性運算,為進一步的倒譜分析減少計算量。
最后通過DCT完成倒譜分析。DCT主要將特征信息集中在低階系數,并去除特征分量間的相關性。由于DCT的直流參數(第0階系數)對噪聲敏感,且考慮到水聲環境中持續存在的背景噪聲,一般去除該系數。MFCC計算公式如式(3)所示:
(3)
其中, M 為Mel濾波器組數。該公式提供靜態MFCC特征,而動態特征可通過求導獲得。
這種基于聽覺感知的特征提取方法,通過多步非線性變換實現了從原始信號到特征空間的有效映射,為水聲目標識別提供了理論完備、實現高效的特征提取方案。
2.1.2 特征屬性分析
MFCC方法在頻域特性方面,主要通過預加重和Mel濾波的組合增強特征的區分能力。其中,預加重采用高通濾波補償高頻分量的衰減,Mel濾波則基于聽覺感知特性調整頻率分辨率,使特征在關鍵頻帶上獲得更精細的表達。由于不同類型的水聲目標在頻譜特征上往往存在顯著差異,這種頻率域的自適應處理為目標識別提供了重要支持。
在對數壓縮環節引入的非線性變換具有雙重作用:一方面簡化了計算過程,另一方面增強了特征的魯棒性。水聲信號在傳播過程中常受到多徑效應和聲道特性變化的影響,而對數壓縮通過將信號的乘性關系轉換為加性關系,有效降低了特征對幅度變化的敏感度,從而提高了特征在復雜水聲環境中的穩定性。
離散余弦變換在特征表達方面實現了兩個目標:既保持了信息的完整性,又實現了緊致表達。它通過消除特征分量間的相關性,將信息集中到少量低頻系數中,不僅降低了計算開銷,也保留了信號的主要結構特征。特別值得注意的是,去除直流分量的處理能夠有效抑制背景噪聲的影響,進一步提高了特征的抗干擾能力。
MFCC方法雖表現出諸多優勢,但也存在一些固有局限性。首先,特征提取過程中的非線性變換可能掩蓋某些細微的區分信息;其次,靜態MFCC特征主要反映信號的短時譜特性,對于水聲目標輻射噪聲中的時變特征和調制特征的表達能力較為有限。因此,在某些應用場景下,可能需要引入其他特征提取方法作為補充。
2.1.3MFCC特征在水聲目標識別中的優化
在將MFCC特征提取方法應用于水聲目標識別時,需針對水聲信號的特點進行系統優化。基于水聲信號傳播理論和信號處理原理,這些優化主要圍繞水聲信號的低頻特征、頻譜分布特性和傳播損耗等特點展開。具體分析如下:
1)根據水聲信號的低頻特征優化預處理參數。根據時頻分辨率的不確定性原理(即Δt?Δf?1/4π, ),考慮到水聲目標輻射噪聲主要分布在低頻段( 1~500Hz ),為保證對最低頻率分量有足夠的分辨能力,幀長 T 需滿足 T?2/fmin ,其中 fmin 為需要分析的最低頻率。然而,過長的幀長會違背信號局部平穩的假設。因此,優化設計需要在這兩個約束條件下,選擇最優的幀長參數。
2)基于頻譜能量分布特性設計Mel濾波器組。由于水聲目標輻射噪聲的能量在低頻段呈現非均勻分布,濾波器的頻率響應需要相應調整,即
,其中 fci 為第 i 個濾波器的中心頻率, Δfi 為帶寬。中心頻率的分布遵循改進的Mel尺度變換,滿足
。帶寬選擇需考慮頻率分辨率與抗噪性能的平衡,采用,其中a 為帶寬系數,需根據實際信噪比條件優化。在低頻段采用較小的 a 值以提高分辨率,高頻段采用較大的a 值以增強抗噪性能。
3)結合傳播損失特性優化對數壓縮階段。水聲傳播損失包括擴展損失和吸收損失,表達式為 TL= 20log(r)+αr ,其中 r 為傳播距離, a 為吸收系數。對數壓縮函數需針對這種傳播損失特性進行設計,既要保持特征的區分性,又要實現有效的動態范圍壓縮。
4)通過分析信號能量分布和噪聲特性選擇DCT系數。DCT系數的能量分布滿足
。考慮到水聲環境中持續存在的背景噪聲主要影響直流分量和高階系數,需選擇合適的系數范圍以平衡特征表達能力和抗噪性能。實踐表明,去除直流分量并保留適量的低頻系數能夠獲得較好的特征表達。
2.2基于HHT的特征提取
希爾伯特-黃變換(HHT)是一種基于數據驅動的自適應時頻分析方法,其理論基礎建立在經驗模態分解和瞬時頻率分析之上[。與傳統時頻分析方法不同,HHT不依賴預設的基函數,而是根據信號本身特性進行自適應分解。這種方法打破了傳統傅里葉分析中基于調和函數分解的局限,為非線性和非平穩信號分析提供了新的理論框架。
經驗模態分解的理論基礎來源于振動理論和形態數學。任何復雜的振動都可以分解為一系列固有振動模態的疊加,每個模態代表了不同時間尺度的本征振蕩。這種分解方式與實際物理系統的振動特性相一致,因此具有明確的物理意義。同時,EMD分解過程采用了包絡分析的思想,通過形態學特征(極值點和過零點)來定義和提取特征模態,這使得分解結果能夠準確反映信號的內在結構。
希爾伯特變換的理論基礎源于復變函數理論。通過希爾伯特變換構造解析信號,可能定義實信號的瞬時頻率和瞬時幅度,這種局部化的頻率描述突破了傳統全局頻率概念的限制。在水聲目標識別中,這種理論優勢尤為重要,因為水聲目標的特征往往表現為時變的頻率調制特性。
這種基于數據驅動的自適應分析方法特別適合處理水聲目標信號。水聲目標輻射噪聲具有顯著的非平穩性和非線性特征,這來源于目標運動狀態的變化、海洋環境的復雜性以及多源噪聲的耦合作用。HHT方法通過自適應分解和瞬時頻率分析,能夠準確捕捉這些動態特征,為水聲目標識別提供了有效的特征提取工具。
2.2.1 算法原理
HHT方法的核心特點是其自適應性,這體現在兩個方面:一是經驗模態分解不依賴預設基函數,而是根據信號本身的特性進行分解;二是希爾伯特變換提供了信號的瞬時特性描述。這種自適應性使其特別適合處理水聲環境下的非平穩信號,能夠準確捕捉水聲目標輻射噪聲的動態特征。
EMD分解過程通過迭代方式提取IMF分量,每個IMF代表信號中的一個本征振蕩模式。IMF分量需滿足兩個基本條件:極值點數目與過零點數目相等或最多相差一個,且上下包絡線的均值近似為零。這種分解方式保證了所提取特征的物理意義,對于分析水聲目標的振動特性具有重要價值。具體的分解過程如下:
1)通過導數確定信號 x(t) 的所有極值點,采 用三次樣條插值構造信號的上下包絡線 xmax(t) 和 xmin(t) ,進而計算均值 e1(t)=[xmax(t)+xmin(t)]/2 9
2)將原始信號與均值之差定義為 h1(t)=x(t)- e1(t) 。當 h1(t) 不滿足IMF條件時,需將其作為新的輸入信號重復處理,即 h1k(t)=h1,k-1(t)-e1k(t) 。這一過程持續進行直至滿足IMF條件,從而得到第一個IMF分量。
3)為提取下一個IMF分量,需從原始信號中去除已獲得的IMF,得到殘差 r1(t)=x(t)-imf1(t) 。通過對殘差信號重復執行上述步驟,最終可得到信號的完整分解表達式:

其中, N 為IMF分量數, rN(t) 為殘余趨勢項。這種自適應分解方式的優勢在于能夠有效分離水聲目標的不同頻率成分,尤其在調制特征的提取方面表現突出。
4)完成EMD分解后,需對每個IMF分量進行希爾伯特變換以獲取其瞬時特性。通過變換可得到解析信號表達式:

其中, Ai(t) 為瞬時幅度, ωi(t) 為瞬時頻率。這些瞬時特性信息匯總后可構建Hilbert-H譜
,從而提供信號能量在時頻平面上的完整分布。這種時頻表示能夠精確描述水聲目標的動態特征變化,為目標識別提供了重要依據。
2.2.2 特征屬性分析
在多尺度分析方面,EMD分解能夠將信號分解為一系列IMF分量,每個分量均反映了信號中一定尺度的本征振蕩特征。這種分解方式具有三個顯著優勢:一是分解過程完全由信號本身的特性主導,無須預設任何基函數,因而能夠更準確地捕捉水聲目標的固有特征;二是所得到的IMF分量具有良好的正交性,使得不同尺度的特征能夠被有效分離;三是分解結果保留了信號的非線性特征,這對于分析包含復雜調制特征的水聲目標輻射噪聲尤為重要。
對每個IMF分量進行希爾伯特變換,可得到其瞬時幅度和瞬時頻率特征,這種時頻表示具有明確的物理意義。其中,瞬時幅度刻畫了不同振蕩模式的能量變化過程,瞬時頻率則反映了頻率的調制特征。通過這種精細的時頻描述,HHT方法能夠有效捕捉水聲目標的動態特征,尤其是螺旋槳調制效應和機械振動特征等關鍵信息。
在時頻分析能力上,Hilbert-H譜相比傳統方法具有更好的局部化特性,能夠更準確地描述信號能量在時頻平面上的分布規律。這種優勢使得HHT方法不僅能夠準確刻畫水聲目標輻射噪聲中的瞬態變化和頻率調制現象,其自適應帶寬特性還有助于在寬帶信號中識別窄帶分量。
當然,HHT方法也存在一些需要注意的問題:EMD分解過程可能出現模式混疊,導致單個IMF包含不同尺度的振蕩模式;端點效應可能引入偽跡;希爾伯特變換的數值實現可能帶來計算誤差。這些問題在處理復雜的水聲信號時需要采取相應的優化措施。
從整體來看,HHT方法通過完備的信號分解和精細的時頻表達,為水聲目標特征提取提供了一個全新的分析框架。EMD分解保留了信號的完整信息,而希爾伯特變換則賦予這些信息明確的物理含義。這種分析方法在處理非平穩和非線性信號時具有獨特優勢,為水聲目標識別提供了有力的技術支撐。
2.2.3HHT特征在水聲目標識別中的優化
在將HHT方法應用于水聲目標識別時,需針對水聲信號和水聲環境的特點進行系統優化。基于時頻分析理論和水聲信號特性,這些優化主要針對端點效應、IMF分量選擇和時頻分辨率等關鍵問題展開。具體分析如下:
1)利用信號延拓理論解決端點效應問題。由于水聲信號具有持續性和非平穩性的特點,在EMD分解過程中端點處的包絡線構造容易產生較大誤差。為解決這一問題,需設計信號延拓函數
,其中 wk(t) 為延拓基函數, ak 為待定系數。通過最小化端點處的不連續性
來確定最優的延拓參數,這種基于局部特征的延拓方法不僅能夠有效抑制端點效應,還避免了虛假頻率分量的引入。
2)根據目標特征分布特性進行IMF分量篩選。水聲目標輻射噪聲在時頻平面上表現出顯著的局部化特性,其能量分布直接反映了目標的物理特征。通過定義IMF分量的能量矩
和
,建立IMF分量的篩選準則 Si=
。該準則通過綜合考慮分量的能量貢獻和頻率特性,能夠有效識別包含目標特征的關鍵分量,同時過濾掉主要由背景噪聲構成的分量。
3)采用離散信號處理理論改進希爾伯特變換。針對水聲信號的采樣特性,設計了改進的希爾伯特變換
,其中 W(ω) 為優化設計的窗函數,用于抑制頻譜泄漏。在計算瞬時頻率時采用中心差分方法 ω(t)=[φ(t+Δt)- φ(t-Δt)]/(2Δt) ,這種實現方式顯著降低了離散計算帶來的誤差,提高了瞬時頻率估計的精度。
4)時頻分辨率的優化需適應不同頻率成分的特征尺度。通過定義時頻分辨率因子
并針對不同頻率范圍的目標特征自適應調整分析參數,使
在目標特征所在的時頻區域達到最優。
5)考慮到水聲環境的非平穩性,還引入了自適應閾值機制 θ(t)=μ+k?σ(t) ,其中 μ 為均值, σ(t) 為標準差, k 為調節系數。這種機制能夠根據信號的局部特性自動調整處理參數,從而提高了特征提取在復雜環境下的穩定性。
3特征提取方法的對比分析與應用
本節從計算復雜度、特征表達能力、環境適應性等維度對MFCC與HHT兩種方法進行深入比較,以進一步明確其在不同水聲信號特征提取任務中的適用性及性能差異。初步來看,兩種方法的差異如表1所示。
表1MFCC與HHT特征提取方法的對比分析

3.1計算復雜度對比分析
MFCC方法采用固定的變換序列進行特征提取,每個處理環節的計算量均可準確預估。短時傅里葉變換是其計算開銷最大的環節,對長度為 N 的信號幀,采用FFT實現時復雜度為 O(MogN) 。Mel濾波涉及 M 個濾波器的加權求和運算,復雜度為O(MN) 。對數壓縮和DCT變換的復雜度分別為 O(M) 和 O(MlogM) ,其中 M 為濾波器組數量。由于通常Mlt;
相比之下,HHT方法的計算復雜度主要來自
EMD分解和希爾伯特譜分析兩部分。EMD分解過程需要反復進行極值點檢測、樣條插值和均值計算,對于 M 個IMF分量,每個分量平均需要 K 次迭代,其復雜度為 O(MKN) 。希爾伯特變換通過FFT實現,處理 M 個IMF分量的復雜度為 O(MNlogN) 。此外,構建Hilbert-H譜還需要 O(MNPQ) 的運算量,其中P×Q 為時頻平面的分辨率。因此,HHT方法的總體計算復雜度為 O(MKN+MNlogN+MNP) 。這種較高的計算復雜度主要源于其自適應分解的迭代特性和完整時頻表示的構建需求。
兩種方法的復雜度差異主要體現在算法機制上。MFCC的確定性變換序列保證了穩定的計算效率,其復雜度主要由信號長度決定。而HHT的自適應分解機制使其計算量會隨信號的復雜程度和所需精度而變化,且同時受到IMF分量數和迭代次數的影響。在時頻分析環節,MFCC僅需一次FFT運算,而HHT需要對每個IMF分量進行希爾伯特變換并構建時頻能量分布,這進一步增加了計算負擔。
在實際應用中,計算復雜度的差異對方法選擇產生重要影響。對于實時處理要求高的場景,MFCC方法因其確定性和高效性更具優勢。而在對實時性要求不嚴格但需要精細特征分析的場景,HHT方法的較高計算開銷是可以接受的代價。此外,通過優化算法實現,如采用并行處理技術或改進的數值計算方法,可在一定程度上提升計算效率。特別是對于HHT方法,可通過優化迭代終止條件、選擇性計算部分IMF分量等策略來降低計算開銷,從而擴大其適用范圍。
3.2特征表達能力與環境適應性分析
從特征表達能力來看,MFCC方法通過模擬聽覺感知機制實現了頻率域的非線性映射。這種映射與水聲目標輻射噪聲的頻譜特性高度契合,特別是在低頻段獲得了較高的頻率分辨率,有效捕捉了水聲目標的主要特征信息。同時,對數壓縮和DCT變換的引入不僅實現了特征的降維,還增強了特征的魯棒性。通過去除特征分量間的相關性和直流分量,MFCC方法提供了穩定且緊湊的特征表達。然而,這種基于短時分析的方法在處理快速變化的非平穩信號時存在一定局限性,對于水聲目標的動態特征和調制特征的表達能力相對有限。
HHT方法則通過自適應分解和希爾伯特譜分析提供了信號的完整時頻表達。EMD分解根據信號本身的特性提取不同尺度的本征模態,這種數據驅動的特性使其能夠準確捕捉水聲目標的非線性特征。希爾伯特譜分析提供的瞬時幅度和瞬時頻率信息,實現了對目標動態特征的精細描述,如螺旋槳調制效應和機械振動特征。這種時頻聯合表達具有良好的局部化特性,能夠有效區分不同目標的細微特征差異。
在環境適應性方面,兩種方法采用了不同的策略應對水聲環境的復雜性。MFCC方法通過非線性變換增強了對環境變化的適應能力,對數壓縮降低了特征對信號強度波動的敏感性,DCT變換的選擇性處理減少了背景噪聲的影響。這些處理使得MFCC特征在一定程度上具備抗干擾能力。但在強噪聲環境下,由于其固定的處理框架,適應性會受到限制。
HHT方法則依靠其自適應分解特性實現了對環境變化的適應。EMD分解能夠自然地將信號中的噪聲成分分離到高頻IMF分量,而目標特征主要集中在中低頻IMF分量,這種自動的信噪分離特性使其在復雜噪聲環境下仍能保持較好的性能。然而,EMD分解中的端點效應和模式混疊問題可能影響特征的穩定性,需通過優化設計來增強其可靠性。
從實際應用角度看,兩種方法各有其適用場景。MFCC方法因其特征表達的穩定性和計算效率,適合處理相對平穩的水聲信號,尤其在實時性要求較高的場景下表現出優勢。而HHT方法則更適合處理具有顯著非平穩特性的復雜水聲信號,尤其是在需要精細時頻分析的場景中,其自適應分析能力能夠提供更可靠的特征表達。在實際系統設計中,可根據具體的應用需求和環境條件,選擇合適的特征提取方法,或考慮兩種方法的優勢互補,通過特征融合策略實現更好的識別效果。
4結論
本文從理論分析角度對水聲目標識別中的MFCC和HHT兩種多尺度特征提取方法進行了系統研究。研究表明,這兩種方法分別從不同角度為水聲目標特征提取提供了有效解決方案:MFCC方法通過Mel頻率尺度的聽覺感知模型和短時傅里葉變換高效提取頻譜特征,對低頻信號具有較高分辨率;HHT方法則依靠自適應分解框架精確捕捉非平穩信號的動態特性。針對水聲環境的復雜性,本文提出了基于時頻分辨率權衡的參數優化和基于能量-頻率分布的分量篩選策略,增強了特征提取方法在實際應用中的適應性。從應用角度看,兩種方法的選擇需根據具體場景需求進行權衡。對于實時性要求高或計算資源受限的場景,MFCC方法是較好的選擇;而在處理復雜非平穩信號或需要精細時頻分析的場景,HHT方法則能提供更可靠的特征表達。本研究為更深刻理解MFCC和HHT兩種多尺度特征提取方法在水聲目標識別中的應用機理和性能特點提供了有價值的參考。
參考文獻:
[1]張釔,熊水東,馬燕新,等.嵌入注意力機制的卷積神經網絡水聲目標識別[J].聲學技術,2022,41(6):796-803.
[2]馬元鋒,陳克安,王娜,等.聽覺模型輸出譜特征在聲目標識別中的應用[J].聲學學報:中文版,2009,34(2):142-150.
[3] ZHANGLY,WUD,HANX,et al.FeatureExtraction of Underwater Target Signal Using Mel FrequencyCepstrum Coefficients Based on Acoustic Vector Sensor[J/OL].Journal of Sens0rs,2016,2016(1):7864213[2025-01-03].https://doi.0rg/10.1155/2016/7864213.
[4]連梓旭,孫向前.基于Gammatone濾波器組與子帶瞬時頻率的水聲目標特征提取[J].聲學技術,2022,41(6):827-832.
[5]吳晏辰,王英民.基于Gammatone 頻率倒譜系數的艦船輻射噪聲分析[J].水下無人系統學報,2021,29(1):60-64.
[6]王鋒,尹力,朱明洪.基于Hilbert-Huang 變換的水聲信號特征提取及分類技術[J].應用聲學,2007(4):223-230.
[7]鞠東豪,李宇,張萬達,等.基于變分模態分解的水下目標噪聲特征提取及分類[J].聲學技術,2021,40(2):181-187.[8]YANGH,LILL,LIGH,et al.A Novel FeatureExtraction Method for Ship-Radiated Noise [J].DefenceTechnology,2022,18(4):604-617.
[9] NIU F,HUI J,ZHAO AB,et al. Application of SN-EMD in Mode Feature Extraction of Ship Radiated Noise [J/OL].Mathematical Problems in Engineering,2018,2018(1):2184612[2024-12-26].https://doi.org/10.1155/2018/2184612.
[10]張少康,田德艷.水下聲目標的梅爾倒譜系數智能分類方法[J].應用聲學,2019,38(2):267-272.
[11]潘曉英,馮天浩,孫乃葳,等.基于時頻聯合和加權決策的水聲目標識別方法[J].艦船科學技術,2024,46(1):137-142.
作者簡介:孫旦(1985一),男,漢族,湖南湘鄉人,副教授,博士,研究方向:深度學習、模式識別。