

摘要:根結(jié)線(xiàn)蟲(chóng)病作為世界范圍內(nèi)危害植物最為廣泛的土傳病害之一,給農(nóng)作物生產(chǎn)造成了巨大的經(jīng)濟(jì)損失。番茄作為新疆紅色支柱產(chǎn)業(yè),其設(shè)施生產(chǎn)飽受線(xiàn)蟲(chóng)病的侵害。目前,生產(chǎn)上對(duì)根結(jié)線(xiàn)蟲(chóng)病的防治多以化學(xué)防治為主,但藥劑的頻繁使用給生態(tài)環(huán)境帶來(lái)了巨大壓力。近年來(lái),生物防治的綠色可持續(xù)優(yōu)勢(shì)逐漸擴(kuò)大,但生防資源少、田間防治效果差異大等缺陷也掣肘了其應(yīng)用。優(yōu)質(zhì)基因資源的挖掘與利用,仍是從根本上解決番茄抗病的最佳策略。本文首先介紹番茄Mi基因家族中已發(fā)掘的10個(gè)成員在分子層面的研究進(jìn)展,闡釋番茄抗根結(jié)線(xiàn)蟲(chóng)病的現(xiàn)有分子機(jī)理;Mi基因可使用的抗源單一、抗病范圍有限及土壤溫度等條件的制衡,阻礙了優(yōu)質(zhì)番茄種質(zhì)的抗性改良,更多非R基因的挖掘變得尤為重要。WRKY轉(zhuǎn)錄因子在作物生物脅迫調(diào)控方面扮演重要角色,本文綜述近年來(lái)WRKY在作物防衛(wèi)根結(jié)線(xiàn)蟲(chóng)病方面的研究應(yīng)用,以期為后續(xù)番茄從不同層面并避免完全依賴(lài)Mi基因的抗病育種提供新思路。
關(guān)鍵詞:番茄;Mi基因;根結(jié)線(xiàn)蟲(chóng);WRKY轉(zhuǎn)錄因子
中圖分類(lèi)號(hào):S436.412.1+9" 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-1302(2025)04-0016-07
收稿日期:2024-04-08
基金項(xiàng)目:國(guó)家自然科學(xué)基金青年科學(xué)基金(編號(hào):32302652);新疆維吾爾自治區(qū)自然科學(xué)基金青年科學(xué)基金(編號(hào):2022D01B95)。
作者簡(jiǎn)介:陳銀霞(1996—),女,河南淮陽(yáng)人,碩士研究生,研究方向?yàn)榉逊肿舆z傳育種。E-mail:cyx61222@163.com。
通信作者:杜 崇,博士,碩士生導(dǎo)師,主要從事番茄分子遺傳育種研究。E-mail:godv2018@163.com。
根結(jié)線(xiàn)蟲(chóng)(root-knot nematodes,RKN)是一種專(zhuān)性植物寄生線(xiàn)蟲(chóng)。1855年,自Berkeley首次發(fā)現(xiàn)以來(lái),世界各地有關(guān)根結(jié)線(xiàn)蟲(chóng)病報(bào)道逐年增多,其中危害嚴(yán)重、分布較廣的有南方根結(jié)線(xiàn)蟲(chóng)(Meloidogyne incognita)、爪哇根結(jié)線(xiàn)蟲(chóng)(M. javanica)、花生根結(jié)線(xiàn)蟲(chóng)(M. arenaria)、北方根結(jié)線(xiàn)蟲(chóng)(M. hapla)。根結(jié)線(xiàn)蟲(chóng)體型小而透明,幼蟲(chóng)通常為細(xì)長(zhǎng)的蠕蟲(chóng)形態(tài),成蟲(chóng)雌雄異體,雌蟲(chóng)呈梨形狀,雄蟲(chóng)呈線(xiàn)狀。雌蟲(chóng)卵囊表面粗糙不平,通常呈棕褐色[1]。
RKN的寄主范圍廣泛,涉及114科3 000多種植物;研究發(fā)現(xiàn),蔬菜中的茄科、葫蘆科、十字花科等植物受害較為嚴(yán)重[2]。RKN每年造成世界農(nóng)作物平均減產(chǎn)24.5%,經(jīng)濟(jì)損失超過(guò)1 000億美元,給農(nóng)業(yè)生產(chǎn)造成了不小的沖擊[3]。番茄(Solanum lycopersicum L.)是對(duì)RKN最為敏感的作物之一,在我國(guó)新疆,特別是在伊犁哈薩克自治州、吐魯番市、烏魯木齊市、巴音郭楞蒙古自治州、阿克蘇地區(qū)的設(shè)施番茄生產(chǎn)上,RKN均普遍發(fā)生。番茄受侵染后,植株呈現(xiàn)矮小、發(fā)育不良的現(xiàn)象,果實(shí)品質(zhì)大幅下降,一般造成減產(chǎn)30%~50%,嚴(yán)重時(shí)可達(dá)80%,甚至絕收[4-5]。
目前,化學(xué)防治仍是應(yīng)對(duì)RKN的主要手段,但隨著毒性增大、生態(tài)環(huán)境嚴(yán)重污染、線(xiàn)蟲(chóng)抗藥性產(chǎn)生等問(wèn)題[6]凸顯,一些高毒性的殺線(xiàn)蟲(chóng)劑已被嚴(yán)禁使用。生物防治具有綠色環(huán)保且可持續(xù)等優(yōu)點(diǎn),逐漸成為作物病害防治的首選方法,但也存在可用生防資源少、田間防治效果參差不齊等缺點(diǎn)[7]。因此,通過(guò)尋找優(yōu)質(zhì)抗病(R)基因和非典型R基因進(jìn)行抗性改良,仍是從根本上解決作物抵御線(xiàn)蟲(chóng)入侵的最佳策略。
1 番茄抗根結(jié)線(xiàn)蟲(chóng)病Mi基因家族成員
Mi基因家族是番茄中抗RKN的主效基因家族,該家族中,一個(gè)名為Meloidogyne incognita-1(Mi-1)的顯性基因,定位于6號(hào)染色體上,于1941年被首先發(fā)現(xiàn)。Mi-1基因可誘導(dǎo)番茄對(duì)3個(gè)有絲分裂孤雌生殖群體(M. incognita、M. arenaria、M. javanica)產(chǎn)生較強(qiáng)的抗性,同時(shí)具有溫敏性,即土壤溫度高于28 ℃時(shí),Mi-1失去抗性。目前,Mi-1基因是唯一用于商業(yè)育種的R資源,其提供的抗性最早在番茄發(fā)芽2周后便被誘導(dǎo),并在番茄植株的葉、根中大量表達(dá)[8]。研究表明,野生番茄具有能夠在線(xiàn)蟲(chóng)抗性位點(diǎn)處發(fā)生變異的遺傳系統(tǒng),從而產(chǎn)生新的抗性指標(biāo)。在后續(xù)探索過(guò)程中,以Mi-1為首的其他Mi家族成員也相繼被發(fā)掘與鑒定。在鑒定出的10個(gè)抗源中,有7個(gè)(Mi-2、Mi-3、Mi-4、Mi-5、Mi-6、Mi-9、Mi-HT)基因表現(xiàn)出熱穩(wěn)定的抗性,即土壤溫度達(dá)到32 ℃,植株抗性仍存在[9],其余3個(gè)熱穩(wěn)定R基因均未被定位(表1)。
2 番茄抗根結(jié)線(xiàn)蟲(chóng)病的分子機(jī)制
植物與病原體之間的相互作用被概括為zigzag模型,這種先天免疫系統(tǒng),可以識(shí)別病原體相關(guān)分子模式(pathogen-associated molecular pattern,PAMP),從而觸發(fā)第1道免疫(PAMP-triggered immunity,PTI)[11],但部分病原體可積極抑制PTI,將病原效應(yīng)因子釋放到宿主植物中,而植物體內(nèi)特異性抗病蛋白(R)通過(guò)響應(yīng)此類(lèi)效應(yīng)子,觸發(fā)第2道防線(xiàn)——效應(yīng)子觸發(fā)免疫(effector-triggered immunity,ETI)[12]。在ETI中,抗體-病原相互作用有直接和間接2種模式(圖1)。直接方式取決于基因?qū)颍╣ene-for-gene)假說(shuō),在該模式下,番茄中相應(yīng)受體蛋白與線(xiàn)蟲(chóng)效應(yīng)子直接相互作用[13]。
根據(jù)Bakker等的理論,番茄抗性的遺傳與RKN致病能力均由成對(duì)的匹配基因所控制[14]。Mi基因可特異性地識(shí)別來(lái)自RKN中Avr基因編碼的效應(yīng)因子,這類(lèi)防御的表征之一是局部程序性細(xì)胞死亡(programmed cell death,PCD),最終導(dǎo)致超敏反應(yīng)(hypersensitive response,HR)[15]。線(xiàn)蟲(chóng)進(jìn)入番茄根部后,其Avr基因產(chǎn)生的效應(yīng)物以不親和互作的方式觸發(fā)Mi基因的表達(dá),因此沒(méi)有形成侵蝕位點(diǎn),從而阻礙巨型細(xì)胞的進(jìn)一步形成[16]。
另一種間接方式稱(chēng)為保護(hù)假說(shuō),該理論機(jī)制是由病原體效應(yīng)物觸發(fā)植物的毒力因子/蛋白,最終誘發(fā)R基因表達(dá)[17-18]。在這種情況下,線(xiàn)蟲(chóng)Avr基因與番茄輔助蛋白相互作用,導(dǎo)致該蛋白發(fā)生修飾,從而被NB-LRR(nucleotide binding-leucine rich repeat)型蛋白所識(shí)別。在RKN侵染時(shí),例如AvrB和AvrRpm1可磷酸化RIN4,AvrRpt2則通過(guò)自身的半胱氨酸蛋白酶活性降解RIN4,而作為樞紐的RIN4是多種毒力效應(yīng)因子的靶向,其磷酸化和降解可活化R蛋白活化RPM1和RPS2來(lái)介導(dǎo)防衛(wèi)反應(yīng)[19-20]。這種間接相互作用的最終結(jié)果同樣是通過(guò)抑制進(jìn)食部位的形成來(lái)防止線(xiàn)蟲(chóng)侵入[21]。
3 Mi基因家族成員研究進(jìn)展與利用
Mi-1基因首先在野生秘魯番茄中被發(fā)現(xiàn),隨后被引入到栽培番茄中,該基因?qū)?種典型的RKN均具有抗性[22]。到目前為止, Mi-1是番茄商業(yè)育
種中唯一的抗性來(lái)源,但存在溫敏性。Mi-1及其同源物分為2個(gè)簇,分別包括3、4個(gè)拷貝,間隔大概300 kb。1998年,在Mi位點(diǎn)發(fā)現(xiàn)了3個(gè)基因:Mi-1.1、Mi-1.2、Mi-1.3,但只有Mi-1.2基因具有對(duì)RKN的抗性。Mi-1.2基因全長(zhǎng)3 774 bp,編碼1 257個(gè)氨基酸,它的3個(gè)外顯子中有2個(gè)可以進(jìn)行翻譯,屬于典型的NBS-LRR基因,在NBS結(jié)構(gòu)域之前包含1個(gè)CC結(jié)構(gòu)域[23]。Mi-1位于6號(hào)染色體短臂上。在諸多茄科植物中,6號(hào)染色體上該區(qū)域是R基因的重要分布區(qū)[24]。
Mi-2基因是顯性基因,在30~32 ℃土壤溫度下秘魯番茄PI 270435和PI 126433品種中不僅表現(xiàn)出對(duì)南方根結(jié)線(xiàn)蟲(chóng)的熱穩(wěn)定抗性同時(shí)對(duì)北方根結(jié)線(xiàn)蟲(chóng)也具有抗性,目前為止,該基因仍未被定位[25]。Mi-4基因的研究相對(duì)較少,該基因同樣未被定位,秘魯番茄LA1708在32 ℃土壤溫度條件下,對(duì)花生根結(jié)線(xiàn)蟲(chóng)表現(xiàn)出抗性,這可能是由Mi-4行使功能所引起的[8]。Mi-5作為熱穩(wěn)定R位于12號(hào)染色體端粒區(qū),與Mi-3連鎖在一起表達(dá)。Mi-5、Mi-3均存在于1MH-clone PI126443中(表1),研究表明,在大多數(shù)涉及弱連鎖的條件下,這2個(gè)耐熱基因可能作為單個(gè)位點(diǎn)起作用[26]。Mi-6作為熱穩(wěn)定基因?qū)KN表現(xiàn)出較好的抗性,在3MH-clone PI270435中被發(fā)現(xiàn),與Mi-7之間存在弱連鎖關(guān)系,而Mi-7介導(dǎo)植株的抗性卻不表現(xiàn)出熱穩(wěn)定性[27]。Mi-8是2R2-clone PI270435中的顯性基因,和Mi-2存在弱連鎖關(guān)系,但與Mi-7一樣,為非熱穩(wěn)定抗源,可介導(dǎo)番茄植株在常溫下表現(xiàn)出對(duì)南方根結(jié)線(xiàn)蟲(chóng)的抗性[28]。
Mi-3、Mi-9是現(xiàn)在研究相對(duì)較多的抗病R基因。Mi-3基因的遺傳特性為單基因顯性遺傳,可在32 ℃土壤溫度條件下賦予對(duì)線(xiàn)蟲(chóng)的抗性。隨后發(fā)現(xiàn),盡管其純合子和雜合子均顯示出較強(qiáng)的抗性,但純合子的抗性要比雜合子更強(qiáng)。Yaghoobi等將Mi-3定位到番茄12號(hào)染色體短臂的端粒區(qū)域,并在Mi-3側(cè)翼標(biāo)記TG180、NR18之間發(fā)現(xiàn)1個(gè)600 kb的重疊群,其遺傳距離約為7.2 cM;在Mi-3已定位到的12號(hào)染色體的區(qū)域,發(fā)現(xiàn)在其他茄科植物上還分配了重要的R基因,包括馬鈴薯中針對(duì)胞囊線(xiàn)蟲(chóng)的R基因、辣椒中針對(duì)RKN的R基因Me3、Me4,以及抗黃瓜花葉病毒(CMV)的R基因。然而,很少有常用標(biāo)記在12號(hào)染色體上定位R基因,并且尚無(wú)更多信息可確認(rèn)Mi-3是否與這些R基因等位[29]。與Mi-3一樣,Mi-9為單基因顯性遺傳,在常溫條件下對(duì)南方根結(jié)線(xiàn)蟲(chóng)、爪哇根結(jié)線(xiàn)蟲(chóng)和茄生根結(jié)線(xiàn)蟲(chóng)3種常見(jiàn)的RKN都有較強(qiáng)的抗性。先前的研究表明,Mi-9不能有效抵抗可突破Mi-1基因抗性的重要RKN生理種。就RKN特異性而言,Mi-9與Mi-1的表達(dá)具有相同的作用與模式,但是表型鑒定的唯一區(qū)別是在土壤高溫下的穩(wěn)定抗性;Mi-9基因在土壤溫度32 ℃以上仍具有抗性。RNA沉默試驗(yàn)證實(shí)Mi-9是Mi-1的同源基因,Mi-9位于2個(gè)標(biāo)記(C32.1、C8B)之間的6號(hào)染色體的短臂上[30]。最新研究結(jié)果表示,通過(guò)納米孔(nanopore)長(zhǎng)讀長(zhǎng)、Illumina短讀長(zhǎng)、Hi-C 測(cè)序,對(duì)野生番茄LA2157進(jìn)行染色體水平的基因組組裝,結(jié)合文獻(xiàn)報(bào)道的Mi-9分子標(biāo)記REX-1、C8B,將7個(gè)候選基因定位在12.96 Mb的范圍內(nèi),而 NBS-LRR 基因主要分布在706 kb的區(qū)域內(nèi),最終通過(guò)RNAi挖掘到了Mi-9基因[31]。
Mi-HT被認(rèn)為是在番茄源ZN17中發(fā)現(xiàn)的1個(gè)新R基因,被定位在6號(hào)染色體短臂上,與Mi-1、Mi-9連鎖,具有較好的熱穩(wěn)定抗性[32]。
4 WRKY轉(zhuǎn)錄因子
WRKY轉(zhuǎn)錄因子(transcription factor,TF)是一類(lèi)DNA結(jié)合蛋白,作為T(mén)Fs中最大的轉(zhuǎn)錄因子家族之一,N端有一段由60個(gè)氨基酸組成的高度保守結(jié)構(gòu)域[33]。該結(jié)構(gòu)域包含1~2個(gè)WRKYGQK七肽序列,C端包含C2H2(CX4-5CX22-23HXH)或C2HC(CX7CX23HXC)型鋅指結(jié)構(gòu)[34-35]。WRKY通常分為三大類(lèi):第Ⅰ類(lèi)含有2個(gè)WRKY結(jié)構(gòu)域和1個(gè)C2H2型鋅指結(jié)構(gòu)[36];第Ⅱ類(lèi)只含1個(gè)WRKY結(jié)構(gòu)域和1個(gè)C2H2型鋅指結(jié)構(gòu),根據(jù)氨基酸序列特點(diǎn),Ⅱ類(lèi)WRKY蛋白又可分為a~e這5個(gè)亞類(lèi);第Ⅲ類(lèi)也只含1個(gè)WRKY結(jié)構(gòu)域,但鋅指結(jié)構(gòu)為C2HC型[37]。大多數(shù)WRKY屬于第Ⅱ類(lèi),第Ⅲ類(lèi)較多存在于高等植物中,為了反映WRKY的系統(tǒng)演化,也有將WRKY TF分為Ⅰ、Ⅱa+Ⅱb、Ⅱc、Ⅱd+Ⅱe和Ⅲ[38]。此外,WRKY TF中富含絲/蘇氨酸、谷氨酰胺、脯氨酸等,還含有TIR-NBS-LRR、激酶結(jié)構(gòu)域、亮氨酸拉鏈等其他組分[39]。
WRKY的N末端含有保守的七肽序列WRKYGQK,導(dǎo)致WRKY可特異性結(jié)合啟動(dòng)子區(qū)域內(nèi)W-box元件參與復(fù)雜的生物學(xué)途徑[40]?;诖颂卣鳎琖RKY可被MAPK級(jí)聯(lián)激活信號(hào)磷酸化修飾來(lái)調(diào)節(jié)PTI、ETI進(jìn)程;同時(shí),許多WRKY蛋白是SA-/JA-介導(dǎo)植物防御途徑中的共同組成部分,包括激活水楊酸(salicylic acid,SA)介導(dǎo)的系統(tǒng)獲得抗性(systemic acquired resistance,SAR)和茉莉酸(jasmonic acid,JA)介導(dǎo)的誘導(dǎo)系統(tǒng)抗性(induced systemic resistance,ISR)等[41];除此之外,WRKY還可以通過(guò)影響效應(yīng)蛋白形成復(fù)合體或直接調(diào)控R基因的表達(dá),來(lái)改變植物的抗病能力[42]。
5 WRKY轉(zhuǎn)錄因子調(diào)控植物抗RKN的研究進(jìn)展
近年來(lái),諸多WKRY蛋白在不同植物抗RKN過(guò)程中被相繼篩選與鑒定。前期利用轉(zhuǎn)錄組和蛋白組測(cè)序聯(lián)合分析接種南方根結(jié)線(xiàn)蟲(chóng)的豌豆材料發(fā)現(xiàn),防衛(wèi)網(wǎng)絡(luò)的核心集中在NBS-LRR、WRKY基因之間的相互作用,來(lái)激活R基因表達(dá),產(chǎn)生蛋白酶抑制劑并維持細(xì)胞骨架,從而阻止巨細(xì)胞的形成[43]。香蕉基因組共鑒定出153個(gè)WRKY基因,通過(guò)測(cè)序和接種試驗(yàn)發(fā)現(xiàn),WRKY52、-69、-92對(duì)RKN入侵表現(xiàn)出特異性表達(dá)[44-45]。通過(guò)對(duì)272份野生稻進(jìn)行RKN抗性鑒定,基于Affymetrix芯片分型SNP進(jìn)行全基因組關(guān)聯(lián)研究,在鑒定出的40份抗性種質(zhì)中,共篩出7個(gè)含有WRKY基因的QTL位點(diǎn),接種試驗(yàn)發(fā)現(xiàn)這些基因被顯著誘導(dǎo)上調(diào)表達(dá)[46]。利用RT-PCR對(duì)黃瓜材料9930侵染RKN的根系中分離到24個(gè)WRKY轉(zhuǎn)錄因子,通過(guò)qPCR發(fā)現(xiàn)8個(gè)WRKY基因上調(diào)表達(dá),2個(gè)WRKY下調(diào)表達(dá)[47]。野生番茄材料F5利用RNA-Seq技術(shù)分析,南方根結(jié)線(xiàn)蟲(chóng)侵染過(guò)程中15個(gè)WRKY家族差異表達(dá)明顯[48]。通過(guò)對(duì)秘魯番茄材料LA3858設(shè)置土壤溫度(25、34 ℃)形成抗感態(tài)進(jìn)行RNA-Seq,共76個(gè)WRKY基因被篩選,鑒定出6個(gè)目標(biāo)WRKY在接種南方根結(jié)線(xiàn)蟲(chóng)的植株根部高差異表達(dá),并且積極響應(yīng)并參與SA、JA、ROS信號(hào)的調(diào)節(jié)來(lái)介導(dǎo)抗病進(jìn)程[49-50]。這些成果為后續(xù)功能研究及分子標(biāo)記輔助育種提供了重要依據(jù)。
在具體功能鑒定方面,Warmerdam等在擬南芥中,通過(guò)T-DNA插入獲得WRKY19基因的突變體wrky19-1,在該突變體中,DSC1基因表達(dá)量嚴(yán)格下調(diào),進(jìn)一步研究發(fā)現(xiàn),dsc1-1突變體增強(qiáng)了對(duì)于 M. incognita 的敏感性,因此,WRKY19很可能正向調(diào)控DSC1的表達(dá)來(lái)改變植株的抗性[51]。CaWRKY30、CaWRKY6基因受非毒性M. incognita的誘導(dǎo)而上調(diào)表達(dá);CaWRKY6基因的沉默降低了辣椒對(duì)根結(jié)線(xiàn)蟲(chóng)的抗性,轉(zhuǎn)基因超表達(dá)CaWRKY30基因的番茄植株對(duì)南方根結(jié)線(xiàn)蟲(chóng)入侵的敏感性增大,植株的抗性降低[52]。Zhang等在茄子中,通過(guò)對(duì)抗性品種TG1轉(zhuǎn)錄圖譜進(jìn)行篩選,共9個(gè)WRKY基因差異表達(dá),qPCR驗(yàn)證發(fā)現(xiàn)WKRY75很可能參與TG1植株防衛(wèi)RKN的入侵[53]。辣椒CM-334對(duì)于RKN表現(xiàn)出較強(qiáng)抗性水平,這緣于WRKY1、WRKY-a的高量表達(dá),易感品種超表達(dá)上述基因,伴隨根系過(guò)氧化氫酶(CAT)活性增強(qiáng),綠原酸含量升高,從而導(dǎo)致植株對(duì)RKN的敏感性減弱[54]。在番茄中,WRKY72型轉(zhuǎn)錄因子SlWRKY72、SlWRKY73、SlWRKY74均積極調(diào)控著 Mi-1 介導(dǎo)的對(duì)RKN和馬鈴薯蚜蟲(chóng)的ETI過(guò)程[55]。Chinnnapanndi等研究發(fā)現(xiàn),SlWRKY45的超表達(dá)下調(diào)了JA、SA信號(hào)途徑中標(biāo)記基因(PR-1、Pin2)的表達(dá)[56]。Huang等進(jìn)一步研究發(fā)現(xiàn),SlWRKY45可特異性結(jié)合JA合成基因SlAOC的啟動(dòng)子,抑制其表達(dá),從而增強(qiáng)植株對(duì)根結(jié)線(xiàn)蟲(chóng)的易感性[57]。Chinnnapanndi等發(fā)現(xiàn),SlWRKY3、SlWRKY35在RKN感染后5 d內(nèi)的番茄根部攝食處被顯著誘導(dǎo),其中SlWRKY3在SA信號(hào)中積極響應(yīng),超表達(dá)和敲除SlWRKY3表明其正向調(diào)控番茄對(duì)M. javanica的抗性[58]。Nie等根據(jù) RNA-Seq 對(duì) Mi-3 番茄材料篩選出了目標(biāo)WRKY,根據(jù)組織特異性表達(dá)、根部表達(dá)模式鑒定及病毒誘導(dǎo)的基因沉默(VIGS)初步功能驗(yàn)證,挖掘到SlWRKY80在番茄防衛(wèi)RKN的入侵過(guò)程中可作為正調(diào)控因子參與抗病調(diào)控[59]。
6 研究問(wèn)題與展望
Mi基因家族作為番茄防衛(wèi)RKN的主效R基因,其使用存在一定的局限性。首先,Mi基因不是對(duì)所有類(lèi)型的RKN都起抗性作用。例如,象耳豆根結(jié)線(xiàn)蟲(chóng)(M. enterolobii)、M. hapla,尤其是 M. enterolobii,它的致病性強(qiáng),經(jīng)常突破番茄Mi-1基因和辣椒Me3、Me4基因介導(dǎo)的抗性[60]。除此之外,美國(guó)弗羅里達(dá)州首次發(fā)現(xiàn)的瑪雅古根結(jié)線(xiàn)蟲(chóng)(sM. mayaguensis)同樣可以讓Mi番茄植株產(chǎn)生致病態(tài)[61]。大多數(shù)線(xiàn)蟲(chóng)物種中,孤雌生殖為其主要繁殖方式,盡管孤雌繁殖會(huì)影響RKN物種數(shù)量,但物種內(nèi)部和物種之間針對(duì)的宿主范圍以及RKN本身的毒力存在顯著的波動(dòng)性,這就導(dǎo)致在不同外界因素干擾下,盡管抗性番茄(Mi)也會(huì)被RKN所感染[62]。溫度不但影響Mi的抗性,同時(shí)也影響RKN的侵染活力,前期研究表明,土壤溫度在不超過(guò) 27 ℃ 時(shí),RKN保持高效的入侵能力,而Mi-1基因在28 ℃土壤溫度條件下,抗性大幅減弱,導(dǎo)致植株的敏感性驟增呈感病態(tài)。Mi基因家族中,雖然大部分成員表現(xiàn)為熱穩(wěn)定抗性,但是現(xiàn)在唯一能利用商業(yè)育種的Mi-1卻呈現(xiàn)非熱穩(wěn)定性,掣肘了其高效的利用[63-64]。
番茄抗RKN的入侵仍然依賴(lài)于Mi基因,可利用抗源單一,其有效性也面臨著線(xiàn)蟲(chóng)種類(lèi)、毒力及外界因素等多重影響的挑戰(zhàn),因此,挖掘其他有價(jià)值基因?qū)τ诜逊N質(zhì)抵御RKN的抗性改良顯得尤為重要。WRKY蛋白作為植株中重要的轉(zhuǎn)錄因子家族,在抗病領(lǐng)域的研究也愈發(fā)深入,其對(duì)于抗病信號(hào)及進(jìn)程的調(diào)控功能在種質(zhì)抗性改良方面具有重要的研究和應(yīng)用價(jià)值。因此,育種人可以嘗試不依賴(lài)于R基因提高作物抗病能力的傳統(tǒng)策略,從轉(zhuǎn)錄調(diào)控層面及其他非典型R基因的發(fā)掘入手,完成番茄對(duì)RKN的抗性改良。本文可為今后番茄抗根結(jié)線(xiàn)蟲(chóng)病育種突破瓶頸提供新思路。
參考文獻(xiàn):
[1]Dong J X,Chen C H,Chen Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Molecular Biology,2003,51(1):21-37.
[2]Pereira-Carvalho R C,Boiteux L S,F(xiàn)onseca M E N,et al. Multiple resistance to Meloidogyne spp.and to bipartite and monopartite Begomovirus spp.in wild Solanum (Lycopersicon) accessions[J]. Plant Disease,2010,94(2):179-185.
[3]Barbary A,Djian-Caporalino C,Palloix A,et al. Host genetic resistance to root-knot nematodes,Meloidogyne spp.,in Solanaceae:from genes to the field[J]. Pest Management Science,2015,71(12):1591-1598.
[4]Aydnl G,Kurtar E S,Mennan S. Screening of Cucurbita maxima and Cucurbita moschata genotypes for resistance against Meloidogyne arenaria,M. incognita,M. javanica,and M. luci[J]. J Nematol,2019,51(1):1-10.
[5]蘆 屹,魏新政,李 晶,等. 新疆設(shè)施蔬菜根結(jié)線(xiàn)蟲(chóng)病調(diào)查診斷方法及綠色防控技術(shù)[J]. 中國(guó)農(nóng)技推廣,2020,36(6):63-65.
[6]Forghani F,Hajihassani A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Frontiers in Plant Science,2020,11:1125.
[7]Eder R,Consoli E,Krauss J,et al. Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita[J]. Plants,2021,10(2):394.
[8]Veremis J C,Roberts P A. Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence[J]. Theoretical and Applied Genetics,1996,93(5/6):950-959.
[9]Kaur P,Shukla N,Joshi G,et al. Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction[J]. PLoS One,2017,12(4):e0175178.
[10]El-Sappah A H,Islam M M,El-Awady H H,et al. Tomato natural resistance genes in controlling the root-knot nematode[J]. Genes,2019,10(11):925.
[11]Furumizu C,Sawa S. A rapid method for detection of the root-knot nematode resistance gene,Mi-1.2,in tomato cultivars[J]. Plant Biotechnology,2023,40(1):105-108.
[12]Caplan J L,Zhu X H,Mamillapalli P,et al. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants[J]. Cell Host amp; Microbe,2009,6(5):457-469.
[13]Sun T J,Lu Y,Narusaka M,et al. A novel pyrimidin-like plant activator stimulates plant disease resistance and promotes growth[J]. PLoS One,2015,10(4):e0123227.
[14]Bakker E G,Toomajian C,Kreitman M,et al. A genome-wide survey of R gene polymorphisms in Arabidopsis[J]. The Plant Cell,2006,18(8):1803-1818.
[15]Xiao K,Zhu H F,Zhu X,et al. Overexpression of PsoRPm3,an NBS-LRR gene isolated from myrobalan plum,confers resistance to Meloidogyne incognita in tobacco[J]. Plant Molecular Biology,2021,107(3):129-146.
[16]Bozbuga R,Lilley C J,Knox J P,et al. Host-specific signatures of the cell wall changes induced by the plant parasitic nematode,Meloidogyne incognita[J]. Scientific Reports,2018,8:17302.
[17]Nguyê~n P V,Bellafiore S,Petitot A S,et al. Meloidogyne incognita-rice (Oryza sativa) interaction:a new model system to study plant-root-knot nematode interactions in monocotyledons[J]. Rice,2014,7(1):23.
[18]謝政文,王連軍,陳錦洋,等. 植物WRKY轉(zhuǎn)錄因子及其生物學(xué)功能研究進(jìn)展[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2016,18(3):46-54.
[19]Russell A R,Ashfield T,Innes R W. Pseudomonas syringae effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation[J]. Molecular Plant-Microbe Interactions,2015,28(6):727-735.
[20]Alam M,Tahir J,Siddiqui A,et al. RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor,RPS2[J]. Plant Cell Reports,2021,40(12):2341-2356.
[21]Ngou B P M,Jones J D G,Ding P T. Plant immune networks[J]. Trends in Plant Science,2022,27(3):255-273.
[22]Forbes K M,Mappes T,Sironen T,et al. Food limitation constrains host immune responses to nematode infections[J]. Biology Letters,2016,12(9):20160471.
[23]Kalaiarasan P. Biochemical markers for identification of root knot nematode (Meloidogyne incognita) resistance in tomato[J]. Karnataka Journal of Agricultural Sciences,2009,22(3):471-475.
[24]Seah S,Williamson V M,Garcia B E,et al. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm [J]. Report of the Tomato Cenetics Cooperative,2007,57:37-40.
[25]Sandbrink J M,van Ooijen J W,Purimahua C C,et al. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs[J]. Theoretical and Applied Genetics,1995,90(3/4):444-450.
[26]Hwang C F,Bhakta A V,Truesdell G M,et al. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death[J]. The Plant Cell,2000,12(8):1319-1329.
[27]Yaghoobi J,Kaloshian I,Wen Y,et al. Mapping a new nematode resistance locus in Lycopersicon peruvianum[J]. Theoretical and Applied Genetics,1995,91(3):457-464.
[28]Hoseinpoor R,Kargar A. Evaluation of the effect powder and aqueous extracts of some plant species on tomato yield and reproduction of Meloidogyne incognita[J]. International Journal of AgriScience,2012,2:964-968.
[29]Yaghoobi J,Yates J L,Williamson V M. Fine mapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S.lycopersicum DNA contig spanning the locus[J]. Molecular Genetics and Genomics,2005,274(1):60-69.
[30]Jablonska B,Ammiraju J S S,Bhattarai K K,et al. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J]. Plant Physiology,2007,143(2):1044-1054.
[31]Jiang L J,Ling J,Zhao J L,et al. Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157 conferring heat-stable resistance to Meloidogyne incognita[J]. Plant Biotechnology Journal,2023,21(7):1496-1509.
[32]Afifah E N,Murti R H,Nuringtyas T R. Metabolomics approach for the analysis of resistance of four tomato genotypes(Solanum lycopersicum L.) to root-knot nematodes(Meloidogyne incognita)[J]. Open Life Sciences,2019,14:141-149.
[33]Eulgem T,Rushton P J,Robatzek S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[34]Rushton P J,Somssich I E,Ringler P,et al. WRKY transcription factors[J]. Trends in Plant Science,2010,15(5):247-258.
[35]任永娟,王東姣,蘇亞春,等. 植物WRKY轉(zhuǎn)錄因子:結(jié)構(gòu)、分類(lèi)、進(jìn)化和功能[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2021,29(1):105-124.
[36]Bakshi M,Oelmüller R. WRKY transcription factors:Jack of many trades in plants[J]. Plant Signaling amp; Behavior,2014,9(2):e27700.
[37]Rinerson C I,Rabara R C,Tripathi P,et al. The evolution of WRKY transcription factors[J]. BMC Plant Biology,2015,15:66.
[38]Chen L G,Song Y,Li S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta,2012,1819(2):120-128.
[39]Jiang J J,Ma S H,Ye N H,et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology,2017,59(2):86-101.
[40]Wani S H,Anand S,Singh B,et al. WRKY transcription factors and plant defense responses:latest discoveries and future prospects[J]. Plant Cell Reports,2021,40(7):1071-1085.
[41]Kim C Y,Vo K T X,Nguyen C D,et al. Functional analysis of a cold-responsive rice WRKY gene,OsWRKY71[J]. Plant Biotechnology Reports,2016,10(1):13-23.
[42]Mahiwal S,Pahuja S,Pandey G K. Review:structural-functional relationship of WRKY transcription factors:unfolding the role of WRKY in plants[J]. International Journal of Biological Macromolecules,2024,257(Pt 2):128769.
[43]Ribeiro D G,Mota A P Z,Santos I R,et al. NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode[J]. Journal of Proteomics,2022,261:104575.
[44]Kaliyappan R,Viswanathan S,Suthanthiram B,et al. Evolutionary expansion of WRKY gene family in banana and its expression profile during the infection of root lesion nematode,Pratylenchus coffeae[J]. PLoS One,2016,11(9):e0162013.
[45]Castaeda N E N,Alves G S C,Almeida R M,et al. Gene expression analysis in Musa acuminata during compatible interactions with Meloidogyne incognita[J]. Annals of Botany,2017,119(5):915-930.
[46]Hada A,Dutta T K,Singh N,et al. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola[J]. PLoS One,2020,15(9):e0239085.
[47]張雅涵. 黃瓜根結(jié)線(xiàn)蟲(chóng)取食位點(diǎn)早期形成相關(guān)WRKY基因的分離與分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2011.
[48]陸秀紅,黃金玲,覃麗萍,等. 番茄響應(yīng)南方根結(jié)線(xiàn)蟲(chóng)侵染相關(guān)轉(zhuǎn)錄因子的初步分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2024,43(1):62-69.
[49]Du C,Jiang J B,Zhang H,et al. Transcriptomic profiling of Solanum peruvianum LA3858 revealed a Mi-3-mediated hypersensitive response to Meloidogyne incognita[J]. BMC Genomics,2020,21(1):250.
[50]Du C,Shen F Y,Li Y,et al. Effects of salicylic acid,jasmonic acid and reactive oxygen species on the resistance of Solanum peruvianum to Meloidogyne incognita[J]. Scientia Horticulturae,2021,275:109649.
[51]Warmerdam S,Sterken M G,Sukarta O C A,et al. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita[J]. BMC Plant Biology,2020,20(1):73.
[52]鄭井元. 辣椒WRKY轉(zhuǎn)錄因子CaWRKY6和CaWRKY30基因的克隆、表達(dá)及功能分析[D]. 長(zhǎng)沙:中南大學(xué),2012.
[53]Zhang M,Zhang H Y,Tan J,et al. Transcriptome analysis of eggplant root in response to root-knot nematode infection[J]. Pathogens,2021,10(4):470.
[54]Villar-Luna H,Reyes-Trejo B,Gmez-Rodríguez O,et al. Expression of defense genes and accumulation of capsidiol in the compatible interaction Cm334/Nacobbus aberrans and incompatible Cm334/Meloidogyne incognita[J]. Nematropica,2015,45(1):9-19.
[55]Bhattarai K K,Atamian H S,Kaloshian I,et al. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1[J]. The Plant Journal,2010,63(2):229-240.
[56]Chinnapandi B,Bucki P,Miyara S B. SlWRKY45,nematode-responsive tomato WRKY gene,enhances susceptibility to the root knot nematode;M.javanica infection[J]. Plant Signaling amp; Behavior,2017,12(12):e1356530.
[57]Huang H,Zhao W C,Qiao H,et al. SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato[J]. Horticulture Research,2022,9:uhac197.
[58]Chinnapandi B,Bucki P,F(xiàn)itoussi N,et al. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways[J]. Plant Signaling amp; Behavior,2019,14(6):1601951.
[59]Nie W D,Liu L L,Chen Y X,et al. Identification of the regulatory role of SlWRKYs in tomato defense against Meloidogyne incognita[J]. Plants,2023,12(13):2416.
[60]Kiewnick S,Dessimoz M,F(xiàn)ranck L. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars[J]. Journal of Nematology,2009,41(2):134-139.
[61]Brito J A,Stanley J D,Mendes M L,et al. Host status of selected cultivated plants to Meloidogyne mayaguensis in Florida[J]. Nematropica,2007,37(1):65-72.
[62]Wang Y,Bao Z L,Zhu Y,et al. Analysis of temperature modulation of plant defense against biotrophic microbes[J]. Molecular Plant-Microbe Interactions,2009,22(5):498-506.
[63]Iberkleid I,Ozalvo R,F(xiàn)eldman L,et al. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel[J]. Phytopathology,2014,104(5):484-496.
[64]de Brida A L,Correiaé C S D S,Castro B M C E,et al. Oat,wheat,and Sorghum genotype reactions to Meloidogyne incognita and Meloidogyne javanica[J]. Journal of Nematology,2017,49(4):386-389.