劉鴻志
摘要從學生解題錯誤的現象出發,分析錯誤原因,提出減少錯誤的方法,從而闡明了如何正確對待學生在解題過程中出現的錯誤的問題。
關鍵詞 中學數學;解題;錯誤;態度
中圖分類號:G623.5文件標識碼:A文章編號:1671-489X(2007)02-0018-02
How to Look on Students' Mistake in Solving A Problem//Liu Hongzhi
Abstract From the phenomena of mistake in solving a problem, the paper analyzes the cause of error, advances the method of cutting down mistake, sets forth how to solve the problems accordingly.
Key words middle school math; solve a problem; mistake; attitude
Author's address Yue Yang Hongyi Middle School, Yueyang, Hunan 414000
學生在解題過程中,常常會出現錯誤。因此,對錯誤進行系統的分析是非常重要的.教師可以通過錯誤來發現學生的不足,從而采取相應的補救措施。錯誤從一個特定的角度揭示了學生掌握知識的過程;錯誤對于學生來說也是不可或缺的,是學生在學習過程中對所學知識不斷嘗試的表現。本文就初中學生數學解題錯誤作簡要分析。
1 對待學生解題錯誤的態度
在初中數學教學中,教師害怕學生出現解題錯誤,對錯誤采取嚴厲禁止的態度是司空見慣的.在這種懼怕心理支配下,教師只注重教給學生正確的結論,而不注重揭示知識形成的過程,害怕啟發學生進行討論會得出錯誤的結論.長此以往,學生只接受正確的知識,對錯誤的出現缺乏心理準備,看不出錯誤或看出錯誤就是改不過來.持這種態度的教師只關心學生能夠運用知識,而忽視學生會用知識.
事實上錯誤是正確的先導、成功的開始。學生所犯錯誤及其對錯誤的認識,是學生知識寶庫的重要組成部分。筆者至今仍然對學生時代的一節數學課記憶猶新。
當時老師講過a2-b2=(a+b)(a-b)后,讓我們自己分解x4-y4.很快大家就做完了。老師一邊巡視一邊督促檢查。但在最后教師宣布只有1人做對時,我們都感到非常吃驚。我們把x4-y4分解為(x2+y2)(x2-y2)錯在哪里呢?做對同學的答案是(x2+y2)(x+y)(x-y),兩相對照,我們發現原來x2-y2還可以繼續分解。于是,分解因式要進行到每個因式都不能再分解為止給每個同學都留下了深刻的印象。由此也可以看出,利用學生典型錯誤并進行正確誘導會收到良好的教學效果。
教師對待錯誤的懼怕心理和嚴厲態度轉變為承受心理和寬容態度是十分有意義的。因為數學學習實際上是不斷地提出假設,修正假設,使學生對數學的認知水平不斷復雜化,并逐漸接近成熟的過程。學生在教師教學過程中學到的不僅僅是正確的結論,而且領略了探索、調試的過程,這對學生的解題過程會產生有益的影響,使學生學會分析發現、改正錯誤.教師具備這樣的承受心理與寬容態度,才會耐心尋找學生解題錯誤的原因,并做出適當的處理。
2 學生解題出錯誤的原因
學生順利正確地完成解題,表明其在分析問題,提取、運用相應知識的環節上沒有受到干擾或者說克服了干擾,若在某個環節上不能排除干擾,就會出現錯誤.就初中學生解題錯誤而言,造成錯誤的干擾來自以下兩方面:一是小學數學的干擾,二是初中數學前后知識的干擾.
2.1 小學數學的干擾
在初中一開始,學生學習小學數學形成的某些認識會妨礙他們學習代數初步知識,使其產生解題錯誤. 例如,在小學數學中,解題結果常常是一個確定的數.受此影響,學生在解答下述問題時出現混亂與錯誤.原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設m為第n排的座位數,那么m是多少?求a=20,n=19時,m的值.學生在解答上述問題時,受結果是確定的數的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡.
又如,學生習慣于算術解法解應用題,這會對學生學習代數方法列方程解應用題產生干擾.例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經過多少小時相遇?),列出的"方程"為x=360/48+72.由此可以看出學生拘泥于算術解法的痕跡.而初中需要列出 48x+72x=360 這樣的方程,這表明學生對已知數和未知數之間的相等關系的把握程度.
2.2 初中數學前后知識的干擾
隨著初中知識的展開,初中數學知識本身也會前后相互干擾。 例如,在學有理數的減法時,教師反復強調減去一個數等于加上它的相反數,因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數和,又要強調把3-7看成正 3與負7之和,“-”又成了負號。學生不禁產生到底要把“-”看成減號還是負號的困惑.這個困惑不能很好地消除,學生就會產生運算錯誤。
又如,了解不等式的解集以及運用不等式基本性質3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數以及方程的解是一個數有關。事實也證明,把不等式的有關內容與等式及方程的相應內容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內容。
3 減少學生解題出錯的方法
學生不能順利正確地完成解題,產生解題錯誤,表明其在解題過程中受到干擾。因此,減少學生解題錯誤的方法是預防和排除干擾。為此,要抓好課前、課內、 課后三個環節。
3.1課前準備要有預見性
預防錯誤的發生,是減少初中學生解題錯誤的主要方法。講課之前,教師如果能預見到學生學習本課內容可能產生的錯誤,就能夠在課內講解時有意識地指出并加以強調,從而有效地控制錯誤的發生。例如,講解方程x/0.7-(0.17-0.2x)/0.03=1之前,要預見到本題要用分式的基本性質與等式的性質,兩者有可能混淆,因而要在復習提問時準備一些分數的基本性質與等式的性質的練習,幫助學生弄清兩者的不同,避免產生混亂與錯誤。因此備課時,要仔細研究教科書正文中的防錯文字、例題后的注意、小結與復習 中的應該注意的幾個問題等,同時還要揣摸學生學習本課內容的心理過程,授業解惑,使學生預先明了容易出錯之處,防患于未然。
3.2課內講解要有針對性
在課內講解時,要對學生可能出現的問題進行針對性的講解。對于容易混淆的概念,要引導學生用對比的方法,弄清它們的區別和聯系。對于規律,應當引導學生搞清它們的來源,分清它們的條件和結論,了解它們的用途和適用范圍,以及應用時應注意的問題.教師要給學生展示錯誤、排除錯誤的手段,使學生會識別錯誤、改正錯誤.課堂練習是發現學生錯誤的另一條途徑,出現問題,及時解決。總之,要通過課堂教學,不僅教會學生知識,而且要使學生學會識別對錯,知錯能改。
3.3 課后講評要有總結性
要認真分析學生作業中的問題,總結出典型錯誤,加以評述.通過講評,進行適當的復習與總結,也使學生再經歷一次調試與修正的過程,增強識別、改正錯誤的能力。
綜上所述,學生的學習過程經歷了從不知到知,從知之不多到知之較多,其間正確與錯誤交織。正確對待、認真分析、有效控制錯誤,就能夠使學生的學習順利進行,能力逐漸提高。