摘要:科學技術的飛速發展,產品功能要求的日益增多,復雜性增加,壽命期縮短,更新換代速度加快。然而,產品的設計,尤其是機械產品方案的設計手段,則顯得力不從心,跟不上時代發展的需要。為此,作者在閱讀了大量文獻的基礎上,介紹2種設計方法。
關鍵詞:系統化設計;智能化設計
1 系統化設計方法
1.1設計元素法
用五個設計元素(功能、效應、效應載體、形狀元素和表面參數)描述“產品解”,認為一個產品的五個設計元素值確定之后,產品的所有特征和特征值即已確定。我國亦有設計學者采用了類似方法描述產品的原理解。
1.2圖形建模法
研制的“設計分析和引導系統”KALEIT,用層次清楚的圖形描述出產品的功能結構及其相關的抽象信息,實現了系統結構、功能關系的圖形化建模,以及功能層之間的聯接。
將設計劃分成輔助方法和信息交換兩個方面,利用Nijssen信息分析方法可以采用圖形符號、具有內容豐富的語義模型結構、可以描述集成條件、可以劃分約束類型、可以實現關系間的任意結合等特點,將設計方法解與信息技術進行集成,實現了設計過程中不同抽象層間信息關系的圖形化建模。
1.3“構思”-“設計”法
將產品的方案設計分成“構思”和“設計”兩個階段。“構思”階段的任務是尋求、選擇和組合滿足設計任務要求的原理解。“設計”階段的工作則是具體實現構思階段的原理解。
將方案的“構思”具體描述為:根據合適的功能結構,尋求滿足設計任務要求的原理解。即功能結構中的分功能由“結構元素”實現,并將“結構元素”間的物理聯接定義為“功能載體”,“功能載體”和“結構元素”間的相互作用又形成了功能示意圖(機械運動簡圖)。方案的“設計”是根據功能示意圖,先定性地描述所有的“功能載體”和“結構元素”,再定量地描述所有“結構元素”和聯接件(“功能載體”)的形狀及位置,得到結構示意圖。Roper,H.利用圖論理論,借助于由他定義的“總設計單元(GE)”、“結構元素(KE)”、“功能結構元素(FKE)”、“聯接結構元素(VKE)”、“結構零件(KT)”、“結構元素零件(KET)”等概念,以及描述結構元素尺寸、位置和傳動參數間相互關系的若干種簡圖,把設計專家憑直覺設計的方法做了形式化的描述,形成了有效地應用現有知識的方法,并將其應用于“構思”和“設計”階段。
從設計方法學的觀點出發,將明確了設計任務后的設計工作分為三步:1) 獲取功能和功能結構(簡稱為“功能”);2) 尋找效應(簡稱為“效應”);3) 尋找結構(簡稱為“構形規則”)。并用下述四種策略描述機械產品構思階段的工作流程:策略1:分別考慮“功能”、“效應”和“構形規則”。因此,可以在各個工作步驟中分別創建變型方案,由此產生廣泛的原理解譜。策略2:“效應”與“構形規則”(包括設計者創建的規則)關聯,單獨考慮功能(通常與設計任務相關)。此時,辨別典型的構形規則及其所屬效應需要有豐富的經驗,產生的方案譜遠遠少于策略1的方案譜。策略3:“功能”、“效應”、“構形規則”三者密切相關。適用于功能、效應和構形規則間沒有選擇余地、具有特殊要求的領域,如超小型機械、特大型機械、價值高的功能零件,以及有特殊功能要求的零部件等等。策略4:針對設計要求進行結構化求解。該策略從已有的零件出發,通過零件間不同的排序和連接,獲得預期功能。
1.4矩陣設計法
在方案設計過程中采用“要求-功能”邏輯樹(“與或”樹)描述要求、功能之間的相互關系,得到滿足要求的功能設計解集,形成不同的設計方案。再根據“要求-功能”邏輯樹建立“要求-功能”關聯矩陣,以描述滿足要求所需功能之間的復雜關系,表示出要求與功能間一一對應的關系。
Kotaetal將矩陣作為機械系統方案設計的基礎,把機械系統的設計空間分解為功能子空間,每個子空間只表示方案設計的一個模塊,在抽象階段的高層,每個設計模塊用運動轉換矩陣和一個可進行操作的約束矢量表示;在抽象階段的低層,每個設計模塊被表示為參數矩陣和一個運動方程。
1.5鍵合圖法
將組成系統元件的功能分成產生能量、消耗能量、轉變能量形式、傳遞能量等各種類型,并借用鍵合圖表達元件的功能解,希望將基于功能的模型與鍵合圖結合,實現功能結構的自動生成和功能結構與鍵合圖之間的自動轉換,尋求由鍵合圖產生多個設計方案的方法。
2 智能化設計方法
智能化設計方法的主要特點是:根據設計方法學理論,借助于三維圖形軟件、智能化設計軟件和虛擬現實技術,以及多媒體、超媒體工具進行產品的開發設計、表達產品的構思、描述 產品的結構。
在利用數學系統理論的同時,考慮了系統工程理論、產品設計技術和系統開發方法學VDI2221,研制出適合于產品設計初期使用的多媒體開發系統軟件MUSE。
在進行自動取款機設計時,把產品的整個開發過程概括為“產品規劃”、“開發”和“生產規劃”三個階段,并且充分利用了現有的CAD尖端技術--虛擬現實技術。1) 產品規劃-構思產品。其任務是確定產品的外部特性,如色彩、形狀、表面質量、人機工程等等,并將最初的設想用CAD立體模型表示出,建立能夠體現整個產品外形的簡單模型,該模型可以在虛擬環境中建立,借助于數據帽和三維鼠標,用戶還可在一定程度上參與到這一環境中,并且能夠迅速地生成不同的造型和色彩。立體模型是檢測外部形狀效果的依據,也是幾何圖形顯示設計變量的依據,同時還是開發過程中各類分析的基礎。2) 開發-設計產品。該階段主要根據“系統合成”原理,在立體模型上配置和集成解元素,解元素根據設計目標的不同有不同的含義:可以是基本元素,如螺栓、軸或輪轂聯接等;也可以是復合元素,如機、電、電子部件、控制技術或軟件組成的傳動系統;還可以是要求、特性、形狀等等。將實現功能的關鍵性解元素配置到立體模型上之后,即可對產品的配置(設計模型中解元素間的關系)進行分析,產品配置分析是綜合“產品規劃”和“開發”結果的重要手段。3) 生產規劃-加工和裝配產品。在這一階段中,主要論述了裝配過程中CAD技術的應用,提出用計算機圖像顯示解元素在相應位置的裝配過程,即通過虛擬裝配模型揭示造形和裝配間的關系,由此發現難點和問題,并找出解決問題的方法,并認為將CAD技術綜合應用于產品開發的三個階段,可以使設計過程的綜合與分析在“產品規劃”、“開發”和“生產規劃”中連續地交替進行。因此,可以較早地發現各個階段中存在的問題,使產品在開發進程中不斷地細化和完善。
我國利用虛擬現實技術進行設計還處于剛剛起步階段。利用面向對象的技術,重點研究了按時序合成的機構組合方案設計專家系統,并借助于具有高性能圖形和交換處理能力的OpenGL技術,在三維環境中從各個角度對專家系統設計出的方案進行觀察,如運動中機構間的銜接狀況是否產生沖突等等。
利用智能型CAD系統SIGRAPH-DESIGN作為開發平臺,將產品的開發過程分為概念設計、裝配設計和零件設計,并以變量設計技術為基礎,建立了膠印機凸輪連桿機構的概念模型。從文獻介紹的研究工作看,其概念模型是在確定了機構型、數綜合的基礎上,借助于軟件SIGRAPH-DESIGN提供的變量設計功能,使原理圖隨著機構的結構參數變化而變化,并將概念模型的參數傳遞給下一級的裝配模型、零件設計。