摘要:供應(yīng)鏈?zhǔn)且粋€(gè)典型的動(dòng)態(tài)系統(tǒng),如何協(xié)調(diào)系統(tǒng)中各成員之間的利益和關(guān)系,尋找供應(yīng)鏈網(wǎng)絡(luò)的最終均衡狀態(tài),是供應(yīng)鏈管理中的一個(gè)重要問(wèn)題,文章首先以變分不等式為工具,介紹了確定性和不確定性需求條件下的供應(yīng)鏈網(wǎng)絡(luò)均衡模型,然后將該類模型轉(zhuǎn)化為非線性互補(bǔ)問(wèn)題,運(yùn)用評(píng)價(jià)函數(shù)(merit function)將其轉(zhuǎn)化為無(wú)約束最優(yōu)化問(wèn)題,最后通過(guò)擬牛頓算法求解該類模型,有效解決了該類模型的求解問(wèn)題。
關(guān)鍵詞:供應(yīng)鏈網(wǎng)絡(luò);變分不等式;網(wǎng)絡(luò)均衡;無(wú)約束 最優(yōu)化;擬牛頓算法
中圖分類號(hào):F224文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1002-3100(2008)07-0023-05
Abstract: Supply chain is a typical dynamic system. In order to coordinate the relationships and benefits of the partners in supply chain management and find the final supply chain network equilibrium status, based on the variational inequality, two types of supply chain network equilibrium models are introduced in this paper. It demonstrates that these models possess the unconstrained continuously differentiable minimization formulations and Quasi-Newton algorithm is capable of finding a solution of the model effectively. Finally, two examples in different conditions are employed to show the effectiveness of the Quasi-Newton algorithm.
Key words: supply chain network; variational inequality; network equilibrium; unconstrained minimization; Quasi-Newton algorithm
0引言
供應(yīng)鏈管理主要是如何協(xié)調(diào)供應(yīng)商、制造商、批發(fā)商、銷(xiāo)售商、消費(fèi)市場(chǎng)等各成員之間的關(guān)系。在各成員利益均能得到保證的基礎(chǔ)上,共同合作,最終實(shí)現(xiàn)總體利益的最大化。而要實(shí)現(xiàn)上述目標(biāo),必須有合理的供應(yīng)鏈運(yùn)作與決策,使得供應(yīng)鏈各成員在面對(duì)快速變化的市場(chǎng)結(jié)構(gòu)時(shí),能及時(shí)地進(jìn)行調(diào)整,維持整個(gè)供應(yīng)鏈的競(jìng)爭(zhēng)優(yōu)勢(shì)。本文采用定量分析的方法,通過(guò)研究相當(dāng)?shù)臄?shù)學(xué)模型并進(jìn)行求解,為各成員提供一個(gè)具體可行的運(yùn)作與決策方法。
傳統(tǒng)分散式供應(yīng)鏈通常包括三類決策者:生產(chǎn)商、消費(fèi)商、零售商。這三類決策者在產(chǎn)品的整個(gè)商業(yè)流程(從制造商到零售商到消費(fèi)者)中是相互影響、相互聯(lián)系的。我們分別用一組均衡條件來(lái)描述以上三類在產(chǎn)品供應(yīng)鏈中的行為。Nagurney 2002年給出了供應(yīng)鏈網(wǎng)絡(luò)的均衡模型(消費(fèi)者需求函數(shù)確定),并進(jìn)一步指出該模型可用變分不等式來(lái)表示(VI Variational Inequality)。Dong 2004年在Nagurney的基礎(chǔ)上給出了消費(fèi)者需求隨機(jī)(已知概率分布條件下的隨機(jī)變量)條件下的供應(yīng)鏈均衡模型并且給出了變分不等式形式。以上兩人都采用改良投影法(Modified Projection Method)作為求解供應(yīng)鏈模型變分不等式的基本方法。而事實(shí)上,改良投影算法的收斂性依賴于Lipschitz常數(shù)的估計(jì)及迭代步長(zhǎng)的選擇[1]。因此,在用該方法求解供應(yīng)鏈均衡變分不等式的過(guò)程中,往往所需計(jì)算量較為龐大,消耗時(shí)間也較長(zhǎng)。
本文通過(guò)研究擬牛頓方法的超線性收斂性[2],為供應(yīng)鏈均衡變分不等式的求解問(wèn)題提供了新的解法。不論是Nagurney或者是Dong的VI問(wèn)題都可以轉(zhuǎn)化為非線性互補(bǔ)問(wèn)題(NCP)。于是用評(píng)價(jià)函數(shù)(merit function)方法,我們將非線性互補(bǔ)問(wèn)題轉(zhuǎn)化為無(wú)約束連續(xù)可微最優(yōu)化問(wèn)題,通過(guò)研究擬牛頓方法的求解過(guò)程,很好地解決了該類無(wú)約束最優(yōu)化問(wèn)題,從而得出原始變分不等式的解。文章最后舉例說(shuō)明了擬牛頓方法解決供應(yīng)鏈網(wǎng)絡(luò)均衡模型的變分不等式求解問(wèn)題的有效性。
1供應(yīng)鏈網(wǎng)絡(luò)均衡模型
4結(jié)束語(yǔ)
本文首先介紹了確定需求與隨機(jī)需求兩種情況下的供應(yīng)鏈變分不等式均衡模型,然后將其轉(zhuǎn)化為非線性互補(bǔ)問(wèn)題,以及無(wú)約束連續(xù)可微最優(yōu)化問(wèn)題,最后運(yùn)用擬牛頓方法求解該類問(wèn)題。該方法為求解該類變分不等式問(wèn)題提供了新的有效算法,它的超線性收斂性也解決了過(guò)去求解該類問(wèn)題計(jì)算時(shí)間過(guò)多的問(wèn)題,本文最后通過(guò)列舉確定需求條件與隨機(jī)需求條件下的兩個(gè)例子說(shuō)明了擬牛頓方法在解決供應(yīng)鏈均衡問(wèn)題上的有效性。
參考文獻(xiàn):
[1] 何炳生,論求解單調(diào)變分不等式的一些投影收縮算法[J]. 計(jì)算數(shù)學(xué),1996(1):54-60.
[2]C. G. Broyden, J. E. Dennis, Jr., and J. J. More. On the local superlinear convergence of quasi-Newton methods[J]. Institute of Mathematics and Applications, 1973(12):223-246.
[3]Dong, J., Zhang, D., Nagurney, A. A supply chain network equilibrium model with random demands[J]. European Journal of Operational Research, 2004(156):194-212.
[4]Nagurney, A., Dong, J., Zhang, D.. A supply chain network equilibrium model[J]. Transportation Research, 2002(38S):281-303.
[5]Nagurney, A.. Network Economics: A Variational Inequality Approach, Revised Second ed[M]. Boston: Kluwer Academic Publishers, 1999.
[6]Kanzow, C., Yamashita, Fukushima, M.. New NCP-functions and their properties[J]. Journal of Optimization Theory and Applications, 1997(94):115-135.
[7]Fischer, A. A special Newton-type optimization method[J]. Optimization, 1992(24):269-284.
[8]Geiger, C., Kanzow, C. On the resolution of Monotone complementarity problems[J]. Computational Optimization and Applications, 1996(5):155-173.
[9]R. Flecher. Practical Methods of Optimization, Second edition[M]. Chichester: John Wiley and Sons, 1987.
[10]R. H. Byrd and J. Nocedal. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization[J]. SIAM Journal on Numerical Analysis, 1989(26):727-739.
[11]Nagurney, A., Cruz, J., Matsypura, D.. Dynamics of global supply chain supernetworks[J]. Mathematical and Computer Modeling, 2003(37):963-983.