999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

IS-模與IS-環(huán)

2009-07-05 14:26:31王堯王德占
關(guān)鍵詞:定義

王堯,王德占

(1.南京信息工程大學(xué)數(shù)理學(xué)院,江蘇南京210044;2.遼寧師范大學(xué)數(shù)學(xué)系,遼寧大連 116029)

IS-模與IS-環(huán)

王堯1,王德占2

(1.南京信息工程大學(xué)數(shù)理學(xué)院,江蘇南京210044;2.遼寧師范大學(xué)數(shù)學(xué)系,遼寧大連 116029)

研究具有內(nèi)射基座的環(huán)的性質(zhì),引入了IS-模與IS-環(huán)的概念.證明了環(huán)R的優(yōu)擴(kuò)張S是IS-環(huán)當(dāng)且僅當(dāng)R是IS-環(huán).

IS-模;IS-環(huán);優(yōu)擴(kuò)張

1 引言

Nicholson and Watters[1]對(duì)具有投射基座的環(huán)(PS-環(huán))進(jìn)行了研究,給出了一個(gè)環(huán)R是PS-環(huán)的一些等價(jià)條件;Liu Zhongkui[2]對(duì)具有平坦基座的環(huán)(FS-環(huán))做了一些探討,給出了一個(gè)環(huán)R是FS-環(huán)的一些等價(jià)條件.筆者受此兩篇論文的啟發(fā),對(duì)具有內(nèi)射基座的模(IS-模)與具有內(nèi)射基座的環(huán)(IS-環(huán))做了一些討論,定義了IS-模與IS-環(huán),給出了一個(gè)環(huán)R是IS-環(huán)的一些等價(jià)條件,證明了IS-環(huán)上的秩有限自由模是IS-模,環(huán)R的優(yōu)擴(kuò)張S是IS-環(huán)當(dāng)且僅當(dāng)R是IS-環(huán).

本文中的環(huán)R都是含有單位元1的結(jié)合環(huán),模都是左R-酉模.另外用N≤M,NM分別表示N是M的子模和本質(zhì)子模.

2 IS-模

定義2.1稱左R-模M是左IS-模,如果M的基座Soc M是內(nèi)射左R-模;右IS-模可類似地定義.

例2.1若Soc M=0,則M是IS-模.

證明這是因?yàn)榱隳?是內(nèi)射R-模.

例2.2半單環(huán)R上的每一個(gè)R-模都是IS-模.

證明這是因?yàn)榘雴苇h(huán)R上的每一個(gè)R-模都是內(nèi)射R-模.

例2.3設(shè)R是QF-環(huán),則M是PS-模當(dāng)且僅當(dāng)M是IS-模.

證明由文[3]的命題31.1和文[1]的定義2.1知,M是PS-模當(dāng)且僅當(dāng)Soc M是投射R-模,當(dāng)且僅當(dāng)Soc M是內(nèi)射R-模,當(dāng)且僅當(dāng)M是IS-模.

命題2.1若M是IS-模,則Soc M是M的一個(gè)直和項(xiàng).

雖然內(nèi)射模的任意直積是內(nèi)射模,但由于任意直積的基座未必等于基座的直積,故推論2.1中的有限直積不能改為任意直積;又由于內(nèi)射模的任意直和未必是內(nèi)射模,故命題2.2中的有限直和也不能改為任意直和.但我們有

定理2.2設(shè)R是左Noether環(huán).若Mi,i∈I是IS-模,則⊕i∈IMi是IS-模.

證明由Mi,i∈I是IS-模,知Soc Mi,i∈I是內(nèi)射R-模,于是由文[3]命題18.13知Soc(⊕i∈IMi)=⊕i∈ISoc Mi是內(nèi)射R-模,從而⊕i∈IMi是IS-模.

定理2.3設(shè)R是左Artin環(huán),M是非零的左R-模.若M是IS-模,則M是不可分解的.

證明設(shè)M是左Artin環(huán)上的左R-模,則由文[3]推論15.21知Soc MM.但由命題2.1, Soc M是M的一個(gè)直和項(xiàng),于是存在M'≤M,使得M=Soc M⊕M',進(jìn)而Soc M∩M'=0.因此由本質(zhì)子模的定義,M'=0,于是Soc M=M,所以M的直和項(xiàng)只有M和0,故M是不可分解的.

定理2.4設(shè)M是非零的IS-模.若M是不可分解的,則M是半單的.

證明因M是IS-模,由命題2.1,Soc M是M的一個(gè)直和項(xiàng).但M是不可分解的,M的直和項(xiàng)只有M和0,于是Soc M=M或Soc M=0.但M/=0,從而Soc M/=0,進(jìn)而Soc M=M,故M是半單的.

3 IS-環(huán)

定義3.1稱環(huán)R是左IS-環(huán),如果RR是左IS-模;右IS-環(huán)可類似地定義.

例3.1半單環(huán)是IS-環(huán).

例3.2若環(huán)R既是QF-環(huán)又是PS-環(huán),則R也是IS-環(huán).

定理3.1設(shè)R是任意環(huán),則以下陳述等價(jià):

(1)R是左IS-環(huán);

(2)RR是左IS-模;

(3)SocRR是內(nèi)射左R-模;

(4)SocRR是左自內(nèi)射環(huán).

證明(1)?(2)定義3.1.

(2)?(3)定義2.1.

(3)?(4)由左自內(nèi)射環(huán)的定義即得(見文[3]第206頁習(xí)題1).

(4)?(1)由左自內(nèi)射環(huán)的定義,SocRR是內(nèi)射R-模,從而由左IS-環(huán)的定義,R是左IS-環(huán).

命題3.2設(shè)R是左IS-環(huán),則存在冪等元e∈R,使得SocRR=Re.

證明由左IS-環(huán)的定義,RR是左IS-模,從而由命題2.1,SocRR是正則模RR的一個(gè)直和項(xiàng),因此由文[3]命題7.1,存在冪等元e∈R,使得SocRR=Re.

命題3.3設(shè)R是非半單的左IS-環(huán),則SocRR是R的非本質(zhì)左理想.

證明由命題2.1知,SocRR是正則模RR的一個(gè)直和項(xiàng),從而存在左理想0/=L?R,使得R=SocRR⊕L,于是SocRR∩L=0.但R是非半單的,SocRR/=R,從而L/=0,故SocRRRR,亦即SocRR是R的非本質(zhì)左理想.

命題3.4若R是半單左IS-環(huán),則R是左自內(nèi)射環(huán).

證明設(shè)R是半單的,則R=SocRR是內(nèi)射R-模,從而由文[3]第206頁習(xí)題1,R是左自內(nèi)射環(huán).

命題3.5若R是交換的Noether環(huán),則以下條件等價(jià):

從而由定理3.1和引理3.1,S是左IS-環(huán)當(dāng)且僅當(dāng)SocSS是內(nèi)射左S-模當(dāng)且僅當(dāng)SocSS是內(nèi)射左R-模當(dāng)且僅當(dāng)SocRR是內(nèi)射左R-模當(dāng)且僅當(dāng)R是左IS-環(huán).

推論3.1若G是有限群且?(G)?1∈R,則交叉積R?G是左IS-環(huán)當(dāng)且僅當(dāng)R是左IS-環(huán).

證明由文[6],斜群環(huán)R?G是環(huán)R的優(yōu)擴(kuò)張,從而由定理3.2即得結(jié)論.

推論3.2環(huán)R是左IS-環(huán)當(dāng)且僅當(dāng)矩陣環(huán)Mn(R)是左IS-環(huán).

證明由文[7],環(huán)Mn(R)是環(huán)R的優(yōu)擴(kuò)張,從而由定理3.2即得結(jié)論.

定理3.3左IS-環(huán)R上的每個(gè)秩有限的自由R-模是IS-模.

證明設(shè)M是秩有限自由R-模,則由文[8],存在有限集F,使得M⊕i∈FMi,其中Mi=RR.由文[3]命題9.8,易證得Soc MSoc(⊕i∈FMi),于是由文[3]命題9.19, Soc M~=Soc(⊕i∈FMi)=⊕i∈FSoc Mi是內(nèi)射R-模,故M是左IS-模.

定理3.4左Noether IS-環(huán)R上的任意自由R-模是IS-模.

證明設(shè)M是任意自由R-模,則由文[8],存在指標(biāo)集I,使得M~=⊕i∈IMi,其中Mi=RR.由文[3]命題9.8,易證得Soc M~=Soc(⊕i∈IMi),于是由文[3]命題9.19,Soc M~=Soc(⊕i∈IMi)=⊕i∈ISoc Mi.又R是左Noether環(huán),因而由文[3]命題18.13,⊕i∈ISoc Mi是內(nèi)射R-模,進(jìn)而M是IS-模.

[1]Nicholson W K,Watters J F.Rings with projective socle[J].Proc.Amer.Math.Soc.,1988,102(3):443-450.

[2]Liu Zhongkui.Rings with flat left socle[J].Comm.Algebra,1995,23(5):1645-1656.

[3]安德森K W,富勒爾K R.環(huán)與模范疇[M].王堯,任艷麗,譯.2版.北京:科學(xué)出版社,2008.

[4]Xue Weimin.On generalization of excellent extensions[J].Acta.Math.Vietnam,1994,9:31-38.

[5]Parmenter M M,Stewart P N.Excellent extensions[J].Comm.Algebra,1988,16(4):703-713.

[6]Passman D S.It’s essentially Maschke’s theorem[J].Rocky Mountain J.Math.,1983,13:37-54.

[7]Passman D S.The Algebraic Structure of Group Rings[M].New York:Wiley-Interscience,1977.

[8]Hungerford T W.Algebra[M].New York:Spring-Verlag,1974.

[9]董珺,劉仲奎.(I,K)-(m,n)-內(nèi)射環(huán)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2007,23(4):565-570.

IS-modules and IS-rings

WANG Yao1,WANG De-zhan2

(1.College of Mathematics and Physics,Nanjing University of Information Science and Technology,Nanjing 210044,China;2.Department of Mathematics,Liaoning Normal University,Dalian116029,China)

In this paper,we investigate the properties of rings with injective socle,introduce the concepts of IS-module and IS-ring,and show that if S is an excellent extension of R,then S is a IS-ring if and only if R is a IS-ring.

IS-module,IS-ring,excellent extension

O153.3

A

1008-5513(2009)04-0686-04

2008-09-26.

江蘇省“333人才工程”基金.

王堯(1962-),博士,教授,研究方向:一般環(huán)論和代數(shù)表示論.

2000MSC:16W50

猜你喜歡
定義
以愛之名,定義成長
活用定義巧解統(tǒng)計(jì)概率解答題
例談橢圓的定義及其應(yīng)用
題在書外 根在書中——圓錐曲線第三定義在教材和高考中的滲透
永遠(yuǎn)不要用“起點(diǎn)”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
嚴(yán)昊:不定義終點(diǎn) 一直在路上
定義“風(fēng)格”
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
有壹手——重新定義快修連鎖
修辭學(xué)的重大定義
主站蜘蛛池模板: 国产色伊人| 国产激情在线视频| 亚洲激情区| 国产哺乳奶水91在线播放| 婷婷综合在线观看丁香| 亚洲三级片在线看| 亚洲欧美日韩动漫| 精品一区二区无码av| 制服丝袜亚洲| 一本一道波多野结衣一区二区| 男人天堂亚洲天堂| 亚洲综合专区| 青青草欧美| 国产成人亚洲综合a∨婷婷| 就去吻亚洲精品国产欧美| 国产在线一区二区视频| 99热这里只有精品久久免费| 色综合久久88色综合天天提莫| 国产亚洲美日韩AV中文字幕无码成人 | 色天堂无毒不卡| 日本一区二区三区精品视频| 亚洲欧美另类久久久精品播放的| 午夜色综合| 亚洲a级在线观看| 人妻21p大胆| 香蕉久人久人青草青草| 亚洲欧美自拍视频| 波多野结衣亚洲一区| 极品国产一区二区三区| 亚洲Av激情网五月天| 亚洲国语自产一区第二页| 无码中文字幕精品推荐| 免费一级成人毛片| 亚洲h视频在线| 免费观看成人久久网免费观看| 欧美国产日产一区二区| 免费无码AV片在线观看中文| 欧美视频在线观看第一页| 美女免费黄网站| 91精品国产综合久久香蕉922| 香蕉eeww99国产在线观看| 日本www在线视频| 无码高潮喷水在线观看| 91蝌蚪视频在线观看| 日韩欧美国产精品| 亚洲国产AV无码综合原创| 亚洲永久视频| 蜜芽国产尤物av尤物在线看| 全午夜免费一级毛片| 麻豆AV网站免费进入| 日本精品一在线观看视频| 中文字幕无码中文字幕有码在线| 久久成人18免费| 国产毛片基地| 蝌蚪国产精品视频第一页| 青青草一区二区免费精品| 激情爆乳一区二区| 2048国产精品原创综合在线| 国产一区二区三区精品欧美日韩| 91色老久久精品偷偷蜜臀| 亚洲视频影院| 国产成人亚洲精品蜜芽影院| 国产欧美视频在线观看| 五月天天天色| 中文字幕 91| 亚洲三级电影在线播放| 国内精品视频区在线2021| 国产成人精品一区二区三区| 精品综合久久久久久97| 本亚洲精品网站| 不卡无码网| 国产91丝袜在线播放动漫| 色婷婷综合在线| 一区二区在线视频免费观看| 亚洲精品第五页| 日韩av无码DVD| 亚洲精品视频免费| 伊人久久大香线蕉综合影视| 日本亚洲欧美在线| 二级特黄绝大片免费视频大片| 久久国产精品麻豆系列| 一级毛片免费高清视频|