999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

保不交算子值域的一些性質(zhì)

2009-07-05 14:26:38陳志杰陳滋利程娜
關(guān)鍵詞:性質(zhì)

陳志杰,陳滋利,程娜

(西南交通大學(xué)數(shù)學(xué)學(xué)院,四川成都 610031)

保不交算子值域的一些性質(zhì)

陳志杰,陳滋利,程娜

(西南交通大學(xué)數(shù)學(xué)學(xué)院,四川成都 610031)

研究了保不交算子值域的性質(zhì),建立了保不交算子值域?yàn)镽iesz子空間的一個(gè)刻畫(huà);又討論了主理想和主帶在保不交算子作用后的象的性質(zhì),一些相關(guān)結(jié)果也得以討論.

保不交算子;保區(qū)間算子;值域;主帶

1 序言

自上世紀(jì)七十年代至今,對(duì)Riesz空間上保不交算子的研究,已有了相當(dāng)深入的結(jié)果,尤其是在保不交算子的乘法表示、可逆性、分解性、結(jié)構(gòu)性等方面.而關(guān)于保不交算子值域的性質(zhì)研究較少涉及.文[1]中僅討論保不交算子值域?yàn)槔硐氲那樾?而關(guān)于保不交算子值域?yàn)镽iesz子空間的情況,卻無(wú)人問(wèn)津.本文就此問(wèn)題做了一些探討.

設(shè)E,F為Archimedean Riesz空間,線性算子T:E→F對(duì)所有x,y∈E,|x|∧|y|=0滿足|Tx|∧|Ty|=0時(shí),則稱(chēng)T為保不交算子.正的保不交算子稱(chēng)為格同態(tài).T是序有界的保不交算子當(dāng)且僅當(dāng)T的模|T|=T∨(?T)存在且為格同態(tài).若正算子T:E→F滿足對(duì)于任意的x∈E+,有T[0,x]=[0,Tx],則T稱(chēng)為保區(qū)間算子,此時(shí)TE為F的理想.當(dāng)T是格同態(tài)時(shí),TE為F的Riesz子空間[2].而當(dāng)T是保不交算子,TE不一定為F的Riesz子空間[3].下文將給出TE為F的Riesz子空間的充分必要條件.

有關(guān)Riesz空間及保不交算子等未解釋的術(shù)語(yǔ)符號(hào)及基本理論可參考文[2,4-5].無(wú)特殊說(shuō)明,本文均假定算子為序有界的算子,值域空間F是Dedekind完備的.

2 保不交算子的值域

下列有關(guān)算子的核和零空間的概念及相關(guān)性質(zhì)可在文[4]中找到.設(shè)序有界算子T: E→F,T的核(kernel)表示為Ker(T)={x:Tx=0};T的零空間(null space)表示為NT={x:|T|(|x|)=0}.容易驗(yàn)證,NT是E的理想,若T序連續(xù),則NT是帶.當(dāng)T是保不交算子時(shí),Ker(T)是理想,而且T的零空間與它的核相同,同時(shí)有如下性質(zhì):

性質(zhì)1設(shè)T:E→F為序有界的保不交算子,則Ker(T)=NT=Ker(|T|).

證明(1)若x∈Ker(T),則0=|Tx|=|T|(|x|),從而x∈NT;反之,若x∈NT,那么0=|T|(|x|)=|Tx|,所以Tx=0,即x∈Ker(T).

(2)由于T為序有界的保不交算子,|T|為格同態(tài),同樣滿足Ker(|T|)=N|T|.又NT= N|T|,故Ker(|T|)=NT.

由文[2]知,當(dāng)T是格同態(tài)時(shí),TE為F的Riesz子空間.然而若T為保不交算子時(shí),TE則一般不一定為F的Riesz子空間[3].但|T|E為F的Riesz子空間,而且|T|E??(TE),其中?(TE)為T(mén)E生成的Riesz子空間.事實(shí)上,對(duì)于任意的0<x∈E,|T|x=|Tx|∈?(TE),因此|T|E??(TE),且這種包含關(guān)系可以是真包含[6].

下面的結(jié)果顯示TE為F的Riesz子空間時(shí)所具有的某些特征.

定理1設(shè)T:E→F為保不交算子,若TE為F的Riesz子空間,則TE=|T|E.

證明由于TE為F的Riesz子空間,即TE=?(TE).又|T|E??(TE),故而|T|E?TE.現(xiàn)在只需證明TE?|T|E.

對(duì)于任意的x∈E,|T|x=|T|x+?|T|x?∈TE.

由上述兩個(gè)定理可以得到TE為F的Riesz子空間的一個(gè)刻畫(huà).

定理3設(shè)T:E→F為保不交算子,TE為F的Riesz子空間的充分必要條件是滿足下面兩個(gè)中的一個(gè)即可.

(1)TE?|T|E;(2)|T|E?TE.

作為上面的定理的一個(gè)應(yīng)用,可以得到文[1]中定理2.7的另一個(gè)簡(jiǎn)便的證明.

定理4T:E→F為保不交算子,若|T|是保區(qū)間算子,則TE為F的理想.

證明由于|T|是保區(qū)間算子,那么|T|E是F的理想[4].由文[6]中的引理1知道I(TE)= I(|T|E),其中I(TE)表示TE在F中生成的理想.那么下面的關(guān)系成立

[1]Hart D R.Some properties of disjointness preserving operators[J].Proceeding of AMS,1985,88:183-197.

[2]Luxemberg W A J,Zaanen A C.Riesz Spaces I[M].Amsterdam:North-Holland,1971.

[3]艾富菊,陳滋利,陳志杰.經(jīng)典序列Banach格上保不交算子的一些性質(zhì)[J].四川師范大學(xué)學(xué)報(bào),2007(教育教學(xué)專(zhuān)輯):16-21.

[4]Aliprantis C D,Burkinshaw O.Positive Operators[M].New York:Academic Press,1985.

[5]Meryer-Nieberg P.Banach Lattice[M].New York:Springer-Verlag,1991.

[6]Boulabiar K,Buskes G.Polar decompositions of order bounded disjointness preserving operators[J].Proceeding of AMS,2003,132:799-806.

[7]Bahri Turan.On ideal operators[J].Positivity,2003,7:141-148.

[8]Abramovich Y A,kitover A K.A characterization of operators preserving disjointness in terms of their inverse[J].Positivity,2000,4:205-212.

[9]Pagter B D,Schep A R.Band decompositions for disjointness preserving operators[J].Positivity,2000, 4:259-288.

[10]曹金文,胡燦.關(guān)于完全強(qiáng)仿緊空間的刻畫(huà)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2004,20(2):193-196.

Some properties of the range of disjointness preserving operators

CHEN Zhi-jie,CHEN Zi-li,CHENG Na

(College of Mathematics,Southwest Jiaotong University,Chengdu610031,China)

In this paper,some properties of the range of disjointness preserving operators are discussed.Firstly, the characterization is given,which is that the range of disjointness preserving operator is Riesz subspace. Secondly,some properties of disjointness preserving operators effecting on principal ideal and band are also given.

disjointness preserving operators,interval preserving operators,range,principal bands

O177.2

A

1008-5513(2009)04-0774-03

2008-03-25.

陳志杰(1984-),碩士,研究方向:泛函分析.

2000MSC:46A40,47B60

猜你喜歡
性質(zhì)
含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
MP弱Core逆的性質(zhì)和應(yīng)用
弱CM環(huán)的性質(zhì)
一類(lèi)非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
一類(lèi)多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
性質(zhì)(H)及其攝動(dòng)
九點(diǎn)圓的性質(zhì)和應(yīng)用
主站蜘蛛池模板: 国产一区二区三区在线观看视频 | 亚洲精品视频免费观看| 久久这里只有精品66| 伊人久热这里只有精品视频99| 免费在线a视频| 国产第八页| 色老二精品视频在线观看| 99精品在线视频观看| 97一区二区在线播放| 亚洲一区二区成人| 黑色丝袜高跟国产在线91| 日本不卡视频在线| 国产成人免费视频精品一区二区| 欧美黄色网站在线看| 国产精品网曝门免费视频| av天堂最新版在线| 国产青榴视频在线观看网站| 国产91透明丝袜美腿在线| 91香蕉国产亚洲一二三区| AV无码国产在线看岛国岛| 精品人妻AV区| 亚洲丝袜中文字幕| 91探花在线观看国产最新| 无码在线激情片| 四虎在线高清无码| 美女被操91视频| 国产精品视屏| 无码内射中文字幕岛国片| 国产精品成人免费视频99| 免费 国产 无码久久久| 2020久久国产综合精品swag| 88国产经典欧美一区二区三区| 日韩午夜福利在线观看| 伊人久久福利中文字幕| 色丁丁毛片在线观看| 日韩av高清无码一区二区三区| 欧亚日韩Av| 国产无码精品在线播放| 视频二区亚洲精品| 国产亚洲日韩av在线| 一区二区三区在线不卡免费| 91麻豆精品国产91久久久久| 91福利一区二区三区| 日本欧美精品| 亚洲一道AV无码午夜福利| 三级视频中文字幕| 一级一级特黄女人精品毛片| 日本欧美在线观看| 日韩无码黄色| 色综合色国产热无码一| 国产精品开放后亚洲| 欧美色图久久| yjizz视频最新网站在线| 国产成人精品高清不卡在线| 欧美一区日韩一区中文字幕页| 国产精品精品视频| 天天爽免费视频| 欧美成人日韩| 2020国产精品视频| 国产丝袜第一页| 日本精品影院| 久久免费看片| 在线无码九区| 亚洲av片在线免费观看| 欧美a在线| 日本人真淫视频一区二区三区| 久久精品视频亚洲| 四虎永久免费在线| 毛片免费在线| 永久免费精品视频| 丁香婷婷综合激情| 亚洲天堂精品视频| 国内精品自在欧美一区| 久久黄色一级片| 国产成人一区二区| 国产精品美女自慰喷水| 免费高清毛片| 久综合日韩| 午夜欧美理论2019理论| 国产熟女一级毛片| 夜夜高潮夜夜爽国产伦精品| 日韩乱码免费一区二区三区|