999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

保不交算子值域的一些性質(zhì)

2009-07-05 14:26:38陳志杰陳滋利程娜
關(guān)鍵詞:性質(zhì)

陳志杰,陳滋利,程娜

(西南交通大學(xué)數(shù)學(xué)學(xué)院,四川成都 610031)

保不交算子值域的一些性質(zhì)

陳志杰,陳滋利,程娜

(西南交通大學(xué)數(shù)學(xué)學(xué)院,四川成都 610031)

研究了保不交算子值域的性質(zhì),建立了保不交算子值域?yàn)镽iesz子空間的一個(gè)刻畫(huà);又討論了主理想和主帶在保不交算子作用后的象的性質(zhì),一些相關(guān)結(jié)果也得以討論.

保不交算子;保區(qū)間算子;值域;主帶

1 序言

自上世紀(jì)七十年代至今,對(duì)Riesz空間上保不交算子的研究,已有了相當(dāng)深入的結(jié)果,尤其是在保不交算子的乘法表示、可逆性、分解性、結(jié)構(gòu)性等方面.而關(guān)于保不交算子值域的性質(zhì)研究較少涉及.文[1]中僅討論保不交算子值域?yàn)槔硐氲那樾?而關(guān)于保不交算子值域?yàn)镽iesz子空間的情況,卻無(wú)人問(wèn)津.本文就此問(wèn)題做了一些探討.

設(shè)E,F為Archimedean Riesz空間,線性算子T:E→F對(duì)所有x,y∈E,|x|∧|y|=0滿足|Tx|∧|Ty|=0時(shí),則稱(chēng)T為保不交算子.正的保不交算子稱(chēng)為格同態(tài).T是序有界的保不交算子當(dāng)且僅當(dāng)T的模|T|=T∨(?T)存在且為格同態(tài).若正算子T:E→F滿足對(duì)于任意的x∈E+,有T[0,x]=[0,Tx],則T稱(chēng)為保區(qū)間算子,此時(shí)TE為F的理想.當(dāng)T是格同態(tài)時(shí),TE為F的Riesz子空間[2].而當(dāng)T是保不交算子,TE不一定為F的Riesz子空間[3].下文將給出TE為F的Riesz子空間的充分必要條件.

有關(guān)Riesz空間及保不交算子等未解釋的術(shù)語(yǔ)符號(hào)及基本理論可參考文[2,4-5].無(wú)特殊說(shuō)明,本文均假定算子為序有界的算子,值域空間F是Dedekind完備的.

2 保不交算子的值域

下列有關(guān)算子的核和零空間的概念及相關(guān)性質(zhì)可在文[4]中找到.設(shè)序有界算子T: E→F,T的核(kernel)表示為Ker(T)={x:Tx=0};T的零空間(null space)表示為NT={x:|T|(|x|)=0}.容易驗(yàn)證,NT是E的理想,若T序連續(xù),則NT是帶.當(dāng)T是保不交算子時(shí),Ker(T)是理想,而且T的零空間與它的核相同,同時(shí)有如下性質(zhì):

性質(zhì)1設(shè)T:E→F為序有界的保不交算子,則Ker(T)=NT=Ker(|T|).

證明(1)若x∈Ker(T),則0=|Tx|=|T|(|x|),從而x∈NT;反之,若x∈NT,那么0=|T|(|x|)=|Tx|,所以Tx=0,即x∈Ker(T).

(2)由于T為序有界的保不交算子,|T|為格同態(tài),同樣滿足Ker(|T|)=N|T|.又NT= N|T|,故Ker(|T|)=NT.

由文[2]知,當(dāng)T是格同態(tài)時(shí),TE為F的Riesz子空間.然而若T為保不交算子時(shí),TE則一般不一定為F的Riesz子空間[3].但|T|E為F的Riesz子空間,而且|T|E??(TE),其中?(TE)為T(mén)E生成的Riesz子空間.事實(shí)上,對(duì)于任意的0<x∈E,|T|x=|Tx|∈?(TE),因此|T|E??(TE),且這種包含關(guān)系可以是真包含[6].

下面的結(jié)果顯示TE為F的Riesz子空間時(shí)所具有的某些特征.

定理1設(shè)T:E→F為保不交算子,若TE為F的Riesz子空間,則TE=|T|E.

證明由于TE為F的Riesz子空間,即TE=?(TE).又|T|E??(TE),故而|T|E?TE.現(xiàn)在只需證明TE?|T|E.

對(duì)于任意的x∈E,|T|x=|T|x+?|T|x?∈TE.

由上述兩個(gè)定理可以得到TE為F的Riesz子空間的一個(gè)刻畫(huà).

定理3設(shè)T:E→F為保不交算子,TE為F的Riesz子空間的充分必要條件是滿足下面兩個(gè)中的一個(gè)即可.

(1)TE?|T|E;(2)|T|E?TE.

作為上面的定理的一個(gè)應(yīng)用,可以得到文[1]中定理2.7的另一個(gè)簡(jiǎn)便的證明.

定理4T:E→F為保不交算子,若|T|是保區(qū)間算子,則TE為F的理想.

證明由于|T|是保區(qū)間算子,那么|T|E是F的理想[4].由文[6]中的引理1知道I(TE)= I(|T|E),其中I(TE)表示TE在F中生成的理想.那么下面的關(guān)系成立

[1]Hart D R.Some properties of disjointness preserving operators[J].Proceeding of AMS,1985,88:183-197.

[2]Luxemberg W A J,Zaanen A C.Riesz Spaces I[M].Amsterdam:North-Holland,1971.

[3]艾富菊,陳滋利,陳志杰.經(jīng)典序列Banach格上保不交算子的一些性質(zhì)[J].四川師范大學(xué)學(xué)報(bào),2007(教育教學(xué)專(zhuān)輯):16-21.

[4]Aliprantis C D,Burkinshaw O.Positive Operators[M].New York:Academic Press,1985.

[5]Meryer-Nieberg P.Banach Lattice[M].New York:Springer-Verlag,1991.

[6]Boulabiar K,Buskes G.Polar decompositions of order bounded disjointness preserving operators[J].Proceeding of AMS,2003,132:799-806.

[7]Bahri Turan.On ideal operators[J].Positivity,2003,7:141-148.

[8]Abramovich Y A,kitover A K.A characterization of operators preserving disjointness in terms of their inverse[J].Positivity,2000,4:205-212.

[9]Pagter B D,Schep A R.Band decompositions for disjointness preserving operators[J].Positivity,2000, 4:259-288.

[10]曹金文,胡燦.關(guān)于完全強(qiáng)仿緊空間的刻畫(huà)[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2004,20(2):193-196.

Some properties of the range of disjointness preserving operators

CHEN Zhi-jie,CHEN Zi-li,CHENG Na

(College of Mathematics,Southwest Jiaotong University,Chengdu610031,China)

In this paper,some properties of the range of disjointness preserving operators are discussed.Firstly, the characterization is given,which is that the range of disjointness preserving operator is Riesz subspace. Secondly,some properties of disjointness preserving operators effecting on principal ideal and band are also given.

disjointness preserving operators,interval preserving operators,range,principal bands

O177.2

A

1008-5513(2009)04-0774-03

2008-03-25.

陳志杰(1984-),碩士,研究方向:泛函分析.

2000MSC:46A40,47B60

猜你喜歡
性質(zhì)
含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
MP弱Core逆的性質(zhì)和應(yīng)用
弱CM環(huán)的性質(zhì)
一類(lèi)非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
隨機(jī)變量的分布列性質(zhì)的應(yīng)用
一類(lèi)多重循環(huán)群的剩余有限性質(zhì)
完全平方數(shù)的性質(zhì)及其應(yīng)用
三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
性質(zhì)(H)及其攝動(dòng)
九點(diǎn)圓的性質(zhì)和應(yīng)用
主站蜘蛛池模板: 无码丝袜人妻| 99视频全部免费| 免费人成在线观看成人片| 亚洲视频二| 在线观看亚洲天堂| 高清无码一本到东京热| 久久亚洲高清国产| 日本成人福利视频| 国产一区二区三区免费| 老熟妇喷水一区二区三区| 国产一级片网址| 精品亚洲麻豆1区2区3区| 国产人免费人成免费视频| 国产成人免费手机在线观看视频| 天天做天天爱天天爽综合区| 亚洲婷婷在线视频| 欧美成人午夜在线全部免费| 丁香婷婷综合激情| 人妻中文字幕无码久久一区| 久久国产亚洲欧美日韩精品| 天天操精品| 国内99精品激情视频精品| 人妻少妇久久久久久97人妻| 69av在线| 免费一级α片在线观看| 欧美日韩中文国产va另类| 国产成人毛片| 99re这里只有国产中文精品国产精品| 亚洲人成网站色7777| 激情影院内射美女| 91免费国产高清观看| 在线播放91| 亚洲AV无码乱码在线观看裸奔| 国产无遮挡裸体免费视频| 国产综合另类小说色区色噜噜 | 国产69囗曝护士吞精在线视频| 欧美亚洲国产精品第一页| 中文字幕欧美日韩高清| 99久久亚洲综合精品TS| 日韩欧美中文| 日韩精品一区二区三区大桥未久| 不卡色老大久久综合网| 大香网伊人久久综合网2020| 亚洲AV色香蕉一区二区| 国产精品久线在线观看| 香蕉国产精品视频| 亚洲国产精品无码AV| 久久99热这里只有精品免费看| 最新亚洲人成无码网站欣赏网| 亚洲综合国产一区二区三区| 99精品高清在线播放| 无码久看视频| 国产福利免费在线观看| 天堂网国产| 狠狠色香婷婷久久亚洲精品| 国产人在线成免费视频| 在线观看91香蕉国产免费| 成人毛片免费观看| 欧美激情,国产精品| 无码高潮喷水专区久久| 色国产视频| h网站在线播放| 亚洲va在线∨a天堂va欧美va| 日韩成人免费网站| AV熟女乱| 小说区 亚洲 自拍 另类| 刘亦菲一区二区在线观看| 欧美成人亚洲综合精品欧美激情| 国产精品天干天干在线观看| 久久动漫精品| 一级毛片无毒不卡直接观看 | 国产清纯在线一区二区WWW| 中文字幕2区| 国产夜色视频| 欧美精品综合视频一区二区| 天天色天天综合| 国产美女免费| 香蕉精品在线| 国产二级毛片| 色综合五月婷婷| 亚洲精品日产精品乱码不卡| 97视频在线观看免费视频|