楊倩麗,劉欣宇
(渭南師范學院數學與信息科學系,陜西渭南 714000)
關于勒讓德多項式與契貝謝夫多項式間的關系
楊倩麗,劉欣宇
(渭南師范學院數學與信息科學系,陜西渭南 714000)
主要研究勒讓德多項式與契貝謝夫多項式之間的關系的性質,利用生成函數和函數級數展開的方法,得出了勒讓德多項式與契貝謝夫多項式之間的一個重要關系,這對勒讓德多項式與契貝謝夫多項式的研究有一定的推動作用.
勒讓德多項式;恒等式;契貝謝夫多項式

的系數定義的,它們在函數的正交性理論研究中占有十分重要的位置,并引起了不少學者的重視和興趣,文[1-4]利用此理論給出了Fibonacci數的一些性質.本文得到勒讓德多項式與契貝謝夫多項式之間的一個重要關系.








于是完成了定理的證明.
[1]Zhang Wenpeng.Some identities involving the Fibonacci numbers[J].The Fibonacci Quarterly,1997,35:225-229.
[2]Li Hailong.On generalized Euler constants and an integral related to the Piltz divisor problem[J].Proc.Sci. Sem.Fac.Phys.Math.Siauliai Univ.,2005,8:81-89.
[3]Li Hailong,Toda M.Elaboration of some results of Srivastava and Choi[J].Journal of Analysis and Application,2006,25:517-533.
[4]Li Hailong,Kanemitus S.Tsukada H.Modular relation interpretation of the series involving the Riemann zeta values[J].Proceedings of The Japan Academy Series A:Mathematical Sciences,2008,84(8):133-162.
[5]周亞蘭,王霞.勒讓德多項式的性質與契貝謝夫多項式間的關系[J].純粹數學與應用數學,1999,15(4):75-81.
On relationship of Legendre polynomials and Chebyshev polynomials
YANG Qian-li,LIU Xin-yu
(Department of Mathematics and Information Science, Weinan Teachers University,Weinan714000,China)
This paper discusses a property of the Legendre polynomials and Chebyshev polynomials,by a means of form faction and function series,an important relationship of the Legendre polynomials and Chebyshev polynomials is given.It will have a certain impetus to the research of the Legendre polynomials and Chebyshev polynomials.
Legendre polynomials,identity,Chebyshev polynomials
O156.4
A
1008-5513(2009)03-0448-06
2007-11-10.
陜西省自然科學基金(SJ08A22).
楊倩麗(1964-),教授,研究方向:數論.
2000MSC:11B83