李新春
數學教學不僅是讓學生掌握數學知識,更重要的是使學生學會思考,提高學生的思維能力。那么,怎樣才能使學生學會思考呢?筆者認為引導學生學會質疑是使學生學會思考的前提。宋代朱熹曾說過“讀書無疑須有疑,有疑定要求無疑。無疑本自有疑始,有疑方能達無疑。”英國哲學家波普爾也說“科學只能從問題開始?!闭n堂上我喜歡在講解之前先讓學生提問題,把自己不懂的問題,自己發現的問題提出來,大家共同解決。可能有人認為這樣會占用很長的課堂時間,會影響教學任務的完成,但是我覺得這很有必要。在課堂教學中鼓勵學生大膽質疑,不但能滿足學生自我表現的需要,而且能使學生體驗到學習、探究的快樂。
在學習“小數除以整數”時,齊讀課題之后,我請學生圍繞課題展開思考,讓學生在寬松的氛圍下,展開想象的翅膀,大膽提問:
(1)小數除以整數時,什么時候給商點小數點?
(2)小數除以整數,怎么給商點小數點?
(3)小數除法跟整數除法一樣嗎?
(4)小數除法的豎式跟整數除法的豎式一樣嗎?
(5)小數除以整數,除不盡,怎么辦?
應該說學生提出的這些問題還是很有意義,而且有時學生提出的問題中就包含著本課教學的重點、難點。帶著這些問題,我讓學生嘗試計算22.4÷4。學生在計算過程中獨立解決了前四個問題。但是,這遠比教師講解給學生要印象深刻。而且學生在解決問題的過程中又產生了新的問題:
①某同學在豎式計算中,出現這樣的情況:

這引起了大家爭論,學生雖然都知道他的計算過程有錯誤,但是又說不清為什么。他們都急切地想知道上式到底錯在哪里,這時教師再講解就順理成章了。
②有位同學又提出了這樣一個問題:被除數有幾位小數,商就有幾位小數嗎?這一問題我讓學生在練習中自己去尋求答案。
由于學生前面提出的第五個問題的內容已經超出了本課的學習范圍,所以我并不急于告訴學生答案,而是把問題留待后面的學習中去解決。
“動態生成”是新課程改革的核心理念之一。學生不斷地提出新問題,說明他們是在主動思考,而不是被動接受。
從生疑到質疑,最終到釋疑,這個過程就是認知、加工的過程,也就是知識建構的過程。有效教學極其重要的特征就是培養學生的問題意識—發現問題和提出問題。
同樣的教學內容,在另外一個班教學時,學生提出了這樣的問題:
⑴商一定是小數嗎?
⑵被除數一定大于除數嗎?
這兩個問題沒有涉及到當堂課的學習內容,而與第二天所學內容有關。所以在第二天的數學課上,我把學生的問題寫到黑板上,在學習過程中,第二個問題自然被解決了。在快下課時,提出第一個問題的學生自己站起來說:“老師,我發現商不一定是小數,9.6÷9.6=1,商不是小數,而是整數?!边@就是學生自己提出的問題通過探究自己解決。
愛因斯坦說:“提出問題比解決問題更重要。”數學學習重視的是培養學生從生活中發現問題并提出問題的能力。
在學習“小數乘小數”時,學生嘗試計算1.2×0.8,板演時出現這種情況:

我讓這位同學說說自己的計算過程,他講得很好,卻不知道積的小數點應點在哪里,這就是學生在學習中提出的問題。而很多時候,學生的疑點便是教學的重點或難點,這些疑點解決的過程便是學生獲取知識的過程。正所謂“學貴有疑,小疑則小進,大疑則大進?!?/p>
“于無疑處有疑,方是進矣?!痹趯W習折線統計圖后,學生質疑:醫院監測病人心臟變化的心電儀顯示的是折線統計圖嗎?可見,數學與生活是密切聯系的,學生已經學會用數學的眼光去思考現實生活中的問題。在學習重量單位噸、千克時,有學生問:長度單位有千米,重量單位有“千噸”嗎?當然有的問題不見得一定要回答,讓學生帶著問題去成長,培養學生總是要去問一個為什么的習慣,這本身就有十分重要的價值。
此外,在教學中,鼓勵學生大膽猜測,提出一些“異想天開”的想法,則有利于培養學生創造性思維與創新能力。在學習《小數乘法的簡便運算》時,揭示課題之后,我引導學生質疑,有兩名學生很快舉起手來。第一個問:“在小數乘法的簡便運算中會不會產生新的運算定律?”另一個問:“在小數乘法的簡便運算中,有沒有一些計算是整數乘法運算定律解決不了的?”這些大膽、新穎的問題給課堂帶來了新的生機,激發了學生創新的火花。
總之,教師在課堂教學要激發學生“問”的興趣,培養學生“問”的意識,教給學生“問”的方法,開掘學生“問”的潛能,這樣才能充分開發學生的智能,培養他們的創新能力。
(責任編輯 李 婧)