摘要:實踐證明,大多變壓器的損壞和故障都是因絕緣系統的損壞而造成。據統計,因各種類型的絕緣故障形成的事故約占全部變壓器事故的85%以上。對正常運行及注意進行維修管理的變壓器,其絕緣材料具有很長的使用壽命。掌握電力變壓器的絕緣性能及合理的運行維護,直接影響到變壓器的安全運行、使用壽命和供電可靠性,電力變壓器是電力系統中重要而關鍵的主設備,作為變壓器的運行維護人員和管理者必須了解和掌握電力變壓器的絕緣結構、材料性能、工藝質量、維護方法及科學的診斷技術,并進行優化合理的運行管理,才能保證電力變壓器的使用效率、壽命和供電可靠性。
關鍵詞:變壓器 絕緣 故障 分析 技術
0 引言
為了使設備的外形尺寸保持在可以接受的水平,現代變壓器的設計采用了更為緊湊的絕緣方式,在運行中其內部各組件間的絕緣所需承受的熱和電應力水平顯著升高。當變壓器內部故障涉及固體絕緣時,無論故障的性質如何,通常認為是相當嚴重的。如能確定變壓器發生異?;蚬收蠒r是否涉及固體絕緣,也就初步確定了故障的部位,對設備檢修工作很有幫助。
1 影響變壓器絕緣故障的主要因素
影響變壓器絕緣性能的主要因素有:溫度、濕度、油保護方式和過電壓影響等。
1.1 溫度的影響。電力變壓器為油、紙絕緣,在不同溫度下油、紙中含水量有著不同的平衡關系曲線。一般情況下,溫度升高,紙內水分要向泊中析出;反之,則紙要吸收油中水分。因此,當溫度較高時,變壓器內絕緣油的微水含量較大;反之,微水含量就小。
溫度不同時,使纖維素解環、斷鏈并伴隨氣體產生的程度有所不同。在一定溫度下,CO和CO2的產生速度恒定,即油中CO和CO2氣體含量隨時間呈線性關系。在溫度不斷升高時,CO和CO2的產生速率往往呈指數規律增大。因此,油中CO和CO2的含量與絕緣紙熱老化有著直接的關系,并可將含量變化作為密封變壓器中紙層有無異常的判據之一。變壓器的壽命取決于絕緣的老化程度,而絕緣的老化又取決于運行的溫度。如油浸變壓器在額定負載下,繞組平均溫升為65℃,最熱點溫升為78℃,若平均環境溫度為20C,則最熱點溫度為98℃;在這個溫度下,變壓器可運行20-30年,若變壓器超載運行,溫度升高,促使壽命縮短。國際電工委員會(1EC)認為A級絕緣的變壓器在80~140C溫度范圍內,溫度每增加6℃,變壓器絕緣有效壽命降低的速度就會增加一倍,這就是6℃法則,說明對熱的限制已比過去認可的8℃法則更為嚴格。
1.2 濕度的影響。水分的存在將加速紙纖維素降解。因此,CO和叫的產生與纖維素材料的含水量也有關。當濕度一定時,含水量越高,分解出的CO2越多。反之,含水量越低,分解出的CO就越多。絕緣油中的微量水分是影響絕緣特性的重要因素之一。絕緣油中微量水分的存在,對絕緣介質的電氣性能與理化性能都有極大的危害,水分可導致絕緣油的火花放電電壓降低,介質損耗因數tg8增大,促進絕緣油老化,絕緣性能劣化。而設備受潮,不僅導致電力設備的運行可靠性和壽命降低,更可能導致設備損壞甚至危及人身安全。
1.3 油保護方式的影響。變壓器油中氧的作用會加速絕緣分解反應,而含氧量與油保護方式有關。另外,油保護方式不同,使CO和CO2在油中分解和擴散狀況不同。如CO的溶解小,使開放式變壓器CO易擴散至油面空間,因此,開放式變壓器一般情況CO的體積分數不大于300x10-6。密封式變壓器,由于油面與空氣絕緣,使CO和CO2不易揮發,所以其含量較高。
1.4 過電壓的影響。
1.4.1 暫態過電壓的影響。三相變壓器正常運行產生的相、地間電壓是相間電壓的58%,但發生單相故障時主絕緣的電壓對中性點接地系統將增加30%,對中性點不接地系統將增加73%,因而可能損傷絕緣。
1.4.2 雷電過電壓的影響。雷電過電壓由于波頭陡,引起縱絕緣(匝問、并間、絕緣)上電壓分布很不均勻,可能在絕緣上留下放電痕跡,從而使固體絕緣受到破壞。
1.4.3 操作過電壓的影響。由于操作過電壓的波頭相當平緩,所以電壓分布近似線性,操作過電壓波由一個繞組轉移到另一個繞組上時,約與這兩個繞組間的匝數成正比,從而容易造成主絕緣或相間絕緣的劣化和損壞。
1.4.5 短路電動力的影響。出口短路時的電動力可能會使變壓器繞組變形、引線移位,從而改變了原有的絕緣距離,使絕緣發熱,加速老化或受到損傷造成放電、拉弧及短路故障。
2 變壓器絕緣故障的分析方法
2.1 判斷固體絕緣故障的常規方法 CO、CO2是纖維材料的老化產物,一般在非故障情況下也有大量積累,往往很難判斷經分析所得的CO、CO2含量是因纖維材料正常老化產生的,還是故障的分解產物。
月崗淑郎研究了使用變壓器單位紙重分解并溶于油中的碳的氧化物總量,即(CO+CO2)mL/g(紙)來診斷固體絕緣故障。但是,已投運的變壓器的絕緣結構、選用材料和油紙比例隨電壓等級、容量、型號及生產工藝的不同而差別很大,不可能逐一計算每臺變壓器中絕緣紙的合計質量,該方法因實際操作困難,難以應用;并且,考慮全部紙重在分析整體老化時是比較合理的,如故障點僅涉及固體絕緣很小的一部分時,使用這種方法也很難比單獨考慮CO、CO2含量更有效。
以CO/CO2的比值作為判據,來確定故障與固體絕緣間的關系。CO/CO2>0.33或<0.09時表示可能有纖維絕緣分解故障,在實踐中這種方法也有相當大的局限性。
2.2 固體絕緣故障的動態分析方法 新的預防性試驗規程規定,運行中330kV及以上等級變壓器每隔3個月進行一次油中溶解氣體分析,但目前很多電業局為保證這些重要設備的安全,有的已將該時間間隔縮短為1個月。也有部分電業局已開展了油色譜在線監測的嘗試,這為實現故障的連續追蹤,提供了良好的技術基礎。
電力變壓器內部涉及固體絕緣的故障包括:圍屏放電、匝間短路、過負荷或冷卻不良引起的繞組過熱、絕緣浸漬不良等引起的局部放電等。無論是電性故障或過熱故障,當故障點涉及固體絕緣時,在故障點釋放能量的作用下,油紙絕緣將發生裂解,釋放出CO和CO2。但它們的產生不是孤立的,必然因絕緣油的分解產生各種低分子烴和氫氣,并能通過分析各特征氣體與CO和CO2間的伴生增長情況,來判斷故障原因。
判斷故障的各特征氣體與CO和CO2含量間是否是伴隨增長的,需要一個定量的標準。本文通過對變壓器連續色譜監測的結果進行相關性分析,來獲得對這一標準的統計性描述。這樣可以克服溶解氣體累積效應的影響,消除測量的隨機誤差干擾。
從變壓器運行可靠性的重要性和變壓器與油色譜在線監測裝置的價格比來看,采用在線監測裝置在技術經濟上都有顯著的優勢,既提高了變電站運行的管理水平,又可為從預防性維修體系過渡到預知性維修體系奠定基礎。因此,變壓器油中溶解氣體在線監測及故障診斷技術的研究具有重要的現實意義和實用價值。