余紅巖
(衢州市龍游第二高級中學(xué) 浙江 衢州 324400)
2009年浙江省高考理綜試卷物理部分,從命題的立意到方法手段都給人以耳目一新的感覺.在力電綜合中出現(xiàn)了很多新情景題,考生要取得好成績,須有很強(qiáng)的模型再造能力和跳躍性思維能力.
所謂模型再造能力,是指在原有物理模型的的基礎(chǔ)上,進(jìn)行模型重組,建立一個(gè)新的模型能力.在物理教學(xué)中,教師只有在概念教學(xué)的基礎(chǔ)上,有目的地對學(xué)生進(jìn)行模型再造訓(xùn)練,才能使學(xué)生具有這種能力.
所謂跳躍性思維能力,是指在原有模型不變的前提下,進(jìn)行發(fā)散思維后,有目的地將模型進(jìn)行再造,并用新的模型進(jìn)行思維躍遷,建立起知識應(yīng)用跨度較大的橫向聯(lián)系的能力.在物理教學(xué)中,教師只有在發(fā)散思維訓(xùn)練的基礎(chǔ)上,有目的地利用模型再造,將知識拓展進(jìn)行跳躍性思維訓(xùn)練,才能使學(xué)生具有這種能力.
下面就以2009年浙江省高考理綜試卷物理部分的一些試題為例,闡明高三物理總復(fù)習(xí)中模型再造與跳躍性思維能力培養(yǎng)的重要性.
【例題1】(2009年浙江省高考理綜試卷第16題)

圖1
如圖1所示,在光滑絕緣水平面上放置3個(gè)電荷量均為q(q<0)的相同小球,小球之間用勁度系數(shù)均為k0的輕質(zhì)彈簧絕緣連接.當(dāng)3個(gè)小球處在靜止?fàn)顟B(tài)時(shí),每根彈簧長度為l.已知靜電力常量為k,若不考慮彈簧的靜電感應(yīng),則每根彈簧的原長為
這個(gè)題的原型是:兩球模型
原型題1:如圖2所示的兩個(gè)電荷量均為q(q<0)的相同小球小球之間用勁度系數(shù)均為k0的輕質(zhì)彈簧絕緣連接.當(dāng)2個(gè)小球處在靜止?fàn)顟B(tài)時(shí),彈簧長度為L, 已知靜電力常量為k,若不考慮彈簧的靜電感應(yīng),則彈簧的原長L0為多少?

圖2
解:由二力平衡知識、庫侖定律和胡克定律,對任一個(gè)球分析
發(fā)散思維訓(xùn)練:如果改為兩個(gè)電荷量均為的異種電荷,其他條件不變,答案是否變化?
跳躍思維訓(xùn)練:如果改為三球模型如何求解?
通過對原型的拓展可知,解本高考題要用到三球模型,學(xué)生必須對原來的模型進(jìn)行重組,屬于跳躍性思維訓(xùn)練.
求解過程:由三力平衡知識、庫侖定律和胡克定律,對左球分析
故選C.
小結(jié):通過解題可以看出,模型轉(zhuǎn)換和跳躍性思維是十分重要的.通過模型轉(zhuǎn)換,使物理問題情境化,再合理選擇研究對象,進(jìn)行狀態(tài)分析,最后寫出物理規(guī)律的數(shù)學(xué)表達(dá),不難得出正確答案.
【例題2】(2009年浙江省高考理綜試卷第20題)
空間存在勻強(qiáng)電場,有一電荷量q(q>0)、質(zhì)量m的粒子從O點(diǎn)以速率v0射入電場,運(yùn)動(dòng)到A點(diǎn)時(shí)速率為2v0.現(xiàn)有另一電荷量-q、質(zhì)量m的粒子以速率2v0仍從O點(diǎn)射入該電場,運(yùn)動(dòng)到B點(diǎn)時(shí)速率為3v0.若忽略重力的影響,則
A.在O、A、B三點(diǎn)中,B點(diǎn)電勢最高
B.在O、A、B三點(diǎn)中,A點(diǎn)電勢最高
C.OA間的電勢差比BO間的電勢差大
D.OA間的電勢差比BO間的電勢差小
這個(gè)題的原型是:兩點(diǎn)模型
原型題2:如圖3,空間存在勻強(qiáng)電場,有一電荷量q(q>0)、質(zhì)量m的粒子從O點(diǎn),以速率v0射入電場,運(yùn)動(dòng)到A點(diǎn)時(shí)速率為2v0.若忽略重力的影響,則
A.在O、A兩點(diǎn)中,O點(diǎn)電勢最高
B.在O、A兩點(diǎn)中,A點(diǎn)電勢最高



圖3
解:由O運(yùn)動(dòng)到A,根據(jù)動(dòng)能定理得
φO>φA
故選A、D.
發(fā)散思維訓(xùn)練:如果用守恒觀點(diǎn)解題,如何列式?
跳躍思維訓(xùn)練:如果改為三點(diǎn)模型如何求解?
通過對原型的拓展可知,解此題要用到三點(diǎn)模型,學(xué)生要能進(jìn)行跳躍性思維.

圖4
本題求解過程:首先建立三球模型,然后用分解法展示物理過程,如圖4所示.由O運(yùn)動(dòng)到A,根據(jù)動(dòng)能定理得
φO>φA
由B運(yùn)動(dòng)到O,根據(jù)動(dòng)能定理得
φB>φO
故選A、D.
小結(jié):這個(gè)題的求解過程,需要學(xué)生由兩點(diǎn)模型過渡到三點(diǎn)模型進(jìn)行模型再造和跳躍性思維.用動(dòng)能定理或能量守恒都能求解.
【例題3】(2009年浙江省高考理綜試卷第23題)

圖5

(1)小物塊與金屬板A碰撞前瞬間的速度大小是多少?
(2)小物塊碰撞后經(jīng)過多長時(shí)間停止運(yùn)動(dòng)?停在何位置?

圖6
原型題3:如圖6所示,相距為d的平行金屬板A、B豎直放置,在兩板之間水平放置一粗糙平板.有一質(zhì)量m的小物塊在與金屬板A相距L處靜止.若

(1)小物塊與金屬板A碰撞前瞬間的速度大小是多少?
(2)小物塊碰撞后經(jīng)過多長時(shí)間停止運(yùn)動(dòng)?停在何位置?
解:(1)加初速度后,摩擦力作用下向A板做勻減速直線運(yùn)動(dòng).小物塊速度與摩擦力方向相反,則合外力為F合=-μmg,故小物塊運(yùn)動(dòng)的加速度為
a1=-μg
v12-v02=2a1L
設(shè)小物塊與A板相碰時(shí)的速度為v1,解得
(2)小物塊做勻減速直線運(yùn)動(dòng),小物塊所受的合外力大小為F合=-μmg,故小物塊的加速度為
a2=-μg
由運(yùn)動(dòng)學(xué)公式有
0-v1=-a2t
解得
設(shè)小物塊碰后停止時(shí)距離A板的距離為x,有
0-v12=-2a2x
則
x=L(或距離B板為d-L)
發(fā)散思維訓(xùn)練:全程運(yùn)用動(dòng)能定理,如何求解停的位置?
跳躍思維訓(xùn)練1:若要求小物體最終停在B端,對v0有什么要求?

通過對原型題的拓展可知,解題既要用到力學(xué)模型又要用到電學(xué)模型;學(xué)生要能進(jìn)行跳躍性思維.
求解過程:(1)加電壓后,B板電勢高于A板,小物塊在電場力與摩擦力共同作下向A板勻直線運(yùn)動(dòng).則合外力為
F合=qE-μmg
加速度為
設(shè)小物塊與A板相碰時(shí)的速度為v1,由
v12=2a1l
解得
(2)小物塊所受的合外力大小為

0-v1=-a2t
故
由運(yùn)動(dòng)學(xué)公式有
0-v12=-2a2x
則距離B板為d-2l.
小結(jié):求解過程中,需要學(xué)生由力學(xué)模型過渡到電學(xué)模型進(jìn)行模型再造和跳躍性思維,通過建模使物理問題情境化;再對研究對象進(jìn)行狀態(tài)和過程分析;最后由物理規(guī)律的數(shù)學(xué)表達(dá)進(jìn)行邏輯推理,從而完整地展示解題過程,就能得出正確答案.為了加深對動(dòng)能定理的理解,還可以用動(dòng)能定理求解此題.
綜合以上三個(gè)高考題及三原型題拓展,可以看出,任何一個(gè)復(fù)雜的高考題目,都是物理模型的重組和再造.只要學(xué)生能在解題中熟練進(jìn)行模型轉(zhuǎn)換,用分解法展示物理情境,用自己的語言描述物理過程,用推理法闡述解題思路,就可以在發(fā)散思維的基礎(chǔ)上進(jìn)行跳躍性思維,并大大簡化了解題的思維過程,同時(shí)也提高解題的速度和準(zhǔn)確性.因此,在高三物理總復(fù)習(xí)中,模型再造能力培養(yǎng)與跳躍性思維能力的培養(yǎng)是十分重要的.如果在高三第一輪復(fù)習(xí)中就能意識到這個(gè)問題,并適時(shí)進(jìn)行有針對性的訓(xùn)練,就一定能提高學(xué)生的解題能力和物理學(xué)習(xí)的思維水平.
參考文獻(xiàn)
1 樂洪勇.高考物理對“過程方法”目標(biāo)考查的探索.中學(xué)物理教學(xué)參考,2008(4):46
2 許勤.高中物理教學(xué)和高考復(fù)習(xí)的幾點(diǎn)做法.中學(xué)物理教學(xué)參考,2003(1~2):42
3 聶建軍.科學(xué)創(chuàng)設(shè)平臺幫助學(xué)生跳出題海.中學(xué)物理,2002(6):10
4 劉旺海.談解題后再思考對學(xué)生思維能力的培養(yǎng).中學(xué)物理教學(xué)參考,2002(7):42