刁國影,胡貴軍,李公羽,崔云鵬
(吉林大學 通信工程學院光通信系,吉林 長春 130012)
基于模式群分集復用(MGDM, mode group diversity multiplexing)的 MIMO (multiple-input multiple-output)多模光纖通信技術能夠有效利用多模光纖的眾多模式提高其傳輸能力,得到了人們極大關注[1~3]。該技術的核心思想是在發送端選擇激發多模光纖的多個不同模式群,每個模式群分別作為信息的傳輸通道,從而在單根光纖中建立起多個并行信道,同時傳輸多種不同業務,實現高速大容量信息在多模光纖中的有效傳輸[4,5]。然而由于多模光纖的模式混合效應,使得接收端檢測到的信號是多個源信號不同程度的疊加,即存在信道串擾。因而,如何從輸出信號中分離源信號是該技術迫切需要解決的難題。
MGDM 多模光纖通信系統輸出信號與輸入信號之間的關系可以用實值的信道矩陣H來描述[6,7]。以2×2系統為例,則有:

每一路輸出信號 rj(t)都是各路輸入信號 si(t)按系數hij的線性組合,hij表示第i路發送信號到第j路接收的功率[8]。從上面的模型可以看出,對MGDM 系統輸出信號的分離可以采用逆矩陣法,即利用導頻信號測量信道矩陣,然后求逆,再與接收信號相乘得到源信號,這也是目前最常用的方法[9,10]。但這種方法需要借助導頻信號,且必須進行矩陣求逆,運算量大,硬件實現困難,而且導頻信號一般采用頻分復用,占用一定的帶寬,帶寬利用率低,降低了系統的傳輸效率。基于MGDM多模光纖通信系統信道模型的線性特征,本文首次將獨立成分分析用于MGDM系統,使用瞬時線性疊加模型的ICA算法分離輸出信號。其基本思想是把多維觀測信號按照統計獨立的原則建立目標函數,通過優化算法將觀測信號分解為若干獨立成分,即 ICA=目標函數+優化算法。利用該算法,對一個基于MGDM的 2×2多模光纖通信系統的實際輸出信號進行分離,取得了較好的效果,證明了該算法的有效性。該方法僅利用接收信號實現信號分離,無需信道估計,適用性強,系統復雜度低,有利于維持系統的低成本設計。
ICA模型如圖1所示。s = [s1, s2,…, sn]T為n個未知的源信號,滿足統計獨立和非高斯假設(至多只有一個高斯信號),x = [x1, x2, …, xm]T為m個觀測到的混合信號,A為系統的混合矩陣,滿足

源信號s和混合矩陣A都是未知的,只有混合后的信號x是可以觀測到的[11]。ICA的目標就是尋找一個分離矩陣W,使得分離信號y=Wx=WAs=Ps,其中P為廣義交換矩陣[12](即P每行、每列僅有一個非零元素)。如果y的各分量相互獨立,則y的某一分量 yi就近似認為是 s的某一分量sj(i,j=1,2,…,n)。

圖1 ICA數學模型
負熵是經典的獨立性度量方法,其定義為

其中,v是與y具有相同均值和協方差矩陣的高斯變量。在實際負熵計算中,由于概率密度函數p(y)未知,故一般由式(4)估算。

其中,G(·)為任意的實際非二次函數。ICA 算法目的就是通過優化算法選取w,使得JG(y)最大,即使E{G(y)}= E{ G (WTz)}最大,其中z是x經過去均值、白化預處理后的數據。去均值可以相當程度地簡化算法,并且混合矩陣在去均值后保持不變,不影響對W的估計。白化處理可去除各觀測信號間的相關性,不相關是統計獨立的必要條件,因而簡化了后續獨立分量的提取過程。
FastICA是一種高效的優化算法,它可由不動點迭代或牛頓方法的近似推導得到[13]。FastICA算法是對分離矩陣W的每個行矢量w進行如下迭代:

其中,g(·)是G(·)的導數,w應該在每步迭代中歸一化為單位范數。歸一化的作用是為了簡化 ICA算法,使迭代過程更加穩定。上述算法只估計了一個獨立分量,所有獨立分量的并行提取步驟如下:
1) 對觀測數據x進行預處理,即去均值,再白化,得到z;
2) 確定要估計的獨立成分的數目n;
3) 選取單位范數的初始化向量wi(i=1,…, n),采用步驟5)的方法對矩陣W進行正交化;
5) 對矩陣 W=[w1,…,wn]T進行對稱正交化:W←(WWT)-1/2W;
6) 如果尚未收斂,則返回步驟4)。
其中步驟 5)是采用對稱正交化方法對每一次迭代后wi的線性組合z,z,…,z去相關,目的是把已經提取過的分量去掉,保證每次提取出來的都是尚未提取過的信源[14]。
基于瞬時線性疊加的 ICA模型屬于基本 ICA模型,其求解時要求滿足以下幾個限制條件。
1) 源信號之間統計獨立。這是求解所有 ICA問題的最基本條件。
2) 源信號中至多有一個服從高斯分布。因為高斯信號混合后仍服從高斯分布,從而無法分離相互獨立的高斯分布的各分量。
3) 觀測信號數目要大于或等于源信號數目,即mn≥,保證A的逆矩陣存在。因為當m<n時矩陣A是不可逆的,此時源信號的分離是不可能的或者是很困難的。
4) 無噪聲或噪聲很小可以忽略不計。因為噪聲變量可看成是獨立分量,所以噪聲ICA模型可視為無噪ICA模型在m<n時的特殊情況,這是一個超完備基的病態ICA問題,在基本模型中不做考慮。
在實驗室搭建了一個2×2的MGDM通信系統,實現兩路信號的同時傳輸,實驗裝置圖如圖2所示。在發送端,由信號源產生的速率為 100Mbit/s和15Mbit/s的兩路NRZ碼元信號,分別加載到激光器上轉變為光信號,兩路光信號分別以不同的偏心量選擇激發多模光纖的不同模式群,信號1在纖芯中心處激發低階模式群,信號2在偏心距26μm處激發高階模式群[15],這兩路信號經2×1的多模耦合器耦合進入1km長的多模光纖中傳輸,實現模式群的復用。接收端對稱設計,連接光電檢測器的單模光纖在多模光纖橫截面的不同區域接收信號,低階模式群在纖芯中心處接收,而高階模式群在纖芯外圍的環狀區域接收[16]。用數字示波器記錄接收到的信號波形,最后送入ICA處理單元進行信號分離(ICA處理單元的功能由PC機實現,完成數據采集和算法應用)。
圖3為示波器記錄的源信號和接收信號波形。從圖中可以看出,兩路源信號經系統傳輸到達接收端時都出現了失真,信號2尤為嚴重。這主要是因為高低階模式群之間的耦合使兩信道間產生了串擾。

圖2 2×2的MGDM通信系統實驗裝置圖

圖3 2×2的MGDM通信系統輸入輸出信號波形
在搭建的2×2 MGDM多模光纖通信系統中,信號源產生的兩路信號分別加載到不同的激光器上轉變為光信號傳輸,滿足源信號之間統計獨立;源信號為 NRZ碼元信號,其統計特性均服從非高斯分布;源信號和觀測到的接收信號都是兩路,m=n=2,滿足混合矩陣可逆;在實驗室條件下,該系統引入的噪聲影響很小,當噪聲影響較大時,通過濾波器去噪,可以實現輸出信號的極低噪聲。可見,搭建的MGDM系統完全滿足基本ICA應用的條件,可以采用ICA算法對輸出信號進行處理。
本文利用基于負熵最大化的FastICA算法對接收到的混合信號進行了處理,得到分離后的信號,然后再進行判決。圖 4(a)為 100Mbit/s信號的算法分離和判決波形,圖4(b)為15Mbit/s信號的算法分離和判決波形。從圖中可以看出源信號已成功分離出來。

圖4 信號分離和判決波形
本文首次將ICA應用到MGDM多模光纖通信系統輸出信號的分離中,根據ICA算法原理以負熵作為度量隨機變量非高斯性的目標函數,采用快速算法,對基于MGDM的2×2多模光纖通信系統的實際輸出信號進行分離,分離效果良好。將ICA應用于 MGDM 多模光纖通信系統輸出信號的分離中,除了要求已知源信號統計獨立外,無需其他先驗知識,無需信道估計,降低了系統復雜度,有利于維持系統的低成本設計,具有明顯優勢。
[1] STUART H R. Dispersive multiplexing in multimode optical fiber[J].Science,2000,289(5477)∶281-283.
[2] 樸大志, 陳新橋, 逯貴禎. 光多輸入多輸出系統信道容量的研究[J].光電子·激光,2007,18(8)∶915-918.PIAO D Z, CHEN X Q, LU G Z. Study of optical multiple input and multiple output capacity [J]. Journal of Optoelectronics Laser, 2007,18(8)∶915-918.
[3] AWAD M,DAYOUB I,OKASSA M A, et al. The inter-modes mixing effects in mode group diversity multiplexing[J]. Optics Communications,2009,282(19)∶3908-3917.
[4] SCHOLLMANN S,ROSENKRANZ W.Experimental investigations of mode coupling as limiting effect using mode group diversity multiplexing on GI-MMF[A]. 2006 European Conference on Optical Communications Proceedings, ECOC 2006[C]. Cannes, France,2006.
[5] SCHOLLMANN S,SONEFF S,ROSENKRANZ W. 10.7 Gbit/s over 300 m GI-MMF using a 2 x 2 MIMO system based on mode group diversity multiplexing[A]. Optical Fiber Conference OFC 2007[C].Anaheim, USA, 2007.
[6] TSEKREKOS C P,BOER M D,MARTINEZ,et al. An experimental investigation of the mode group diversity multiplexing technique[A].IEEE LEOS Benelux Symposium2005[C]. Mons, Belgium, 2005.
[7] TSEKREKOS C P,KOONEN M J. Mode-selective spatial filtering for increased robustness in a modegroup diversity multiplexing link [J].Optics Letters, 2007, 32(9)∶1041-1043.
[8] KOONEN M J, TSEKREKOS C P, BOER M D, et al. A first demonstrator for a mode group diversity multiplexing communication system[A]. IEE Seminar on Optical Fibre Communications and Electronic Signal Processing[C]. London, United Kingdom,2005.
[9] LAU A P T,XU L,WANG T. Performance of receivers and detection algorithms for modal multiplexing in multimode fiber systems[J].IEEE Photonics Technology Letters,2007,19(14)∶1087-1089.
[10] NAZARATHY M,AQMON A.Coherent transmission direct detection MIMO over short-range optical interconnects and passive optical networks[J]. Journal of Lightwave Technology,2008,26(14)∶ 2037- 2045.
[11] 楊福生. 獨立分量分析的原理與應用[M].北京:清華大學出版社,2006.YANG F S. The Principle and Applications of Independent Component Analyze[M].Beijing∶ Tsinghua University Press,2006.
[12] COMON P. Independent component analysis a new concept[J].Signal Processing ,1994,36(3)∶287-314.
[13] HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J].Neural Networks,1999,10(3)∶ 626-634.
[14] HYVARINEN A, KARHUNEN J, OJA E.Independent Component Analysis[M]. Finland∶ Wiley-Interscience, 2001.
[15] 楊春, 畢曉峰, 管志強. 偏心激勵聚合物光纖橫截面的光功率分布[J].光學學報,2004,24(9)∶1259-1264.YANG C, BI X F, GUAN Z Q. Optical power distribution in multimode polymer optical fiber under offset launching[J]. Acta Optica Sinica, 2004,24(9)∶1259-1264.
[16] KOONEN T, VANDENBOOM H, WILLEMS F, et al. Broadband multi-servise in-house networks using mode group diversity multiplexing[A]. Proc of POF 2002[C]. Tokio, 2002.