〔關鍵詞〕 數學教學;解題教學;針對性;典型性;能動性
〔中圖分類號〕 G633.6〔文獻標識碼〕 C
〔文章編號〕 1004—0463(2010)11(A)—0055—01
一、教學片斷
首先,我通過多媒體向學生展示了一道例題:如圖1所示,直線AM∥BN,點P在MA和NB之間,求證:∠APB=∠MAP+∠NBP。
學生很快就做出來了,我接著問:“同學們,還有其他方法來證明該題嗎?”學生經過一段時間的思考后,找到了如下3種方法:
方法1:連接AB,利用三角形內角和定理與平行線的性質證明;
方法2:延長BP交MA與F,利用三角形外角定理證明;
方法3:過P做MA的平行線,利用平行線的性質證明。
我對學生的證明都給予了肯定,然后將題中點P的位置改到了如圖2所示的位置,并提出了新的問題:若直線AM∥BN,點P在MA和NB之外,會有什么結果呢?在思考片刻后,有一個學生得出了結論:∠MAP =∠APB +∠NBP。我先讓該學生口述了其思考過程,接著引導學生對點P在MA和NB之外的其他情況通過畫圖作了探討,并得出相應的結果:∠MAP=∠APB+∠NBP,∠MAP+∠APB+∠NBP=360°(如圖3、圖4)。
在此基礎上,我又提出問題:“同學們看圖2與圖3,有什么相同和不同呢?”學生回答:“形式不一樣,但沒有本質區別。”我說:“那好,就將他們歸為一類。”接著又提出問題:“如果在MA和NB之間有兩點P1,P2,你們會得到什么結論?”學生開始討論起來,課堂氣氛非?;钴S。
二、課后反思
課后我認真分析、總結這節課,認為:教師在上習題課選擇例題時,要以教材為本,在教材的基礎上深入挖掘,在挖掘的過程中掌握好“度”。本節習題課中我大膽嘗試,題目安排從易到難,形成梯度,符合學生的認知規律。學生在學習過程中,自然地走進數學世界,通過動腦、動手,相互探究、相互合作,提高了應用所學知識與方法解決問題的能力。由此我認為,在解題教學中要注意以下幾點:
1. 例題的選擇要有針對性。解題教學不同于新授課,它以解題作為課堂教學的主要形式,若要達到高效的訓練目標,就要求教師在選擇例題時,必須針對教學目標、知識點、學生的學習現狀等。對于學習基礎好的學生要求少做甚至不做那些簡單題,但對其常犯錯誤的地方不但要多做而且要反復做。
2. 例題的選擇要有典型性。解題教學的習題選擇不要貪多貪全,有時看到好多題目都不錯,都想讓學生做一做,這樣勢必既增加了學生的學習負擔,又降低了學習效率。所以例題的選擇一定要典型,不僅要看主導知識點的覆蓋面,還要讓學生通過訓練能掌握規律,達到“以一當十”的目的。
3. 例題的設計要有一定梯度。同一個班級及學生的基礎知識、智力水平和學習方法等都存在一定差異。因此,在解題教學中習題的設計要針對學生的實際情況進行分層處理,既要創設舞臺讓學習好的學生發展個性,又要關注學困生,給他們提供參與的機會,使其感受成功的喜悅。
4. 解題教學的方式要多樣化。解題教學知識密度大、題型多(尤其是畢業年級),學生易疲勞,如果教學形式單一化,就很容易讓學生感到枯燥、乏味,從而挫傷學生學習的積極性。所以,在教學中一定要體現出教師的“教”與學生的“學”之間的雙邊、多向(師生、生生)活動,將講、練、思有機結合起來,并采用“要點啟發、重點講解、難點討論”等多種方式組織教學,為學生創設動口、動手、動腦的平臺與機會,激發學生全方位參與到“問題解決”的活動中來,從而達到有效減輕學生疲勞、提高課堂教學效率的目的。
5. 解題教學要發揮學生的能動性。課程標準要求必須尊重學生的主體地位和學生的主動精神,把學生的學習看作是主體滿足內在需求的主動探索過程。事實上,學生的學習過程是由參與欲望、參與過程、體驗成功等組成的一個動態過程。因此,在解題教學中教師要創設更多的機會,讓學生動腦、動口、動手,讓他們在主動探索與討論中達到問題的解決。