小學數學概念的創造性教學是指教師結合所要教學的數學概念,遵循創造性教學原則,運用創造性教學方法,以激發學生的創造動機,發揮學生的創造潛能,培養學生的創造性思維能力為目的而進行的教學活動。下面本人就小學數學概念創造性教學的教學目標、教學原則和教學方法談點兒自己的看法和做法。
一、形成概念的方法
1. 比較發現
比較發現是指通過比較事物之間的相同點和不同點,從而總結出本質屬性或規律。這種方法是針對事物之間的異同點進行探索,能提供對事物較為全面的認識,是一種重要的科學發現方法。運用這種方法可以使學生正確認識數學知識間的異同和關系,防止知識間的割裂與混淆,使學生更好地理解和掌握數學概念。
2. 類比發現
類比發現是指根據兩個或兩類事物在某些屬性上都相同或相似,聯想或猜想它們的其他屬性也可能相同或相似,繼而得到新的結論。它是依據客觀事物或對象之間存在的普遍聯系━━相似性,進行猜測得到結論的發現方法,它可以使學生明確知識間的聯系,建立概念系統。教學中適當地對學生進行“類比發現”的訓練,是培養學生創造性思維的一種重要手段。
例如,教學“比的基本性質”時,引導學生根據比與分數和除法之間的關系,即比的前項相當于分數的分子或除法中的被除數,比號相當于分數線或除號,后項相當于分母或除數,比值相當于分數值或商。再根據學習分數時學到了分數的基本性質和除法中有商不變的規律,大膽進行猜測,在“比”這部分知識中是不是也有一個比值不變的規律。最后通過驗證,得到“比的基本性質”。
3. 歸納發現
歸納發現是指引導學生對大量的個別材料進行觀察、分析、比較、總結,從特殊中歸納出一般的帶有普遍性的規律或結論。歸納發現是一種不完全歸納,但它仍能從特殊事例中發現該類事物的一般規律,因此這種方法也是一種具有創造性的發現方法。教學中可以引導學生通過對具體實例的直接觀察,進行歸納推理,得出結論,也可以讓學生對實際例子進行分析,歸納出結論。
4. 操作發現
操作發現是指講授新的知識前,教師要求學生制作或給學生提供學具,上課時學生按照教師的要求進行操作、實驗,使學生主動地、獨立地發現事物的本質屬性或規律。操作是一個眼、手、腦等多種器官協調的活動。讓學生動手操作去發現概念,可以開發學生的右腦功能,使學生的左腦和右腦協調發展。利用操作發現還能充分體現以學生為主體,教師為主導的教學思想,能使學生經歷知識產生與發展的過程,使學生經過親身實踐,在探求知識的過程中揭示規律,建立概念,掌握新知。
如講解“三角形的面積計算公式”時,讓學生拿出課前準備好的不同的三角形(任意三角形、直角三角形、直角等腰三角形等),分組進行實驗操作,拼擺出平行四邊形、長方形或者正方形,然后找出原來三角形與所拼成圖形各部分之間的關系,再根據它們的關系和所拼成圖形的面積計算公式,就可以推導出“三角形的面積計算公式”。
5. 嘗試發現
嘗試發現是指在教學過程中,教師不直接把現成的結論告訴學生,而是在教師的指導下,讓學生進行嘗試活動,使學生在嘗試中學習,在嘗試中發現,在嘗試中成功。嘗試是人們認識客觀事物尤其是未知事物的一種方式。許多發明創造都是通過嘗試而成功的。教學中讓學生嘗試著去進行發現,成功了可以使學生了解知識的產生發展過程,更好地理解和掌握概念;如果失敗,則可引導學生發現自己的錯誤,使學生了解錯誤產生的根源,為下一步的嘗試成功打下基礎。
二、形成概念的教學中應注意的問題
1. 要適當運用對比
對于容易混淆的新舊概念,要通過分析、對比找出它們的異同點,既要找到它們的內在聯系,又要找到它們的根本區別。例如,在學習“反比例”的意義時,“正比例”的意義往往影響學生對“反比例”意義的理解;也可能出現學生學習了“反比例”的意義后,而干擾學生對“正比例”的理解與掌握。這就需要及時地引導學生對這兩個概念進行對比,找出兩個概念的相同點(它們都是表示兩個數量之間的一種關系),以及它們的不同點(“正比例”是在比值一定的情況下兩個數量之間的關系,“反比例”則是在積一定的情況下兩個數量之間的關系),這樣學生就能清晰地建立“反比例”的概念,而不會與“正比例”產生混淆。
2. 要及時作出言語概括
數學中的有些概念是給予了科學的定義,而有些概念則不給定義,是通過描述或舉例說明的方法給出的。在形成概念的教學過程中,需要把所學概念準確、精練、及時地概括出來,使其條理化,便于學生記憶。在進行言語概括時,注意要讓學生動腦總結,教師不要包辦代替。總結準確的要加以肯定,予以表揚;不準確的要及時糾正,予以鼓勵。進行言語概括還要注意適時,要根據知識的內在聯系和學生的認知水平,在學生豐富了感性認識后,順水推舟地揭示概念,如過早地概括出概念,學生就會對概念死記硬背,使概念的掌握流于形式;過晚就起不到組織、整理概念的作用,達不到傳授知識、培養能力的目的。
3. 運用概念的教學
概念的形成是一個由個別到一般的過程,而概念的運用則是一個由一般到個別的過程,它們是學生掌握概念的兩個階段。通過運用概念解決實際問題,可以加深、豐富和鞏固學生對數學概念的掌握,并且在概念運用過程中也有利于培養學生思維的深刻性、靈活性、敏捷性、批判性和獨創性等,同時也有利于培養學生的實踐能力。運用概念的方法:
(1)復述概念或根據概念填空。例如:
①什么叫做比的基本性質?(復述比的基本性質)
②把單位“1”( )分成若干份,表示( )的數,叫做分數。(填關鍵詞語)
(2)運用概念進行判斷。例如:
①判斷正誤:
a.含有未知數的式子叫做方程。
b.“32+X=69”是方程。
②選擇:下面哪些是方程,哪些不是方程?為什么?
4+3X=10 6+2X 7-X>3
17-8=98X=0 18÷X=2
教學方法是教師為完成教學任務所采用的手段。在進行概念的創造性教學時,要善于綜合使用各種方法,把它們有機地結合起來,使課堂上有講有練,有問有答,既有教師的啟發、引導、講解、演示,又有學生的看書、質疑、討論、操作。這樣才能使學生主動地、創造性地學習,真正培養學生的創造力。
(盧龍縣陳官屯鄉韓莊頭小學)