999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

瞬時頻率方差加權導向最小方差波束形成檢測器

2011-04-13 09:19:28陳陽趙安邦王自娟惠俊英
哈爾濱工程大學學報 2011年6期
關鍵詞:信號

陳陽,趙安邦,王自娟,惠俊英

(哈爾濱工程大學 水聲技術國家級重點實驗室,黑龍江 哈爾濱 150001)

陣列信號處理誕生幾十年來,已發展出許多成熟、系統的理論和技術[1-2],但由于實際聲吶環境的復雜性,仍存在需要改進的地方.本文致力于提高基陣對線譜目標的檢測能力,仿真和海試表明改進的方法能有效檢測強干擾背景下線譜目標.

聲吶視野中通常存在多個目標,波束主瓣接收了期望目標的信號,同時其旁瓣也接收了其他目標的信號,成為探測期望目標的干擾,稱為“多目標干擾”.此時,理論上最佳陣列處理器是最小方差無畸變(minimum variance distortionless response,MVDR)波束形成器[3].

對于線譜,瞬時頻率方差(variance of instantaneous frequency,VIF)[4]的估計值可作為檢測統計量用于信號檢測,在理想信道白噪聲背景下的檢測性能略低于最佳處理器(匹配濾波器),但差別很小.瞬時頻率方差檢測器的虛警率與干擾背景的能量起伏無關,因而在非平穩的干擾背景和信道中具有很好的穩健性[5].

水中航行器輻射噪聲中線譜的譜級信噪比通常較連續譜高許多[6],如果充分利用這一特性,可以有效提高系統的檢測性能.寬帶信號分頻帶處理進行融合時,按各頻帶的信噪比進行加權是最優的[7].然而在實際應用中,線譜頻率未知,各頻帶的信噪比也無法得知,因而一般假設各頻帶信噪比相同,即各頻帶的權相同;而由于線譜能量在寬帶信號能量中所占比例很小,所形成的高性能空間譜被其他低信噪比頻帶形成的空間譜淹沒.解決這一問題的一個途徑是將各頻帶獨立顯示而不進行寬帶融合,這就需要四維顯示,但目前仍沒有十分有效的四維顯示方法.注意到,如果目標有線譜,該方位波束的瞬時頻率方差很小甚至為零,否則就較大,利用頻率方差對寬帶方位譜進行加權,線譜目標方位的譜強度得到增強;而且由于不需顯示每個頻帶的結果,可以通過常規的三維方位時間歷程瀑布圖顯示.

1 MVDR波束形成

假設陣列由一組全向陣元組成,陣元的位置為pn(n=0,1,…,M-1,M為陣元數).陣列接收的快拍由信號和噪聲組成,在頻域表示為X(ω)= XS(ω)+N(ω),其中信號矢量可以寫為

式中:N(ω)為噪聲矢量;F(ω)是源信號的頻域快拍;v(ω∶κS)=[e-jκTSp0,e-jκTSp1,…,e-jκTSpM-1]T是一個波數為κS的平面波對應的陣列流形矢量,κS=為單位矢量,λ為對應于頻率ω的波長.噪聲快拍N(ω)是零均值隨機矢量,其互譜密度譜矩陣為Sn(ω)=I.陣列輸入的互譜密度矩陣為

式中:Ss(ω)為期望目標的互譜密度矩陣,Sc(ω)為多目標干擾的互譜密度矩陣.利用權向量WH(ω)對X(ω)進行處理,波束輸出為Y(ω)=WH(ω)X(ω).

對于寬帶信號,分成若干頻帶,各頻點的頻域快拍矢量Xi(ωj),i=0,…,L-1,j=0,…,J-1,L為快拍數,J為頻點數.各頻點互譜密度矩陣通過快拍的時域平均得到其估計值:

MVDR波束形成最優權向量為

空間譜為

J個頻點空間譜融合[8]:

2 導向最小方差波束形成

STMV是一種基于稱為導向協方差矩陣(steered covariance matrix,STCM)的空時統計量的最優波束形成方法.STCM的自由度等于時間帶寬積,因而只需要頻點數與獨立快拍數的積不小于陣元數即可達到滿秩可逆,對于寬帶信號,其收斂遠快于MVDR.

指向協方差矩陣:

式中:

最優權為

式中:I為M×1的1向量.空間譜為

顯然,當J=1時,pstmv(θ)=pwmvdr(κs),即當信號為窄帶時,STMV與MVDR等價.

3 瞬時頻率方差

文獻[5]已經證明,對于線譜,瞬時頻率方差是十分有效的檢測量.窄帶高斯白噪聲的瞬時頻率方差為有效帶寬的平方,顯著大于線譜信號的瞬時頻率方差.

文獻[5]還比較研究了多種瞬時頻率方差估計方法:希爾伯特變換類的解析信號相位差分瞬時頻率估計方法、過零頻率估計器及其內插修正算法、窄帶信號的自適應頻率估計.由于寬帶信號陣列處理采用頻域處理,而上述方法均不適合用于頻域處理,因而下面著重分析基于短時傅里葉時頻分析的瞬時頻率方差估計方法.

噪聲中的線譜信號表示為

式中:As和φ0分別為線譜信號的幅度和初相位,信號帶寬為B,噪聲功率為.將信號以采樣率fs采樣、分段,每段長度為T(單位為s)做離散傅里葉變換.每段信號的離散傅里葉變換可以表示為

式中:Ss、Sn分別表示線譜信號和噪聲分量;X、Y分別為Sx(k)的實部和虛部.頻譜Sx(k)中幅值最大的頻點即為瞬時頻率.根據文獻[12]時,X滿足正態分布滿足正態分布時,X和Y均滿足正態分布于是,其包絡 z=|Sx(k)|=滿足萊斯分布[11]:

除線譜外其余所有頻點的最大值x=max{|Sx(k)|,k≠k0}的分布函數為

其概率密度函數為

y=z-x的分布函數為

于是z<x的概率,即線譜頻率幅值最大的概率為

其他頻點最大的概率為

瞬時頻率的均值為

瞬時頻率的方差為

通過蒙特卡洛仿真驗證上述理論.帶寬0.5~1 kHz的高斯白噪聲,線譜頻率800 Hz,FFT窗長1 s,20 000次獨立統計.和瞬時頻率方差的理論值式(18)和蒙特卡洛仿真統計結果如圖1和圖2,兩者完全一致.由圖中可以看到,當線譜譜級信噪比超過一定門限時,瞬時頻率方差為零.

圖1 線譜頻率幅值最大的概率f(k0)Fig.1 Probability of line spectrum to be the peak f(k0)

圖2 短時傅里葉變換估計瞬時頻率方差Fig.2 Variance of instantaneous frequency through STFT

4 頻率方差加權STMV波束形成檢測器

由上述可知,如果目標信號有線譜,只要波束輸出中線譜譜級信噪比超過門限,其瞬時頻率方差很小甚至為零,而如果目標信號為連續譜白噪聲則瞬時頻率方差較大,這種區別可以用于線譜目標檢測.用各方位波束輸出的瞬時頻率方差作為權對陣列的STMV方位譜進行調整的檢測器稱為瞬時頻率方差加權STMV波束形成檢測器(VIF-STMV).如圖3所示,陣列數據經滑動窗分成相互重疊的快拍,STMV波束形成輸出分別進行能量積分和周期圖譜估計;能量積分估計空間譜;周期圖譜估計得到波束輸出的功率譜,峰選確定最大譜線的頻率,并統計該頻率的方差,以方差的倒數作為系數對空間譜進行加權.

圖3 VIF-STMV框圖Fig.3 Diagram of variance of instantaneous frequencybeamforming detecting

不同的加權方法可以獲得不同的效果,下面給出2種加權方法,倒數加權和指數加權:

式中:pstmv為STMV波束形成空間譜,σf為瞬時頻率方差,Δ為一小量,它保證當瞬時頻率方差為零時倒數權存在.

以陣元間距0.3 m的48元直線陣為例,112°方向存在一信噪比為15 dB強干擾(干擾1),13°和60°方向分別存在信噪比-13 dB、-18 dB兩干擾(干擾2、3)73°方向為信噪比-18 dB的目標.其中干擾3和目標均含有1根線譜,分別為650 Hz和700 Hz,其譜級信噪比較連續譜高15 dB.信號頻帶為0.5~1 kHz,快拍長度為1 s,方位譜估計的積分時間為4s(4個獨立快拍),功率譜估計的滑動步長為0.125 s.圖4中實線為STMV方位譜,可以看到由于分辨力不夠,無法分開干擾3和目標,也就是說,干擾3的存在影響了期望目標的檢測.虛線為倒數加權的結果,由于干擾3和目標含有線譜,該方向方位譜加權較大,因而能清晰分辨干擾3和目標,干擾1和干擾2由于不含線譜,方位譜強度被抑制.點線為指數加權的結果,可以看到干擾1和干擾2方位譜強度被進一步抑制,旁瓣更平滑,更穩健.

圖4 VIF-STMV仿真Fig.4 VIF-STMV suppress multisource interference

5 海試數據處理

為了驗證該方法在工程應用中的有效性,在東海進行了海試,試驗采用的接收陣為陣元間距0.3 m的48元拖曳線列陣.目標由遠處以較快速度接近拖船.試驗在漁期進行,加上試驗海區靠近航道,因而在附近海域存在較多的其他船只的干擾.

圖5 STMV波束形成方位歷程Fig.5 Bearing-time chart of STMV

圖5為STMV波束形成方位歷程圖,從圖中可以清晰看到至少6個目標的歷程,期望目標和主要的幾個干擾如圖中標示.90 s后拖船轉向,左右舷的目標分別向船艏和船尾方向偏移.前90 s,由于期望目標與干擾1方位重疊,目標被強干擾淹沒,無法檢測到目標.拖船轉向后目標與該強干擾方位分開,可以較為明顯的檢測到目標.

圖6 倒數加權VIF-STMV的方位歷程Fig.6 Bearing-time chart of VIF-STMV (multiplicative inverse)

圖6為倒數加權VIF-STMV的方位歷程圖結果,圖7為指數加權VIF-STMV的方位歷程圖結果.從圖中可以明顯看到目標,90 s前位于70°附近,90 s后偏向0°方向.指數加權結果較倒數加權結果背景更干凈.軌跡出現斷裂是由于淺海聲信道濾波效應引起的:淺海聲信道是一梳狀濾波器,子通帶隨信道的變化而變化,當線譜頻率處于子止帶時線譜信噪比顯著降低使得瞬時頻率方差變大.

圖7 指數加權VIF-STMV的方位歷程Fig.7 Bearing-time chart of VIF-STMV (exponential weight)

進一步分析各目標信號的功率譜.圖8為70°方向波束時頻LOFAR圖,可以看到90 s前的頻譜存在線譜,為了確認該線譜屬于目標,分析56°方向和90°方向波束時頻LOFAR圖,如圖9和圖10.56°方向波束時頻LOFAR圖出現該線譜,說明90 s之后目標進入該波束,而90°方向波束時頻LOFAR圖90 s之后頻譜強度變大但沒有線譜,可見是干擾1進入該波束,而且干擾1的頻譜在該工作頻段內無線譜.圖11為20°方向(干擾2方位)波束的時頻LOFAR圖,頻譜無線譜,因而盡管干擾2輻射噪聲很強,在VIF-STMV方位歷程圖上仍然被抑制.圖12為160°方向(干擾3方位)波束的時頻LOFAR圖,頻譜存在一根線譜,因而干擾3在VIF-STMV方位歷程圖上被增強.

圖8 70°方向波束時頻LOFARFig.8 LOFAR at 70°

圖9 56°方向波束時頻LOFARFig.9 LOFAR at 56°

圖10 90°方向波束時頻LOFARFig.10 LOFAR at 90°

圖11 20°方向波束時頻LOFARFig.11 LOFAR at 20°

圖12 160°方向波束時頻LOFARFig.12 LOFAR at 160°

6 結束語

文中提出了頻率方差加權導向最小方差波束形成檢測器,利用目標輻射噪聲中線譜有較高的強度和穩定度這個特征,用每個方位的波束輸出的頻率方差,對方位譜進行加權,得到線譜目標的方位-時間歷程圖,線譜目標方位波束因輸出信號的瞬時頻率方差較小得到增強,而其他方位波束被抑制.該檢測器可有效抗多目標干擾,實現在強相干干擾中檢測到弱線譜目標,且只須三維顯示,避免了通常的線譜檢測器須四維顯示、觀察費力的困擾.仿真和海試結果表明,在多目標、強干擾的環境下,頻率方差加權導向最小方差波束形成檢測器可遠程探測線譜目標,與方位譜能量檢測器比較,有更好的探測性能.

[1]Van TREES H L.Optimum array processing[J].New York:John Wiley&Sons Inc,2003:3-5.

[2]王永良,陳輝彭,應寧,萬群.空間譜估計理論與算法[M].北京:清華大學出版社,2004:2-8.

WANG Yongliang,CHEN Huipeng,YING Ning,WAN Qun.Theories and algorithms of spectrum estimation[M].Beijing:Tsinghua University Press,2004:2-8.

[3]CAPON J.High-resolution frequency-wavenumber spectrum analysis[J].Proceedings of the IEEE,1969,57(8): 1408-1418.

[4]林茂庸,柯有安.雷達分辨理論[M].北京:國防工業出版社,1984:134-141.

LIN Maoyong,KE Youan.Rada resolution theory[M].Beijing:National Defence Industrial Press,1984:134-141.

[5]梁國龍.回波信號瞬時參數序列分析及其應用研究[D].哈爾濱:哈爾濱工程大學,1997:80-82.

LIANG Guolong.A study on instananeous parameter sequence analysis of echoes and its application[D].Harbin: Harbin Engineering University,1997:134-141.

[6]吳國清,李靖.艦船噪聲識別-線譜穩定性和唯一性[J].聲學學報,1999,24(1):6-11.

WU Guqing,LI Jing.Ship radiated-noise recognition-stability and uniqueness of line spectrum[J].Acta Acustica,1999,24(1):6-11.

[7]HUNG H,KAVEH M.Focussing matrices for coherent signal-subspace processing[J].IEEE Trans ASSP,1988,36 (8):1272-1281.

[8]KROLIK J,SWINGLER D.focused wide-band array processing by spatial resampling[J].IEEE Trans ASSP,1990,38(2):356-360.

[9]LIU W L,DING S X.An efficient method to determine the diagonal loading factor using the constant modulus feature[J].IEEE Trans SP,2008,56(12):6102-6106.

[10]KROLIK J,SWINGLER D.Multiple broadband source location using steered covariance matrices[J].IEEE Trans ASSP,1989,37(10):1481-1494.

[11]朱華,黃輝寧,李永慶,梅文博.隨機信號分析[M].北京:北京理工大學出版社,1990:317-319.

ZHU Hua,HUANG Huining,LI Youqing,MEI Wenbo.Random signal analysis[M].Beijing:Beijing Institute of Technology Press,1990:317-319.

[12]WHALEN A D.Signal detecting in noise[M].Beijing: Science Press,2006:77-78.

猜你喜歡
信號
信號
鴨綠江(2021年35期)2021-04-19 12:24:18
完形填空二則
7個信號,警惕寶寶要感冒
媽媽寶寶(2019年10期)2019-10-26 02:45:34
孩子停止長個的信號
《鐵道通信信號》訂閱單
基于FPGA的多功能信號發生器的設計
電子制作(2018年11期)2018-08-04 03:25:42
基于Arduino的聯鎖信號控制接口研究
《鐵道通信信號》訂閱單
基于LabVIEW的力加載信號采集與PID控制
Kisspeptin/GPR54信號通路促使性早熟形成的作用觀察
主站蜘蛛池模板: 婷婷综合在线观看丁香| 欧美成a人片在线观看| 99精品热视频这里只有精品7| 中文字幕不卡免费高清视频| 国产精品入口麻豆| 欧洲亚洲一区| 亚洲午夜国产片在线观看| 亚洲天堂精品视频| 91系列在线观看| 精品无码国产一区二区三区AV| 精品91自产拍在线| 亚洲成AV人手机在线观看网站| 成年免费在线观看| 动漫精品啪啪一区二区三区| 制服丝袜 91视频| 国产成人免费视频精品一区二区| 免费不卡视频| 国产精品真实对白精彩久久 | 婷婷成人综合| 污污网站在线观看| 久久成人免费| 亚洲aaa视频| 午夜精品一区二区蜜桃| 丁香六月综合网| 国产精品无码AⅤ在线观看播放| 国产成人高精品免费视频| 99人体免费视频| 国产无码性爱一区二区三区| 亚洲一级毛片免费观看| 波多野结衣第一页| 中文字幕人妻无码系列第三区| 一级毛片免费播放视频| 亚洲精品欧美日本中文字幕| 狠狠色综合网| 国产成人一区免费观看| 日韩一区精品视频一区二区| 精品少妇人妻一区二区| 欧美福利在线观看| 国产精品亚洲五月天高清| 二级毛片免费观看全程| 91视频区| 欧美亚洲第一页| 婷五月综合| 91免费国产在线观看尤物| 国产农村妇女精品一二区| jizz国产在线| 免费看美女毛片| 天堂av高清一区二区三区| 精品国产成人三级在线观看| 欧美天堂在线| 日韩天堂视频| 99在线观看国产| 无码中文字幕精品推荐| 亚洲第一成人在线| 亚洲欧州色色免费AV| 538国产视频| 伊人婷婷色香五月综合缴缴情| 久久国产拍爱| 亚洲国产成人精品青青草原| 国产裸舞福利在线视频合集| 亚洲av无码人妻| 日韩a级毛片| 亚洲av色吊丝无码| 国产96在线 | 2022国产无码在线| 欧美日韩另类国产| 国产精品主播| 亚洲精品国产成人7777| 国产极品美女在线观看| 中文无码伦av中文字幕| 久操线在视频在线观看| 在线免费观看AV| 日韩毛片免费| 亚洲第一成年免费网站| 亚洲欧美成aⅴ人在线观看| 欧美劲爆第一页| 99久久精品免费观看国产| 国产喷水视频| 一级片一区| 福利在线一区| 亚洲全网成人资源在线观看| 国产精品污视频|