劉彥濤
(中鐵十三局集團第四工程有限公司,黑龍江 哈爾濱 150008)
近年來,鋼管混凝土系桿拱橋以其跨度大、結構輕、造型美、省建材等優點,被廣泛應用于公路工程。但該橋型技術復雜,施工難度大,已經暴露和潛在的問題還很多,亟待廣大工程技術人員在實踐中不斷探討和完善,本文將結合工程實踐就有關問題做簡要闡述。
2.1.1 功能
系桿拱橋支承系統宜選用WDJ齒碗扣型多功能支架,該系統具有支架豎向組合微調功能,主要以工具支架和特制微調座組成。
2.1.2 地基處理
WDJ齒碗扣型多功能支架必須搭設在經處理的堅實地基上,地基須高出原地面0.5~0.8m,做好防水,避免雨季浸泡。在立桿底部鋪設墊層和安放底座,墊層可采用厚度≥20cm的混凝土或厚度≮10cm的鋼筋混凝土或厚度≮5cm的木板。
2.1.3 預壓
支架使用前須全程預壓,不能以一孔預壓取得的經驗數據推概全橋。靜壓5d(120h)以上及達到沉降穩定狀態2d(48h)以上,沉降穩定標準:24h沉降不超過1mm。
2.2.1 以激光照準和精密測標組成定位系統,監測項目為拱肋的線形變化、拱腳位移和拱腳沉降。
2.2.2 建立測量控制網
在每節拱肋端頭設置固定的測量控制點,控制點設在拱肋中線位置。施工放樣及檢查都采用全站儀進行,每架設一節段拱肋,對全部控制點都要進行觀測。此外,對拱座的偏位進行觀測。鋼管拱對溫度,特別是日照影響非常敏感。為了減少溫度和日照對線形控制的影響,標高的測量包括合攏時間都安排在凌晨。
2.2.3 施工控制
(1)在扣索塔架頂部設有扣、錨索調整裝置千斤頂,通過改變扣索的張力,并采用在拱段之間的內法蘭盤接頭處抄墊鋼板的方法,來實現拱段接頭標高的調整(跨徑較小的拱肋可利用WDJ支撐系統高度及其豎向微調功能實現)。
(2)設置臨時橫撐固定拱肋。每架設一節拱肋,就利用鋼管拱的橫聯鋼管臨時焊接固定上下游拱肋,特別是在合攏段基肋端一定要設置臨時支撐。
(3)在焊接拱肋接頭外包板時,對稱布置的焊縫,采用成雙焊工對稱施焊,這樣可使各焊縫所引起的變形相抵消;非對稱焊縫,先焊縫少的一側,這樣可使先焊的焊縫變形部分抵消。
(4)為保證鋼管拱在吊裝過程中的橫向穩定性,在每吊裝一節段拱肋時,采用通過對稱設置兩道浪風繩來調整和控制拱段就位中線位置,減少拱肋自由長度,增大橫向穩定。控制浪風繩長度基本相同。
2.3.1 選材
(1)設計高性能微膨脹混凝土應選擇525R早強型水泥為主體,其用量不宜過大,初凝時間以8~12h為宜。
(2)配制高性能微膨脹混凝土須使用干凈的河砂并嚴格控制云母含量、硫化物含量、含泥量和壓碎值,一般選用細度模數2.6-3.1的中砂為宜。不宜用砂巖類山砂、機制砂、海砂,此類砂對混凝土的膨脹率影響極大。
(3)粗骨料石質對高性能微膨脹混凝土影響很大,主要體現在骨料一砂漿界面粘結強度、骨料彈性模量和骨料強度。在考慮混凝土可泵性的同時,要考慮混凝土的早強性和后期強度。碎石需二次破碎,使其基本無棱角,并減少針片狀顆粒的含量。選用時應嚴格控制含泥量、強度、彈性模量和粒徑≤30mm。
(4)粉煤灰與水泥“二次水化反應”產生的凝膠封堵了混凝土的毛細管路,增強了密實性,提高了耐久性。“二次水化反應”只有Ⅰ級粉煤灰和磨細粉煤灰可以徹底完成:“使混凝土升溫降低15%~35%;應嚴格控制粉煤灰SO3含量,以0.5%~1.5%”為宜;粉煤灰應符合現行國家標準《用于水泥和混凝土中的粉煤灰》規定。
(5)選擇外加劑一定要經過多次試驗。試驗表明,緩凝型減水劑會降低混凝土膨脹率,所以應反復試驗,膨脹率合適才可使用;高效減水劑還應具有緩效凝作用和緩凝劑摻配作用,且是非引氣型、低氣泡減水劑;其質量應符合現行標準《混凝土外加劑》規定。
(6)膨脹劑在有鋼管約束條件下,在結構中建立0.2~0.3MPa預應力,可抵消混凝土在硬化過程中產生的收縮應力,從而提高抗裂能力。選擇時一定要多試驗幾個品種,膨脹劑應對混凝土后期強度及質量無害,與所用水泥適應性好。我國主要使用U型膨脹劑、復合膨脹劑及明礬石膨脹劑。
2.3.2 設計高性能膨脹混凝土的三個問題
(1)混凝土施工可按一般高性能混凝土設計方法進行配制強度計算,不必計算后將強度提高一個等級作為配制強度,關鍵在于施工配合比的施工現場驗證。設計時應嚴格控制水灰比,將其確定為定值。
(2)混凝土是采用鋼管中頂升灌注,粗骨料在頂升過程中不能因自身重力而下落,否則會造成頂升壓力過大而失敗。在設計混凝土配合比過程中碎石應稍微呈懸浮狀態,不能下沉。所以該種混凝土的砂率可提高一些。
(3)許多工程實踐認為鋼管混凝土設計為微應力時,限制膨脹率28天內應控制在(2~6)×10-4的范圍內是合理的。
2.4.1 鋼管拱肋的制作
(1)鋼管拱主弦管直徑>600mm采用螺旋焊管。
(2)宜選用具有CAD加工設計技術和成功經驗的廠家;單元階段制造好后在工廠進行平面和立面組拼檢查;螺旋焊管彎曲成型在中頻彎管機上進行,采用埋弧自動焊;腹板安裝采用CO2氣體保護焊;單元階段焊接完成后,若與理論線形不符,可用“火工矯正法”矯正。
(3)鋼管拱單元階段制好后運至工地組焊成吊裝段,運至施工現場,最后用跨墩龍門吊機或其它起重設施將吊裝段吊上橋組裝。
(4)為便于調整拱肋預埋段制造、溫度引起的偏差,鋼管制造在工廠時,拱腳預埋段與拱中段之間預留80mm調整量;拱肋合攏鎖定溫度為10℃~15℃。
2.4.2 鋼管拱肋單元構件的防護
預拼成型的安裝節段必須對接口進行地面預接和必要的技術處理,拱肋每一個吊裝階段之間采用內法蘭連接,法蘭間可抄墊鋼板進行微調;單元制造階段之間采用臨時外法蘭連接。
2.4.3 鋼管拱肋的懸拼
(1)拱肋吊裝采用懸拼和扣掛施工。拱肋作完后,首先在制作場地進行預拼,合格后方可吊裝。
(2)拱肋吊裝前應安裝好拱腳臨時鉸,懸拼過程中允許拱肋繞鉸轉動。每吊裝一個階段除安裝好橫撐及臨時橫撐外還要設置橫向浪風索。以利調整拱軸線和保證橫向穩定。
(3)兩階段接頭端面先用螺栓對接,安裝合攏段前應預先通過扣索調整拱肋橫向位置,然后再安裝拱頂合攏段。
(4)兩條拱肋全部合攏后,再全面校核一次拱軸線坐標,并調整至誤差容許范圍內。再對焊主拱鋼管、燒掉螺栓,用加勁鋼板補焊拱肋鋼管接頭,以保證受力連續。
(5)用鋼管焊接封死拱腳臨時鉸,澆注拱座預留槽口C50混凝土,形成無鉸鋼管桁架拱,待拱腳混凝土達到強度后拆除扣索。
(6)泵送壓注填充管內C50微膨脹混凝土。
鋼管混凝土系桿拱橋施工中需要研究的問題還很多,這就需要我們廣大工程技術人員積極探索,不斷完善,使這一先進技術在公路交通設施建設領域發揮更大作用。
[1]張道平.大跨鋼管混凝土拱橋施工控制研究重慶大學[D].重慶大學,2007-10-01.