摘 要:考慮地基的抗剪能力和梁的剪切變形影響,建立了雙參數地基Timoshenko梁的平衡方程,導出了初參數解和傳遞矩陣法,利用初參數解建立了有限元列式.當地基的抗剪勁度為0時,雙參數地基可退化成Winkler地基,當梁的抗剪勁度無窮大時,Timoshenko梁可退化成Euler梁.利用本文有限元法分析了雙參數地基倒T形Timoshenko梁在兩端集中荷載作用、雙參數地基變截面階梯形Timoshenko梁在集中力、集中力偶和均布荷載作用下的受力問題.算例結果表明,本文計算結果與其他方法結果完全一致,證明所推導的初參數解、傳遞矩陣法和有限元剛度的正確性.
關鍵詞:雙參數地基;Timoshenko梁;初參數;有限元方法;雙重剪切效應
中圖分類號:O342;TB115文獻標識碼:A
Analysis for Elastic Foundation Beam
with Double Shear Effect
XIA Gui-yun1, LI Chuan-xi1,ZENG Qing-yuan2
(1.School of Civil Engineering and Architecture, Changsha Univ of Science and Technology, Changsha,Hunan 410004, China;
2. School of Civil Engineering and Architecture, Central South Univ, Changsha,Hunan 410075, China)
Abstract: Considering the shear capacity of elastic foundation and the shear deformation effect of beam, the equilibrium equation for Timoshenko beam resting on two-parameter foundation was derived. The initial parameter solution and transfer matrix method were presented. Using the initial parameter solutions, the finite element formulation and equivalent nodal forces of distributing load were deduced. When the shear rigidity of foundation was zero, the two-parameter foundation could be degenerated into Winkler foundation. When the shear rigidity was infinite, Timoshenko beam could be degenerated into Euler beam. Using the present finite element method, we analyzed inverse T type Timoshenko beam on two-parameter foundation under the concentrated loads on ends and stepped Timoshenko beam on two-parameter foundation under concentrated load, concentrated moment and distributing load. Results have shown that the present results are identical with others, which validate initial parameter solutions, transfer matrix and finite element method.
Key words: two-parameter foundation; Timoshenko beam; initial parameter; finite element method; double shear effects
彈性地基梁是土木工程的基本構件,以其簡單、適用而廣泛應用于鐵路、公路、船塢、船閘、房屋基礎、地下結構等工程.各種地基上Euler梁研究較深入,有豐富的研究成果[1].但在實踐中經常遇到彈性地基梁局部懸空、梁長較短、梁厚較深、高度局部承載等情況,Essenburg指出應考慮梁的剪切變形影響[2],此時彈性地基梁的剪切變形影響程度受梁剛度和地基剛度比的支配.Winkler地基上Timoshenko梁的剪切變形影響分析有相當多的研究成果[3-4].由于雙參數地基考慮了地基的抗剪能力,比Winkler地基更合理,因此研究雙參數地基上Timoshenko梁的雙重剪切問題得到了眾多研究者的關注[5-7].Onu[6]利用雙撓度理論(將橫向變形分解為彎曲引起的橫向位移和剪切引起的橫向位移),建立了雙參數地基Timoshenko梁的微分方程解,導出了有限元剛度,并分析了彈性地基梁和結構地基的相互作用問題.Shirima等[7]分析了一種不同于傳統Filonenko-Borodich型、Pasternak型兩參數地基Timoshenko梁,其主要考慮了地基水平摩擦的影響,地基豎向反力模型仍為Winkler模型.Chen[8]等利用雙撓度理論分析了雙參數地基Timosehnko梁的振動問題.綜合這些文獻可知,傳統的雙參數地基Timoshenko梁雙重剪切分析一般都采用雙撓度理論進行,本文利用Timoshenko二廣義位移梁理論分析雙參數地基Timoshenko梁的受力問題.
4 計算示例
4.1 雙參數地基倒T形Timoshenko梁
利用傳遞矩陣法分析雙參數地基倒T形深梁[3].梁長L=5.0 m,P=1 000 kN,倒T梁底寬1.5 m,頂寬0.8 m,梁高為1.2 m和1.6 m兩種,細部尺寸如圖3所示.材料彈性模量E=2.5×105 kN/m2,泊松比μ=0.2,取不同的基床系數,進行了3種工況分析.工況1:梁高1.2 m,K=3×105 kN/m2,T=1×106 kN;工況2:梁高1.6 m,K=3×105 kN/m2,T=1×106 kN;工況3:梁高1.6 m,K=6×105 kN/m2,T=1×106 kN.當作Winkler地基時抗剪勁度T=0.
考慮梁的剪切變形(剪切修正系數n=0.5)與不考慮剪切變形(剪切修正系數n=∞),地基分雙參數地基和Winkler地基 ,3種工況下梁邊緣截面撓度、跨中截面撓度、跨中截面彎矩結果如表1所示.從表中計算結果可以看出,本文方法所計算的結果與文獻[3,6]完全一致.
5 結 論
1)本文所推導出來的初參數解、傳遞矩陣法和有限元為雙參數地基Timoshenko梁彎曲分析提供了計算工具.同時由于本文所建立的雙參數地基Timoshenko梁單元剛度直接由理論解轉化而來,是一種理性有限元,計算精度高,不依賴于單元網格密度.
2)雙參數地基Timoshenko梁中改變計算參數可進行退化.當梁的剪切剛度C→∞時,Timoshenko梁可退化成Euler梁,雙參數地基中當T=0時可退化成Winkler地基,因此本文所建立的分析方法適應范圍廣泛,通用性強.
3)本文的初參數解、傳遞矩陣法和有限元可為類似彈性地基梁問題提供計算方法,如橋梁工程的箱梁畸變分析、給排水工程的圓形水池軸對稱問題、船舶工程的潛艇靜水受壓問題等.
參考文獻
[1] FENG Z H,COOK R D.Beam elements on two-parameter elastic foundation[J].Journal of Engineering Mechanics,ASCE,1982,109(6): 1390-1402.
[2] ESSENBURG F.Shear deformation in beams on elastic foundations[J].ASME,Journal of Applied Mechanics,1962,29(4):313-317.
[3] AYDOGAN M. Stiffness matrix formulation of beams with shear effect on elastic foundation[J].Journal of Structural Engineering,1995,121(9):1265-1269.
[4] 夏桂云,李傳習,曾慶元.剪切變形對厚壁圓筒形貯液池的影響[J].中南大學學報:自然科學版,2009,40(5):1430-1436.
XIA Gui-yun,LI Chuan-xi,ZENG Qing-yuan.Shear deformation influence on cylindrical liquid-storage tank with thick wall[J].Journal of Central South University :Science and Technology, 2009,40(5):1430-1436. (In Chinese)
[5] 夏桂云,李傳習.考慮剪切變形影響的桿系結構理論與應用[M].北京:人民交通出版社,2008:92-136.
XIA Gui-yun, LI Chuan-xi. Frame structure theory including shear deformation effect and its applications[M].Beijing: China Communications Press,2008:92-136.(In Chinese)
[6] ONU G. Shear effect in beam finite element on two-parameter elastic foundation[J].Journal of Structural Engineering, ASCE, 2000,126(9):1104-1107.
[7] SHIRIMA L M,GIGER M W.Timoshenko beam element resting on two-parameter elastic foundation [J].Journal of Engineering Mechnics,ASCE,1992,118(2):280-295.
[8] CHEN Y H.General dynamic stiffness matrix of a Timoshenko beam for transverse vibration[J].Earthquake Engineering and Structural Dynamics,1987,15:391-402.